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Electric permittivity tensor variations, due to the square of a strong DC electric field,
are expressed in terms of tensors dependent on the shape and macroscopic properties of the
dielectric and the electric saturation constant S, describing its microscopic structure. A de-
tailed analysis of S is given on models of multi- -component systems of, in general, polar
molecules, lirearly and nonlinearly polarizable both in an external electric field and in the
molecular fields of dense media. By statistical methods, S is expanded in powers of the molar
fractions. The first, linear term describes the additive properties of an ideal (correlation-less)
mixture. The higher terms, nonlinear in powers of the molar fractions, account for diver-
gences from additivity of S due to radial and angular molecular correlations. Effects of
spatial molecular redistribution and of electric molecular field fluctuations in regions of
short-range order are considered. In mixtures of atoms or simple isotropic molecules, where
additivity of S is related with 3-rd order nonlinear distortion only, statistical-fluctuational
effects become predominant, causing S to depend on temperature and to diverge from addi-
tivity. For polar mixtures, the various temperature-contributions to .S not only involve the
permanent electric dipoles but also higher electric moments (quadru-, octu-, hexadecapoles).
In the light of the present theory, studies of A¢(E) in judiciously composed two- and three-
component solutions will yield novel, highly relevant information on the correlations between
polar molecules of the same and different species as well as on their electric multipoles and
nonlinear electric polarizabilities.
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1. Introduction

To Langevin [1] is due the statistical-reorientational theory of classical molecular
paramagnetism. Debye [2] extended Langevin’s results to dielectrics proposing the determi-
nation of the electric dipoles from temperature-dependent electric permittivity measurements.
The complete theory of electron and dipolar electric polarisation was given by Kro6 [3].

Langevin [4], in his interpretation of the temperature-variations of the Kerr constant,
showed them to be related to the anisotropic polarizability of molecules, subject to re-
orientation in the electric field. Born [5] modified the theory to comprise dipolar aniso-
tropically polarizable molecules. Voigt [6], on the basis of Lorentz’s electron theory [7],
had shown the temperature-independent part of Kerr’s constant to arise from nonlinear
distortion of molecules proportional to the square of the electric field strength. The idea
was subsequently taken up by Born [8], who moreover took into consideration changes
in polarizability linear in the field strength (see, also, the monographs [9-12]).

Debye [13], starting from the work of Langevin and Born, extended the dielectric
saturation theory of Herweg [14] to dipole molecules with anisotropic linear and non-
linear polarizabilities. Piekara [15] first pointed to the essential rdle, in dielectric satura-
tion, of nonlinear distortion of dipolar molecules like nitrobenzene, and in general of
molecules immersed in a strong electric field [16].

Herweg [14] performed the first successful measurements of dielectric saturation in ethyl
ether finding, in accordance with the theory of Langevin and Debye, a negative variation
in permittivity Ae(E) quadratically dependent on the electric field strength E. Measure-
ments by Kautzsch [17] in chloroform and chlorobenzene also yielded variations 4¢(E) < 0.

Piekara [18-23] proceeded to a systematic experimental and theoretical study of
dielectric saturation in dipolar liquids and solutions. In 1936, in co-operation with B. Piekara
[18], he discovered the positive dielectric saturation effect in solutions of nitrobenzene.
Its theoretical interpretation by Piekara [19, 20] was based on pairs of dipoles, coupled
in almost-antiparallel array. Debye’s theory [13] did not admit of positive variations in
permittivity. The positive saturation effect has since been found on various dipolar solutions
[21, 24]. Piekara and Kielich [16, 25] developed a general molecular-statistical theory
of dielectric saturation in liquids successfully explaining numerous experimental aspects
of the measurements. The body of work bearing on the nonlinear properties of dielectrics
is by now comprised in monographs [11, 26-31].

The present paper is aimed at an extension of the molecular-statistical theory of
Piekara and Kielich [16, 25] to dielectric saturation in solutions of arbitrarily many com-
ponents, consisting of atoms and polar molecules. Starting from Kirkwood’s semi-
-macroscopic treatment [32], generalized to the nonlinear case [33], we shall perform
a detailed molecular-statistical analysis with applications to some experimentally realistic
models. We restrict our calculations to the quadratic field strength dependence of 4e(E)
neglecting higher nonlinearities and including complete dielectric saturation, dealt with
in a previous paper [34]. The external electric field E will be assumed as static or suffi-
ciently slowly variable to render the consideration of molecular rotational relaxation
processes superfluous {35].
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2. Semi-macroscopic theory

In the semi-macroscopic approach, we consider an ellipsoidal sample of macroscopic
size, volume ¥, and electric permittivity ¢ within an isotropic continuous medium of
permittivity e, When an intense electric field E, exists in the surrounding medium, the
dielectric ellipsoid becomes anisotropic and its anisotropicity is, in general, given by an
electric permittivity tensor &,. Generally, the macroscopic field E existing in the
dielectric sample differs from the external field E,; the two fields are related by the
formula:

EOa' = RarEr’ (1)

well known from the electrostatics of dielectrics [28] (we apply the summation convention
over the twice recurring index t = x, y, z). The tensor relating E, to E is here of the form:

R, =& ! {30501 +(&y— soaav)Lvt}’ 2)

where 8,, is Kronecker’s symmetric unit tensor. L,, is a symmetric field depolarisation
tensor, dependent on the shape of the dielectric sample, and defined so that its trace
shall equal unity, L,, = Lyy+L,,+L,, = 1.

