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Second-order correlation tensor of Rayleigh light scattered
by statistically independent anisotropic microsystemst

by M. KOZIEROWSKI, R. TANAS and S. KIELICH

Nonlinear Optics Division, Institute of Physics, A. Mickiewicz University,
60-780 Poznan, Poland

(Received 11 Fune 1975)

Dealing with the positions and orientations of the molecules as independent
stochastic processes, the authors investigate the influence of translational
and rotational fluctuations of anisotropically polarizable microsystems on the
evolution in time of the second-order intensity correlation tensor of Rayleigh
scattered light as well as on its spectral density. ‘The notion of second-order
depolarization is introduced and is shown to be a useful quantity for obtaining
information on the translational and rotational motions of microsystems and
their optical anisotropy.

1. INTRODUCTION

The traditional method of determining the spectral density of scattered-light
intensity, G")w), by using conventional grid, Fabry-Pérot and similar spectro-
meters, is adequate for the study of rapid relaxation processes, leading to a
relatively large width of the spectral line. It is better adapted to the study of
reorientation processes. The obtaining of information concerning the finer
details of stochastic translational motions is subject to restriction by the resolving
power of the spectrometers.

On the other hand, the intensity correlation spectroscopy technique is now
rapidly expanding [1-5]. It measures the evolution in time of the intensity
correlation function G®)(¢) of the scattered light and permits the study of ‘ slow’
processes, i.e. ones slower than the resolving times of the detectors [6-13], such
as translational motions of the microsystems.

In some processes, e.g. light-scattering by macromolecules, colloid particles,
and assemblages of molecules, the fluctuations in intensity of the scattered light
due to reorientation are sufficiently slow to be recorded by the intensity fluctua-
tion spectroscopy method [14, 15].  In the light scattered by anisotropic micro-
systems or particles, there appears additionally a depolarized component as the
result of fluctuations in optical anisotropy of the latter [16], the time-evolution
of the fluctuations being defined by the rotational motions of the scatterers.

Thus the two methods are, as it were, complementary when it comes to
gaining information on the dynamical structure of the scattering medium.

In this paper we shall be primarily concerned with the second-order intensity

t Paper sponsored in part by the Physics Committee of the Polish Academy of Sciences.

M.P, 2s



630 M. Kozierowski et al.

correlation tensor G, ®(t) of light, Rayleigh-scattered by a system of N non-
interacting, optically anisotropic, rather large scatterers, the positions r(¢) and
orientations Q(¢) of which we consider as independent stochastic processes. This
independence leads to a factorization of the probability distribution function into
a part dependent on the positional variables and a part dependent on the orienta-
tional variables only. On the assumption that the position-dependent distribution
function and orientation-dependent function satisfy, respectively, the equation of
free translational diffusion and that of free rotational diffusion, we calculate the
individual components of the correlation tensor G,;;,,)(¢) and its spectral density
Giji®Nw).

We, moreover, show that non-gaussian corrections to G;;,®(t) are contributed
not only by the mean polarizability of the scatterers [17] but by their polarizability
anisotropy as well. These are of the order of N, and are negligible if the
number of microsystems in the scattering volume is large. They are significant
only in the case of a dilute solution (suspension) of macromolecules (particles),
when N is not very large.

On neglecting corrections of order N-1, the spectrum G®(w) is found to
contain, in general, three Lorentz lines for the polarized component. The
heights of two of them, with line widths defined by rotational diffusion, are
proportional, respectively, to the square and the fourth power of the optical
anisotropy «. Since their widths considerably exceed that of the sharp line due
solely to translational diffusion, they form the wings of the spectral line. The
depolarized component G®(w) occurs as a single lorentzian, arising from
rotational-translational diffusion. Hence, if rotational motion is sufficiently
slow, i.e. accessible to recording by intensity correlation spectroscopy, its role has
to be taken into account in the interpretation of experimental results.

We also calculate second-order depolarization ratios defined in reference [16].
These should prove convenient parameters in further analyses ; they are to be
derived from studies of the second-order correlation tensor.

2. THE CORRELATION TENSORS

We consider the situation when a planar, quasi-monochromatic light wave of
circular frequency w,, wave vector k,, polarization state defined in general by the
complex versor e, and electric vector of the form

E(r, t)=FEe exp {—i(wot —k, . r)}

is incident on a macroscopically isotropic sample, containing N statistically
independent microsystems. We restrict our considerations to the electric
dipole approximation. Also, the electric field of the incident light wave is
assumed to be so weak that the dipole moment induced in each of the particles is a
linear function of the field strength, and that multiple scattering, higher-
harmonics generation, and higher-order multipole radiation are negligible [18].