The principal values are (¢ = x, y, 2)

rryr.ds

L,=1% J("f“'s) [(r2+5) (r2+s) (r2+9)]"*’ 3)
0

ry 1, and r, denoting the principal semi-axes of the ellipsoid. In particular, for a spherical
sample r, = r, = r, and

LO“C = % 50"[ (la)
whence the tensor of Eq. (2) reduces to

g1 + 28050'1:
3¢g '

(22)

ot =

If moreover the permittivity of the sample is isotropic, &,, = &0, one has the well known
relation

2
R, = (8+ 8") 5,. = RO, (2b)

3g,

If the sample is a cylinder, the axis of which is directed along the x-axis, one has L, =0
and L, = L, = 1/2. For a circular oblate disc L, = L, =0 and L,

Let us assume the electric field Ej whereby we measure the perm1tt1v1ty as so slowly
variable that its frequency lies well below Debye dipolar dispersion. Likewise, let the
strong field ES inducing changes in permittivity be slowly variable or constant in time.
The directions of E™ and E3 will in general differ, according to the experimental setup.
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Thus, the total electric polarisation of the medium is a function of the two fields, P(E], Ep),
and the electric permittivity tensor can be written in the form
(85:—8004)ET = 4ney P, (E™, E®). @

Since the measuring field Eg is weak, it induces but linear polarisation in the medium

oP,
P,(E™ E°) = (A ;) O (35)
Em=0

0Ly,
so that by (1) and (4) we have, in the presence of the strong field E;,

P (E™ E*
e = ©
Oov Em=0

The total polarisation of the medium can be resolved into a linear and a nonlinear
part

P(E", E®) = PAE™)+PYYE™, E*) @)

whence the electric permittivity tensor in the absence of E3 is

aSppm

“Oy

OPL(E™)
&,(0)—£00,, = 4ne, R ®
Em=0

With regard to Eqs (4)-(8) and the relation (1), we obtain the following general
relation for the change in electric permittivity tensor induced by the strong electric field

e L(Emt@} ©
Em=0

Ae, (E®) = 4nRI R™ { —
Bo-r( ) TR g Vt{ aE,gv

With the aim of calculating the electric polarisation of the medium we have recourse,
in conformity with the statistical mechanics of systems at thermodynamical equilibrium,
to the definition

P(E) = ‘I; JM,,(F, E){(I', E)dT, (10)

where E = E™4E® denotes the total field acting on the medium. v
The total electric dipole moment of the medium at configuration I' and in the presence
of the field E is given by the expansion [33]

Mo'(F’ E) = Ma(F)+Ao't(F)EOt+% Barv(F)EOrEOV +‘(1~’T Catvg(F)EOrEOVEOQ+ LS (] 1)

where M (') = M (I, 0) is its total dipole moment in the absence of external electric
fields. The second-rank tensor A,(I') defines the linear electric polarizability of the medium;
the third-rank tensor B,,,(I') defines its first nonlinear polarizability; and the fourth-rank
tensor C,,,(I) — its second nonlinear electric polarizability.

/
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The Gibbs distribution function in the external field is

exp [—pU(T, E)]

§ exp [ BU(T, E)]dI’ (12)

f(F,E)‘:

with f~! = kT. The total potential energy of the system in the presence of the electric
field is given, to within the third order, by [33]

U(Fa E) = U(F’ 0)_Ma(r)EOa—’Jf Aar(F)EOGEW—% BGTV(F)EOG'EOTEOV— (13)

On expanding the distribution function (12) in powers of fU we obtain by (13),
within the same degree of accuracy [16, 28]

S, E) = T, O)+ (T EY+FAT, EY+15(T B)+ .. (14)
where f(I', 0) is the non-perturbed distribution function, given by (12) at E = 0, whereas
the successively higher approximations are of the form

fi(, E) = BA(T, 0) {M (IEqo,+% AA,()Eg,Eo.+¢ BorlIDEo,EoEoy+ .}
12T, E) = % BT, 0) {4AM ()M (I)Eq,Eo.+ M (D) AA(I')Eo,Eo.Eo+ -},
f5(I, E) = % B3I, OOM () {M{D)M () = 3K MD)M ()} } EogEqEoy+ ---

Above, the symbol ¢ ) stands for statistical averaging with the non-perturbed distribution
function A(I', 0). Also, we have taken into consideration that, for isotropic bodies, {M,) = 0

and <B,,,> = 0. ‘
On inserting the expansion (11) and (14) into the definition of Eq. (10), we obtain
the linear and nonlinear polarisations in the form

1
P(Eo) = 5, (Ao + MM D)Eq., (15)

1 -
PQL(EO) = {<Catvq> + ﬁl.«jwaBrv(& + 3<Bm:ng> + 3<A51AAvg>]
6V

+3B*[{ A dAM M) +<{ MM A4,)]
+ﬁ3[<MaMerMQ> - 3<M0M1> <MVMQ>]}EOTE0VEOQ' (16)

We are now faced with the problem of averaging second- and fourth-rank tensors 7,
and T,,,,. We begin by transforming them from the laboratory reference system ¢ = X, y, z
(attached e.g. to the electric field) to an arbitrary mobile system of reference o = 1, 2, 3,
attached to a microsystem (an atom or molecule) of the medium. The respective transfor-
mations are of the form

Tor = Coaciﬂ Taﬂ’ T;;rvg = Ca'actﬂcvycgé T;ﬁyé > (17)

where, in the case of Cartesian systems of reference, the transformation coefficients ¢,
are cosines of the angles subtended by their axes ¢ ando. Since in the expansions (15)
and (16), all the statistical averages indicated refer to the field-free case, the directional
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cosines of Eq. (17) can at the outset be averaged unweightedly over all possible directions
of the electric fiedl yielding [36, 37]

<c¢mctﬂ> = % 50’1:60(/9’

B0e 00 [ 4 —1 —1\ (b, 8,
<szctﬂcvycg§> = ?16 aav 51@ -1 4 -1 51}' 5/36 . (18)
agg Ytv, _"1 —1 4 50‘5 5ﬁ7

With regard to (17) and (18), Egs (15) and (16) can be written in the form
L 4n 2
4TCP0'(E) = S—V— (<Aaa>+ﬁ<M >)E00' = 3PLEOa’ (153)

4nPYH(E) = (Spr+Snp+Spr+Sa+Sam+Sy)EoEoEo:
= S(E'(;la i)r ?)t+2E6n‘t ?)a f)t)’ (163.)
where S, the dielectric saturation constant, consists of the following terms:

Srx = 29%? {(AAu+pAM?)) (19)

is the term due to fluctuations in reorientation of the induced and permanent dipoles;

2nf
SND = H <Caazﬂli+2caﬂ1ﬂ> (20)

is the term accounting for pure, second nonlinear distortion;

8np

T M (Bogp+2Bgp)» (21)

DR

is the term of first nonlinear distortion and dipolar reorientation;

4nf . )
SA = —4?1; <3AaﬂAaﬁ_AaaAﬂ/}> (22)

is that of anisotropic reorientation of the induced dipoles;

8np?
Sum = VA (3A, M Myz— A, MgMy> (23)

is that of anisotropic reorientation of the induced and permanent dipoles, and, finally,

_ Anp’ A2
Sy =— 151 (M- M) (24)

is that of reorientation of the permanent dipoles.
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By (15a), the electric permittivity tensor of the medium (8) in the absence of a strong
field takes the form

£5(0) —£006c = 360PLRY:. (25)
For a dielectric ellipsoid with isotropic electric permittivity, the tensor (2) is
R:rnr = 851{60'{-(8—80)14“}. (2C)

Since for an isotropic spherical sample the tensor (2¢) goes over into the isotropic tensor
(2b), Eq. (25) reduces to its well known form for linear electric polarisation [38]

£—&

41
=P, = — ({Ap> + B{M?Y, 252
ci2e, L F 9V(§ >+B{M7)) (252)
representing a generalisation of the well known Langevin-Debye expression for isotropic
dense media.
With regard to (16a), Eq. (9) yields the following general expression for the change
in electric permittivity tensor induced by the square of the strong electric field:

de, (E¥) = S(RT,R.RS,RS, + 2R, R, RV R, ESE,. (26)

e agMeA

In particular, if the isotropicity of the tensor R, is assumed in the form given by (2b),
Eq. (26) reduces to [39]

Ae, (E%) = SR¥(S,.ESE;+2ELES). 27

Let us now assume a setup with the strong electric field acting along the x-axis. By 2N,
the changes measured along E; and perpendicularly to E: now are, respectively,

A (E3) = 3SRYES)?,  de,(E3) = SRY(EY’, (27a)
their difference amounting to
Asxx(Ei)—Aayy(ch) = 2SR4(Ei)2 (28)

Measurements of the anisotropy of changes in electric permittivity present the advan-
tage of not depending on electrostriction [28], provided the latter is isotropic; nor are
they denatured by the electro-caloric effect [28].

3. Molecular-statistical analysis in the absence of molecular fields

We now proceed to analyze the contributions (19)-(24) to dielectric saturation by
a molecular-statistical treatment. This will permit us to gain insight into the various
microscopic mechanisms involved.
We assume quite generally that the volume ¥ of the dielectric contains N = Y N;
i

microsystems (atoms, molecules, etc.) of different species. N; is the number of microsystems
of the i-th species, and x; is the molar fraction of the i-th component of the mixture.
Obviously, Y x; = 1.

7
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At first, to simplify our considerations, we shall neglect the action of molecular
fields; thus, the macroscopic tensors referring to the whole volume of the medium are
given additively by the respective microscopic quantities:

a(r) Z 2 m(l)(rpt)’ uﬂ(r) = Z z (‘)(Tpl)’ (29)
Baﬁy(r) Z Z_: b«gﬁy('tpl) Caﬂyé(r) Z Z caﬂy&(Tpt)’ (30)

where m‘"(‘cm) is the electric dipole moment of molecule p of the 1 -th species when at
the configuration 7,,;; and likewise the polarizability tensors a“’(r p,), y(1:1,,) and ca,,y,,(tp,)

3.1. Fluctuational-reorientation effect

Previous analyses of the experimental results on dielectric saturation did not take
into account the fluctuational-reorientational effect, defined by (19). The effect, introduced
earlier [39] for pure liquids, now takes the following form with regard to Eq. (29) for many-
-component systems:

DRSS

We shall discuss the preceding expression for the case, only, of binary (pairwise) molecular
correlations, and molecular parameters m®’ and af) = 3a; not depending explicitly
on the configurational variables 7,;. Eq. (19a) now reduces (omitting angular correlations
of permanent dipoles) to the form

2nf ’ .
Spr = o z (Ba;+ Bm?) 3a;+ pm7) CANAN;). 31
. iy
Above, in conformity with Smoluchowski’s fluctuation theory [40], the mean value of

the product of fluctuations in number of molecules belonging to different species (compo-
nents) is given as [41]

<AN1ANJ> = N(xiéij—f-xiijij). (32)

We have introduced here the radial correlation parameter
Gij = V J‘J {gLZ)(‘Cpl’ qu) - gg1)(Tpi)gg'l)(rqj)}drpidtqj’ (33)

where o = N/V is the number density of molecules, and g{"(z,) and g7(zy, 7,;) are,
respectively, the mono-molecular and bi-molecular correlation functions for molecules
of species i and j at configurations t,; and 7,;. By insertion of (32) into (31) we obtain

Ser = Y, XS5k + Z xx;SER+ L (34)
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with:
@ _ 2" 22
St =5 BoCactpmd?, 33)
i) »275 2 2 36
Skr = 9 Bo(Ba;+ pm;) (3a;+ Bmj)Gy;. (36)

The expansion (34) shows that the fluctuation effect is additive in the first approx-
imation. A deviation from additivity arises due to molecular correlations, defined by the
parameter (33). Had we taken into account triple and four-molecule correlations when
going over from Eq. (19a) to (31), still higher functions of the molar fractions would
have appeared in Eq. (34) implying larger deviations from additivity.