In the wave zone, at a distance R from the centre of the scattering volume
much larger than the dimensions of the sample, the tensor of first-order electric
field correlations G;;)(t) of the intensity of Rayleigh-scattered light is given, for
a steady-state process, by the formula

Gy M) = kAR M(0)M¥(2))- (1)
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M (t) is the ith component of the dipole moment induced in the medium

M(t)= 3 m®(t) exp (—idk . r®), @)

where m,®)t) is a component of the dipole moment induced in the pth (aniso-
tropic) particle, having the position r,®)=r®)(¢) at the moment of time ¢, and
Ak=k,—k,, with k, denoting the wave vector of scattered light and &, its
absolute value. For the process under consideration one can write k,=k,
since the variations in frequency within the spectral line of scattered light are
small compared to w,.

The symbol () in equation (1) stands for the statistical average over the
ensemble of variables defining the positions and orientations of the microsystems
and over the states of the electric field of incident light.

For rigid particles we have

mi(p)(t)Zaia(Ql(p))Eea exp (—itwgyt), 3)

on the assumption of equal linear optical polarizability tensor elements a,;® =a;;
for all the particles. Q,®)=Q®)(t) defines the orientation of microsystem p at
the moment of time ¢. The variables Q,®) and r,®), which are stochastic
functions of time, determine the phase of the electric field of scattered light, i.e.
the spectral intensity distribution, given by the Fourier transform

Gy ) == § Gy exp (i) d. 4)
T —0

The above quantity is traditionally measured by means of spectrometers. We
shall be assuming that G;;)(t) = G,;;4(—¢). On the definition (1), ¢ in equation
(4) is a shift in time, whereas one should keep in mind that in equation (3) the
meaning of ¢ is that of the actual moment of time.

By (1) and with regard to (2) and (3), we obtain for non-interacting micro-
systems : '

Gy (t) = NR AR {a;,(Q0)a;,*(Q) exp {i[wyt + Ak . (ri—r)]}De,es*.  (5)

I'= (E?) is the intensity of incident light.
The tensor of second-order intensity correlation G;;,®Xt) of the scattered
light is, by definition (in the wave zone) :

Gijin®(t) = kSR M0)MMO)M, (1) M X(2)>, (6)

On insertion of (2) it becomes

N
Gund®(0) = kR (| 3 m@(O)m*@(Om, eyt
pars
x exp {—iAk . (ro(f‘)—ro(4)+r,")—r,(s))}>. (7)
On decomposing this fourfold sum into a simple sum, three twofold sums, and
four triple sums we get, on the assumption of non-interacting microsystems

whose positions and orientations are mutually independent, only three non-zero
components for p=g=r=s5; p=gs#r=s; and p=s#g=r.

M.P. 2T
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Standard methods of statistical mechanics now yield
Gija®(t) = Nk LR (m(0)m*(0)m(8)m *(2) ) + (N = 1)[(my(0)m;*(0))
x {my(t)m*(2)) + <my(Q)m*(2) exp {iAk . (ry—ro)}> {m*(0)my(?)
xexp {—i8k. (r,—ro) D]} (8)

All other components vanish as a result of averaging the factor
exp { —iAk . (r,+rg)}

over the ensemble of random positions of the molecule with distribution function
dependent on r,;—r,. In the case of isotropic media this function depends, in
fact, on the module |r,—ry| only.

Since G;;1)(t) is hermitic, the expression (8) can be re-written briefly as [16]

Gijia®(t) =T{(1 = NH[G;40)G,;M(0) + G M ()G * ()] + Sy P(B)}, (9)

where the factor T'e [1, 2] describes the statistical properties of the incident light :
I'=1 for coherent incident light, I'=2 for incoherent light. At I'=1, the term
S;;11?)(t) and the terms in square brackets with the factor N-! define the non-
gaussian correction which, for N -0, tends to zero. At 1<TI'<2, the tensor
G jr1™(t) is non-gaussian even if N —>oo[11].

In particular, in the absence of correlation between the measured intensities,
i.e. at t —>o00, the expression (9) has to go over into

Gijiy®(0) =T'G(0)Gy,,(0), (10)

where G;;1)(0) is the tensor of mean integral scattered-light intensity [19]. This
will be proved further on.

For I" =2, we again get a relation valid for gaussian processes though resulting
from fluctuations in intensity of the incident light beam and not from molecular
fluctuations.