On inspection of Eqs (35) and (36) we see that the fluctuational-reorientational effect
can take place both in atomic substances and in ones composed of quasi-spherical mole-
cules with an isotropic electric polarizability a; = a{)/3. The effect is thus of considerable
significance in the interpretation of dielectric saturation measutements such as those
carried out recently by Davies et al. [42].

In particular, for a one-component liquid we have by (32) the well known Smoluchowski
relation for the mean square of the fluctuation in number of molecules

{(AN)*> = N(1+G) = NokTpy, (37

where Br is the isothermal compressibility coefficient of the medium.
Thus, by (37), for a one-component liquid Eq. (31) takes the form

2n
Srr = 9 0*Br(3a+pm*)?, (38)
well adapted to direct numerical evaluations [39].

3.2. Nonlinear distortion effects
By insertion of (29) and (30) into Eqs (20) and (21) we obtain

Ny

2 .
Syp = % Z <Z ;:z)ﬁﬂ(fpt)> (20a)

i r=1

8
Spr = 1:5 <Z Z (’)(Tpi)baﬂﬁ(tqj)> . (21a)

In the case of pure nonlinear distortion in the absence of molecular redistribution the

constant (20a) is additive
Snp = = g Z xi¢; = Z x,S9, (39)
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where ¢; = c(,,,,,/S is the mean value of the second nonlinear polarizability tensor of
a molecule of the i-th species.

However, the distortional-reorientational constant (21a) is generally not additive.
It is given as follows (on resolving the sum into self-correlations for p = ¢ and unlike
binary correlations for p # q)

Spr = Y. X:SHk+ Z X SSR+ . (40)
where
. 8w o
Shk = T Bom{’bGs, 41)
iR = Be{m"’bfs’y’y mPbELIKD. 42

We have introduced here the tensor of binary (two-molecule) angular correlations

KY = "1% f f cos 0 gDz . 7, ) dv,, @3)
where 0+ is the angle between the axis « of co-ordinates attached to molecule p of
species i and the axis § of those attached to molecule g of species j.

In particular, if one assumes the molecules of the two components to be symmetric
about their 3-axis, along which the dipole moment m; = m is directed, the constants (41)
and (42) reduce to

8np

Sg}z = ‘S‘I‘C‘E: m;b,, (41a)
SS"R) = SkT (mb +m;b)K;;, _ (41b)

where b; = b3,,/3 = 3(b333+2b31,) is the mean value of the first nonlinear polarizability
tensor of the axially symmetric molecule of species i, and

4
Ki; = iI7 J‘J‘ cos Bpiqjgg )(Tpi’ qu)dtpid‘cqj (43a)

is the form taken by (43) for ¢ = f = 3.
Eq. (43) goes over into the well known Kirkwood angular correlation parameter
for one-component dipolar liquids [32]

K = g [ €05 0,,8%(t,0d7, (43b)

discussed earlier by Piekara [43] for almost parallel and antiparallel coupled dipole pairs
in linear dielectric polarization.
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3.3. Effects of anisotropic molecular reorientation

With regard to (29), the constants (22) and (23) can be written in the following, molec-

ular form
S 4np {3a(’)(r )a(’)(v: )—a¥ )a(‘)(t N} (22a)
4= 45V pi 4 pi aj

2
A E TS s

—ag(,m(z, j)m(")(frk)}> (23a)

In this approximation the anisotropic reorientation constant (22a) is similar in form
to those of Kerr’s effect [44] and anisotropic light scattering [45], and can be written as
follows

Sy =Y xSP+ Y xx; 8P+ ... (44
i ij
with
8= =
s = ﬁe(3a£}?a§? aidapy) = = Borl, 45)

The squared molecular electric anisotropy constant defined above assumes the following
form in the case of axially-symmetric molecules

2
@ = § (afaf—alaf}) = (@ —afl). 49)

For the sake of simplicity, we write for such molecules the second term of the expansion (44)
responsible for the deviation from additivity as follows

. 8n
S = 5 BoxixJ ;. “n
Above, we have introduced the following parameter of binary angular correlations [44]

Y=oy J‘ I (3 cos” Opiaj— l)g (pr T)dTpdTy . (48)

It vanishes in the absence of angular correlation and (44) retains but the first, additive
term.

The anisotropic dipole reorientation constant (23a) is similar to that of the Kerr
effect [44], and can be expressed in the form of the expansion (we resolve the triple sum
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into parts corresponding to self-correlations p = ¢ = r, binary correlations for p = g # r,
q=r%p, r=p+# ¢, and triple correlations for p # g # r)

Sam = 3, xS+ Z xS0+ Z X% SGP+ .., 49)
wheré
(i) 8n 2 ). (0) (D) @), (), ()
SAM = E ﬁ Q(3aaﬂma mﬂ _aaamﬂ mﬂ ) (50)

describes the additive effect in the absence of molecular correlation.
The higher constants of the expansion (49), for dipole molecules with axial symmetry,
are of the form .

y 4n
S = o5 Belemi+mic)Jy, Gh
‘81 o
SUm = Borxim mJ (52)

where we encounter moreover the parameter of triple angular correlations [44]
92
Jijk = 2—V J:[ (3 COos Opiqj Cos Opirk_cos equk)glgj}k)(’tpi’ qua trk)drpidtqjd’crk, (53)

where g,ﬁ;’-’,z(‘rpi, Ti» Tri) is the three-molecule correlation function for molecules at con-
figurations 7, 7,j, Ty

The two- and three-molecule angular correlation parameters (48) and (53) occur
in the electric field effect of NMR in solutions [46].