The tensor S;;;,,®)(t) results from self scattering. By (3), we have

Sk 1B(t) = NkssR_4I2<aia(Qo)ajﬁ*( Qo)ak'y(g Dap*(Q t)>eaeﬂ*eye3* (11)

whence its time-evolution depends on orientational motion only.
The spectral density of G;;,,*)(2) is given, by analogy to (4), as follows :
1 w0
Gipa®(w)=5= | Gij®(2) exp (—iwt) dt. (12)
27 2

The next section will be devoted to the analysis of equations (9)-(12) from
the point of view of the molecular motion model assumed.

3. MOLECULAR MOTIONS

The ensemble averages, occurring in the preceding expressions, have this
meaning :

<F(Qo’ Qb o, 'y t)> = I F(QO’ Qb Yo, ¥y t)f(QO) Qb Fo, 'y t)
x dQ, dQ, drydr, (13)
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f(Qos Q4 1y, 1y, ) is the joint probability density of finding the molecule in the
interval (Q,, Qq+ dQy), (rp, ro+dry) att=0and in (Q, Q,+dQ,), (r, r,+dr) at
the moment of time ¢.

In the absence of interactions, the function f(Q,, Q, ry, r,, t) is the product
of two functions, the one (f,) dependent only on orientation, and the other (f,)
dependent on position

Q0 Qp o, Ty 1) =fa( Qo Qp )f,(rg, 74 2). (14)

(1) Translational motions

In order that f, shall be invariant with respect to the reference system it has
to be a function of the difference in positions r=r,—r,. From physical con-
siderations (isotropicity of the medium) f, depends on the module |r|=r only.

In the approximation of free translational diffusion, the probability density
distribution function f, fulfils the equation :

o,
=Dy, (15)

where A is the Laplace operator, and Dy the translational diffusion coefficient.
Its solution is, since the days of Smoluchowski, known to be given by the following
expression :

fr=(4mDyt)=3"2 exp { — (4Dyt)1r2}. (16)

By (9) and (5), positional averaging is seen to bear on the interference factor
exp (fAk . r). On averaging, we obtain

#(t) = (exp (iAk . 1)) =exp { ~ (AR)2Dat), (17)

leading to a Lorentz shape of the spectral line (4) :
Ak=|Ak| =2k, sin g,
with & the angle between the wave vectors kg and k,, i.e. the scattering angle.

On introducing the notation 7p7'=(Ak)2Dq for the translation relaxation
time, equation (17) finally becomes :

g(t)=exp (—t/r). (19)

(18)

(ii) Rotational motions

When considering the rotational motions of the scatterers, it is convenient to
have recourse to the basis of irreducible spherical tensors.

By (14), we write the orientational averages of equations (5) and (11) in the
form

1
<aia(Qo)ajﬂ*(Qt)> =8_7r2 I _f aia(Qo)ajﬂ*(Qt)fn(Qo» Q,t)dQ,dQ,

<a1'a(QO)ajﬂ*(QO)aky(Ql)ald‘*(Ql)> = i .f I a'ia(QO)ajﬂ*(QO)aky(Ql)alé‘*(Ql)

8
x fa(Qe Qp 1) dQy dQ,  (20)
212
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The factor 1/872 ensures conservation of the Wigner functions Dy’ in their
usual form. We shall leave e, the polarization versor of the incident electric
light wave vector, in the cartesian reference system, obviously with no loss of
generality. Our discussion will be restricted to linear light polarization, so that
the cartesian and circular bases can be used just as effectively.

We transform the tensor a;,(Q,) from the laboratory system of reference to
the spherical reference system, attached to the principgl axes of the scatterer.
The transformation, for a,,(Q,) symmetric in the indices , «, is [20]

a,(Qo)= Y €MDy, (Qo)dic, " (21)

JuGK,

where ¢;,71%1 are transformation coefficients leading from laboratory cartesian
to laboratory spherical coordinates, and D, x,71(Q,) are Wigner functions of the
Euler angles, describing the orientation in space of the molecular coordinate
system with respect to the laboratory system. dj,”t is the K; component of the
J, rank spherical tensor in molecular coordinates. With regard to the
symmetricity of the polarizability tensor and the choice of molecular co-
ordinates for microsystems having axial optical symmetry, J, =0 and 2, whereas
K,=0. In the more general case of optically non-symmetric molecules J; =0
and 2 and K, =0, +2.