3.4. Dipole reorientation effect

Lastly, the dipole reorientation (24) can be written in the form

N; Ny N N
4np? @) W (k) 0) .
SM = = a5y my, (Tpi)ma (qu)mﬂ (Trk)m (Tsl) (243')
ijkl p=1 g=1 r=1 s=1

where we resolve the four-fold sum into successive, irreducible contributions, corresponding
to self-correlations (p = g = r = s), binary correlations (for the 4 possibilities p = g =
=r#s, q=r=58#p,r =s=p#4q, s=p=gq#r and 3 possibilities p = g #
#Fr=s,q=r#s=p; r=ps#s = q), triple correlations (6 possibilities p = g # r # s;
q=r#s#p,r=s#p# g S=pFg#Frp=r#q#s; g=25%p+#r), and four-
-molecule correlations (p # g # r # s). By molecular correlation function methods, this
leads to the following expansion for Eq. (24a)

Sy = Z x,SY + Z x5, S8+ Y xxx SR+ Y xS 4 1 (54

ijk ijkl
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where
5y = — % Bomf, | (55)
S = — 14% BPomimi(5G;+ 12K,;+4J,)), (56)
Sy = — %’; BPom?m;m (5K ;+4J:5), (57
S — _ :—Z ﬁsgm,-mjmkm,Kijk,. (58)

Here, besides the molecular correlation parameters (33), (48) and (53), we have the
three- and four-molecule ones

2
0 ‘
K;j = 7 JJ(‘COS eq jrkggfk)l(fpia Tqjs Trk)d‘cpidqud'trk, (592)

3 "
e
Kiju = 7 JVJJJ‘ Cos Opiqj Cos Orkslgt(;;c)l(rpi’ Tqi» Trko Tsl)dfpidqudfrkd‘fsb (59b)

g,(;',f, being the four-molecule correlation function.

Generally, the term proportional to ° (i.e. the parts comprised by the fluctuational
constant (19) and purely dipolar constant (24)) is discussed jointly. This yields the fluctua-
tional-reorientational constant

2
gif (A Ady+2pAA M7 (19b)

7
SFR =

and dipole reorientation constant [28, 33]

3 3 3
St = 20 camaryry— B pgry 2P

. 2_ . 2\
oy a5y 15y XM MY =3(M - MDY (60)

Eqs (39)-(60), applied to a one-component system, go over into the expressions
derived by Piekara and Kielich [16, 25] for dipole liquids; in the absence of molecular
correlation, the latter go over into the results of Debye [13]. The saturation constants
in the semi-macroscopic form (19)-(24) are applicable not only to molecular liquids and
solutions but also to macromolecular and colloidal systems [28, 47]. They hold, too, for
biological systems and liquid crystals, on which highly interesting studies have been
reported lately [48, 49].
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4. The réle of molecular fields

4.1. Silberstein’s polarizability model

In a dense medium, the electric properties of a molecule undergo modifications by
the action of the electric fields of its neighbours. In this way, the permanent electric
moments as well as the electric polarizabilities are no longer the same. For the nondipolar
molecules of a mixture of real gases, the polarizability variations can be calculated directly
by Silberstein’s method [50], applied by him to the mutual polarisation of two atoms in
a molecule. This, for a molecule consisting of two unlike atoms with polarizabilities a;
and q; at a large distance r;;, the polarizability along the bond axis and perpendiculatly
thereto is, according to Silberstein
ay(ry) = ai:aj: 4ai—*a—j?;3

—daa;r;;
ai+a;—2a;a;r;°
-

ayr) = =2 (61)

The Silberstein model represents a good approximation to the case of two atoms
(not bonded in a molecule) and to that of two isotropically polarizable molecules, corre-
lated mutually at a distance r;; (obviously to the exclusion of their collision, for which
Egs (61) cease to hold and have to be generalized [51]). From Egs (61) we obtain approxi-
mately for the mean polarizability and induced anisotropy of two mutually interacting,
isotropic molecules

a(ry)) = (ai+aj)(1+2aiajri}6)+4ai2a12-ri}9— (62)
K(ryy) = 3aa;{2r;° +3 (a+a)ri;®+6aar®— ..} (63)

Thus, for atoms and isotropic molecules, the saturation constant (22a) leads on the
Silberstein model to the non-additive term of (44) only (S¢ = 0), and instead of 47)
we now have

59 = S oy iy = 15 BoaldCrp S +arta) (T k(69

where averaging { ) has to be performed with a correlation function appropriate for the
real gas. Silberstein polarizability also affects the fluctuational-reorientation constant
(19a), distortional constant (20a), and nonlinear processes in general [52]. The Silberstein
model has been extended to linear and unlinear molecules of more than two atoms [12,
28, 531.

4.2. Molecular field fluctuations

At sufficiently high densities, the electric moments of molecules in regions of short-
-range order give rise to intense molecular fields F. Such fields exist even if no external
field is present, and modify the electric properties of the microsystems composing the
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dense medium causing i.a. a lowering of their intrinsic symmetry. Namely, one can replace
Eq. (29) in a first approximation by

(I) - 2 Z {m(l)(rpt)_l—a(i)(rpi)Fﬁ(Tpi)-" } (65)
i p=1
showing that the total dipole moment of the medium is non-zero even if the molecules
are not dipolar (m = 0), since now

M) =}, Z () Fg(t)+ ... (65a)

i p—

By analogy to the expansion (65) one can write [54]:

/

By (I) = Z Z {bo(vffzr(’cw)'i'ca(df)v&('cqj)F T+ -} (66)

Jj a=1

whence, for centrosymmetric molecules (b,z, = 0),

B aﬁ}’(r ) Z Z caﬂy&(TqJ)F 6(qu)+ (66&)
j q=1
In the previously discussed approximation in the absence of a molecular field the
saturation constant (21a) was non-zero for dipolar molecules only. We shall now show
that in the presence of molecular fields, when the expansions (65a) and (66a) are valid,
the constant (21) takes the form

8
Son = L <Z Z NG EIFD) (6D

and, in general, differs from zero as the result of fluctuations of the molecular fields.
Neglecting in (67), for}simplicity, the anisotropy of linear and nonlinear polarizability,

we have
8np : : : ,
Spr = sy < > . (67a)

We note that in this particular case the distortional-reorientational constant is a function
of the mean value of the squared molecular field, as it is in the case of second-harmonic
cooperative light scattering by centrosymmetric molecules [55].

The electric field existing at the centre of the p-th molecule of species i due to the
presence of the electric moments of its neighbours is

Z Z pirk> (68)

k
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and (67a) is seen to contain the following contribution from binary correlations

sip = F} 69
=15 Bolaic;+cap) <Fip, (69)
where
(F} DAl J‘[(I’pnu piai T Fpiai * FajpitFojpi* Fpigj
+F‘11P1 ) q]l")gl.l (TI"’ qj)dTFldT‘U (70)
In Eq. (70), F,; is the field induced at the centre of the p-th molecule of species i by the

electric moments of the g-th molecule of species j. In fact, for quadrupolar axially-symmetric
molecules one has [28]

F piaj = % @j{[s(rpiqjkqj)z—riiqj]r piqj_zr;iqj("piw qJ)qu}rpth’ (71)
whence, in the absence of angular correlation, Eq. (70) takes the form
(FEy = 307+ 67) <ri®, (70a)

where @, is the electric quadrupole moment of a molecule of the species 7, and where we
have introduced the radial average

(ri"y = 4mo j rpu';;rZgg)(rpiqj)drpiqi' “ (72)

Eq. (69) is valid for octahedrally-symmetric molecules also (e.g. SFg), for which
the lowest non-zero moment is a hexadecapole @. In this case, the mean squared molecular
electric field (70) is

(Fy = 120 (97 +07) Cri; . ~ (70b)

The preceding simple examples prove the importance of molecular field fluctuations
in regions of short-range order. Owing to these fluctuations, the constant (21) plays a highly
significant réle, not only in dipolar substances but also in non-dipolar ones composed of
molecules possessing even electric moments (a quadrupole, hexadecapole, etc.). The
same discussion applies to the influence of molecular field fluctuations on the other satura-
tion constants (19), (22), (23), and especially on the dipolar constant (24), which can
lead to a strongly temperature-dependent behaviour in non-dipolar substances [23].

43, Spatial molecular redistribution

Yvon [56] and Kirkwood [57] proposed a theory of the electric permittivity of non-
-polar liquids taking into account translational fluctuations, related to interaction of
induced molecular dipoles. The Yvon-Kirkwood theory has since been extended by
Brown [58] and many others (see Refs [28, 30]). Kielich showed that two, or three isotropr.
molecules, interacting mutually by way of induced electric dipoles, foum anis..rop’c
assemblages which undergo reorientation in an intense field leading to electro-optica:
and magneto-optical birefringence [59] as well as optical-optical birefringence induced
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by intense light [60]. Subsequently, Helwarth [61] described the mechanism as spatial
molecular redistribution and showed it to play an important part in self-focussing of
laser light in simple liquids. Interactions between induced atomic and molecular dipoles
are highly relevant to higher optical nonlinearities, as shown by Kielich and Wozniak [62].
Their importance in the effect of picosecond pulses on matter is obvious from recent
results of Piekara [63].

In the presence of the molecular redistribution effect, the linear polarizability tensor
of the medium can be written in the form of the expansion

Ag(1) = AP+ AP0+ AN+ .. (73)

the first term of which is given, in the absence of translational fluctuations, by (29). For
isotropic molecules and interactions of the dipole-dipole kind, the successive terms of (73)
resulting by perturbations of the first, second and higher order are of the form [64]

AP = — ) Z % aft )T a (z,), (73a)
N Nju pk 1 gq=1
APD =Yy ¥ ¥ Z aft) T ™Pay(t )T ay(x,) (73b)
where st
Ta(; 0 = _rz:quj(?’rgm /I;u” puu Jap) (74)

is the tensor of dipole-dipole interaction between molecules p and g of the species i and j
mutually distant by r,, ;. -

On insertion of the expansion (73) into the saturation constant (22) one obtains in
a satisfactory approximation

4
SA = ]:5 <Z Z Z Z l(TP)a.I(T )ak(r )al(rs) ptrk qjsl> (75)

which can be re-written in the form

S, = z X% S+ Y xxx SP0 4 Y XX %%, 7. (76)

ijk ijki

Hence (as one would expect) in the case of isotropic molecules no additive term
occurs in the absence of correlation; this was directly obvious from Eq. (45), since for
molecules without intrinsic anisotropy (x; = 0), S = 0. Many-body correlations of atoms
or isotropic molecules cause successive nonadditivities in (76). In the approximation
of binary correlation and taking into account constructive interference [59, 66] one has

SU) = ﬂoa air;®. (77)

In the approximation applied, this result is the counterpart of that (64) derived on the
Silberstein model.

4
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For ternary correlations one has by (75)
(ijk) 8_” 2 -3.-3 2 -3.~3
Sy = 5 Bo(aajari; ry > +2a;a;a lry i)

+ aiajal%<ri-l;3rk_js>)a (78)

involving the ternary radial correlation parameter

2
-3 —3- 4
{ri 3rjk3> =0 JJJ Brpigi 1 quk)2 - "giqufjrk}

-5

-5 (3)
"piqj"qukgijk(" pis ¥gj> rp)dr pid" qjd"rk- (79

The last term of the expansion (76) accounts for quaternary radial correlations, and
is of the form

y 8 =3,
ngkl) — __5_ ﬁgaiajakal<rik3rj13>’ (80)

with

3
-3 - 4
<rik3rj13> = W JJ‘J'J‘Tpirk : quslgg,?lgl(rpi7 qu, Fris rsl)drpidrqjdrrkdrsl; (81)

g%, being the four-molecule correlation function.

Likewise, an analysis of molecular distribution can be performed for intrinsically
electrically anisotropic molecules [45, 61, 62]. The results, in this case, are rather compli-
cated and we refrain from adducing them in this paper.

It is a noteworthy feature of the redistribution mechanism that, with regard to the
definition of Eq. (72), the binary radial correlation parameter (ri"j6> intervening in Eq. (77)
is positive for the model of rigid spheres at minimal distance d;; when [28]

g™ = —— dag; 3. (72a)

On the contrary, the triple radial correlation parameter (79) is in general negative for
realistic models [28, 65] thus lowering the induced electric anisotropy of the assemblage of
molecules.

4.4. Redistributions and fluctuations of molecular fields

We still have to calculate the effect of linear molecular redistribution on the constant
(23); the latter, for non-dipolar isotropically polarizable molecules, is by (65a) and (73a)
in a satisfactory approximation

Ni N; Nk N
8np?
Sapm = — 57 a;a;a;a, Tpiqj:(Frszl) . (82)
p=1 ¢=1 r=1 s=1 :

ikl
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Thus the constant (82) owing to translational fluctuations and molecular field fluctuations
also is non-zero for non-dipolar, isotropically polarizable molecules. Methods of statistical
mechanics lead to an expansion of (82) similar to that of (76) with no additive term since,
by (50), S@, vanishes in the absence of correlation in the case of non-dipolar molecules
and ones with no electric polarizability anisotropy.

The expression (82) is approximately applicable to quadrupole molecules, whose
polarizability anisotropy can-be neglected. Binary radial correlations now lead to

32x _
= Bloaafal®F+0%a}) ritty. (83)

s =

Tetrahedrally symmetric molecules (e.g. CCl,) have no linear polarizability anisotropy,
but present an octupole moment Q; in this case Eq. (82), in the approximation of binary.
radial correlations, leads to

287 _
35 ﬂzQaiaj(aizQJZ"FQizaJZ') <"ij13>- (84)

The discussion of the constant S ,,, proceeds similarly for dipole molecules, for which
in the absence of molecular fields one has Eqgs (49)—(52). If, however, the dipoles are polari-
zable, their spatial redistribution makes it necessary to consider further contributions;
in the binary approximation, we obtain by (82)

. £6n :
S =~ 5 Peaay(am}+miad) <rip®, (85)

where, obviously, anisotropy of polarizability has been neglected.

It is equally feasible to discuss along similar lines the effect of molecular redistribution
with respect to other molecular models including anisotropic linear and nonlinear polari-
zabilities as well as translational-orientational fluctuations [60, 45, 67].

In Section 4.2, with regard to the expansion (65), we assumed the molecular electric
field to polarize the molecules but linearly. In fact, the molecular fields largely exceed
in strength the externally applied DC electric field. For this reason, it is indispensable
to consider nonlinear polarisations, induced in the molecular systems by the fields F
and leading apart from (65) to

N: . . .
MgL(F) = Z Zl % bgz;i)y(rpi)Fﬁ(Tpi)Fy(Tpi)+% c;;i)vé(‘cpi)Fﬂ(Tpi)Fy(Tpi)Fé(fpi)+ } (86)
i p=

Clearly, the effect of nonlinear molecular polarizability due to fluctuating electric fields
has a bearing on the linear polarizability tensor also

N; . .
ALVIJL(F) = Z Zl {bgzi‘i)y(Tpi)Fv(Tpi)'i_% ccgz;i)yé(‘cpi)Fy(Tpi)Fé(Tpi)+ } (87)

i p=
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When taken into account in the analysis of the saturation constants (21)-(24), the ex-
pansions (65), (73), (86) nad (87) lead to new coupling mechanisms between molecular
redistribution and molecular field fluctuations and hence to nonadditivities in S.

5. Discussion and conclusions

The above proposed theory states that the dielectric saturation constant S of a multi-
-component system takes the form of the following expansion in a power series of the
wmolar fractions

ijki

S=3Y xS+ X% S8+ Y XX %S+ Y XXX Sy + e (38)
7 7 T %

In the absence of intermolecular interaction S reduces to the first term of (88), and thus
is an additive property. The investigation of such perfect mixtures (perfect, or rarefied
gases) permits to determine the electric properties of the individual molecules.

Since in gases and their mixtures the A¢ effect is small and not measurable by available
methods [28], experimental work is directed towards liquids and liquid solutions, where
the effects are considerable [68, 69] and at present measurable in non-dipolar solvents [42].
By (88), however, the saturation constant S of dense mixtures is additive in a first approxi-
mation only, so that the study of deviations from additivity in S automatically yields
information regarding the nature and magnitude of the intermolecular forces as well
as the microscopic structure of the solution. The gaining of these novel data is made
easier owing to the circumstance that expansions like (88) hold, as well, for the constants
characterizing a variety of other effects, namely linear molecular polarization [38], molecular
refraction [70], light scattering [41, 45], the Cotton-Mouton effect [59], Kerr effect [44]
and optically induced Kerr effect [60], DC electric field-induced second-harmonic gener-
ation [54], and double-photon scattering [55, 71]. The molecular-statistical mechanisms
of these effects recur in the contributions (19)-(24) to S. Hence as was first noted by
Pickara [19, 20], a complete analysis of dielectric saturation can be given only insofar
as results on related dielectric, electro- and magneto-optical, and other effects are available.
It is to be regretted that since the publication of Piekara’s paper [20] no such complete
experimental and theoretical analysis of nonlinear effects in liquids and solutions has
appeared. The numerous existing studies are mostly restricted in scope (see the review
article [28]). Lately, Mrs Danielewicz—Ferchmin [72] has given a more thorough analysis
of dielectric saturation measurements in solutions of alcohols based on ideas of Piekara [23].

Within the treatment applied throughout this paper the saturation constant S, in
accordance with the expansion (88), depends on the molar fractions directly and explicitly
and, implicitly, by way of the multi-molecular correlation functions gﬁ), g,?j-’,?, ..., defined
in the statistical mechanics of fluids as functions of density [73]. If the form of the functions
expressing the dependence of the g’s on the density, and hence on the molar fractions,
is available, the expansion (88) can be put in a form such that the expansion coefficients
no longer depend explicitly on the concentration of the solution. This can be done with
ease e.g. for a two-component system in which x = x, is the molar fraction of the solute
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and 1—x = x, that of the solvent, leading to [28]

S(x) = ;0 0" = Qo+ 0. x"+0,x* +05x+ ..., - (89)

where the coefficients

0, l'{as (f )} (90)
nl{ ox" Y._o

can be measured directly in experiment and, on the other hand, calculated theoretically
from the statistical expansion (88). The analysis follows a path similar to that proposed

earlier for the Kerr effect in liquid solutions [44].
Namely, we have by (88)—(90) for the successive coefficients

QO = (fO)x= [}

)
Q1=<.f0 +f1> s
ox x=0

P A R
3 = (3—.3 +7 E‘ + —(—,);‘ +f3>x s oD

where we have introduced functions, dependent on x by way of molecular correlation

functions
Jo=Si+S11+S111+Si111F s
S1=8,—S1+2(S12—S10)+3(S112—S110)+¥S1112—S111 )+ -
Jo=811—28,+S53+3(8S111—28112+S122) +6(S1111—2S1112+S1122)+ -
J3 = S322—28122+38112—S1111+481220 = 4S1122+4S1112—~S111)+ - (92)

Above, we assume the non-additive constants S,J, Sijx ... of Eq. (88) to be symmetric

in the indices i, j, k ...
Since Q, is related with the properties of the solvent only, it is convenient to consider

the variation in saturation constant

A8(x) = E(x)x_Q" = Z 05" 1= 0,+0,x+0;x*+Qx> + ... ) (93)
=1

characterizing the solution apart from the solvent.
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To describe the nonlinear electric properties of the solute molecules, we apply the
method of infinite dilution, whe Eq. (93) becomes, in the limit

S, = lim {M} - 0. (94)

x>0 X

As apparent from (91) and (92), the quantity @, is now a function of the properties
of the isolated molecules of the solute (S,) modified by the influence of the solvent
(Si, 811, ...) leading to effects measurable by existing technique [42]. This is so because
in the highly dilute case the rare molecules of the solute are separated from one another
by the very numerous solvent molecules, with which they are free to interact (S;,, S112, -..)
Eq. (94) thus provides essential information regarding the interaction between a solute
molecule and the solvent molecules surrounding it.

When experiment reveals a linear deviation from additivity (the case of moderately
concentrated solutions) one has to consider the coefficient Q,, dependent on binary
correlations between molecules of the solute (S,,) as well as on two- and multi-molecular
solute-solvent interactions (S;,, 8112, S122, -..). At still higher concentrations the variables
(93) depend on x quadratically, and Qj accounts for triple correlations between molecules
of the solvent (S,,,). The higher functions of x in Eq. (93) account for correlations of 4
and more molecules of the solute.

Numerical computations of the contributions to S obviously depend on the availability
of the electric parameters of the molecules — their permanent multipoles [28] and in-
duced linear [11, 12] and nonlinear dipoles, available from theoretical calculations [74]
and from experimental studies on gases [75] (cf. [28]). As we have said, besides direct
angular correlations of anisotropic molecules a decisive role in dense media belongs to
fluctuations of electrical fields (68) induced generally by molecular multipoles [38]

e o}

Ty (_ 1)” n)r n
Fligj = G OT O niM. (95)
1

n=

Here, My; is the electric 2"-pole moment of the g-th molecule of species j, and
W, = V" l(r;L) is the two-molecule interaction tensor. As already shown, the con-
stant (69) and others contain the mean square of the molecular field (70) which, by (91),
is of the general form [76]

[ee]

(n+l)! n n — 4R
(Fpigj Fpigjy = Z (ZTI)” MJ( )[”]MJ(' )<"piqzj 2. (96)

n=1

The foregoing expression is directly applicable to polar molecules of all kinds, since
the tensorial elements of molecular multipole moments up to n = 4 inclusively are now
available for all molecular symmetries [77].
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In the general case, the statistical averages in Eqs (19)-(24) have to be taken with

the dispersional, inductional and electrostatic potential energy of intermolecular inter-
action given by [76]

0535 Y Y Y i
2n-DNC2m -1

MP[n]PT S mIMP + ... (97)

pigJy

Applying statistical perturbation calculus [28], it is thus possible to calculate further
temperature-dependent contributions to the constants (19)-(24) as done previously with
regard to dielectric molecular polarisation [38].

Studies of the constants S;j, Sijy, ... of the expansion (88) will yield direct information
regarding the multi-molecular correlation function, including superposition principles
of the Kirkwood type [73]. Multi-molecular functions intervene but indirectly in linear
phenomena; nonlinear effects in dense media depend, however, on multiple correlations
in a manner making them accessible to determination by direct, experimental measurement
versus concentration and its temperature-variations.

The formulae (26) and (27) for the quadratic change in electric permittivity tensor
in conjunction with the constants (19)~(24) are of so high a grade of generality as to be
applicable to solutions of synthetic and biological macromolecules, and liquid crystals.
These plastic crystalline bodies, the electric field behaviour of which has in the past been
studied by Jezewski [71] and Migsowicz [79], are of interest in dielectric saturation studies,
as proved by the latest work of Krupkowski and Vieth [49], and have recently become
the objeét of widely ranging studies and applications [80].
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