The distribution function fo(Qq, Q,, t), expanded in a series in the complete
set of Wigner functions, is of the form {20, 21]

fa(Qe Qp t)= JM;I K”MM1J(t)DKM1*J(Qo)DKMJ(Qt)- (22)

The coefficients ay,,,7(t) are to be calculated, on the assumption that fg fulfils
the equation of free rotational diffusion, from

0

To__ 5 1DIMa @3)

ot i=1,2,3
where D, are diagonal rotational diffusion tensor elements and J; angular momen-
tum components. The principal axes of the inertia moment and polarizability
tensors are assumed to coincide.

For spherical and symmetric top particles (we shall be applying these ap-
proximations throughout) the coefficients a;,,7(t) are of a very simple form,
thus [22] : 2J

+1
anr,” (8)=Onnt, 2 P (—t/7sm)- (24)

For cylindrical microsystems with axis along the 3-axis of molecular co-
ordinates, the rotational relaxation time 7, is
1 Y =J(J+ 1)D, + M¥ D3 — D). (25)

For spherical top particles, Dy=D;.
Applying the well-known orthogonality relations of Wigner functions :

8
§ Dy* (Q)Dyr, i, 71(Q2) dQ=‘2]—+_1 870, 0mm, Ok K, »
2 26
§ Darsc*? (@)Dsr, i A QDo A DR =5 )

JM, JK
x CJlMlJZMZ CJleJsz’
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where C/M; ;o and CVE, ¢, ¢, are Clebsch-Gordan coefficients, and on
replacing the latter by 3j Wigner symbols, we obtain by equations (20), (22) and
(24) for mechanically symmetric top and at the same time optically axially
symmetric particles :

1 .
<“m(Qo)ajﬁ*(Qt)> = .1%1 2T+l ciaJMcjﬂ*JMlaOJP exp (—t/74), (27)

aa(Q0)a;g*(Q0)ar(Q)ap*(Q)> = Y (- 1)MH¥MM2]+1)

MM;MM,M

Jo J, J
Ji My, %J3M JsMapr *J Mz J15 % a5 T35 *J 1 2
X Ciy 1 lcjﬂ 2 zcky 343cs 4 4a0J1a0 2y 3d, 4 (

0 0 O

A A AV VA A
X<M1 _M, —M><0 o o)\, —p, p)e®iztlrsh ()

where the parentheses () are 3j symbols, and 7, =7,. With regard to (27)
and (25), G;;M)(z) involves one exponential (J=2) whence the spectral density
G;;"(w) contains one lorentzian, whereas (28) can contain two exponentials (J=2
and J=4).

In (27) and (28), the case J=0 corresponds to isotropic scattering, whereas
J=2 and additionally in (28) J=4 (J;=0 or 2, i=1, 2, 3, 4), to anisotropic
scattering by fluctuations of orientation, leading to depolarization of the
scattered light.

For isotropically polarizable microsystems J=0 only in (27)—(28), and we

have ,

<aia(QO)ajﬂ*(Qt)> = %Smajﬂldo(’P,

(29)
<am(Qo)am*(Qo)ak~y(Qt)aw*(Qt» = %Sia87‘ﬂ8k7818 |‘700|4,

where 8, is Kronecker’s delta, and |a,°|2=3a?, with a the mean polarizability.
For axially symmetric particles d,? is given, in the same basis, by

lag|=6a%e, (30)

where, as above, a is the mean polarizability, in the present case a = (a3 + 2ay,)/3,
and k =(ay3 — ay;)/3a is its anisotropy.

4. THE GEOMETRY OF THE EFFECT, AND THE DEPOLARIZATION RATIOS

7o

Light, incident along the z’-axis of laboratory coordinates x'y’z’, is linearly
polarized along x'. Scattered-light observation is performed along the z-axis
of coordinates xyz at an angle & to 2’ in the yz-plane, which coincides with y'z’.
This choice of the polarization state considerably simplifies equations (27) and
(28) without loss of information concerning the molecular motions, since now
the principal components of (27) and (28) do not depend on the scattering
angle . Dependence on & is restricted to the last term of (9) by way of the
translational factor (18) and (19).
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From (9) we have in general eight non-zero components, five of which are
mutually independent :

Gy @) =T{G,, D(0) {1 + K, B(¢) - N7 [1+ K, @) — Ryyw(z)(t)]} }
31

Gtz ®(8) = T{Ge V(0P H1 + Ko ®(8) = N7+ Ky ®X(2) = R () 1}
and
Gz ®(8) + Gy ®(8) = Gyas ®(8) + Gy () = ' G, 1(0) G, 1Y(0)
{1+ Koy ®At) = NTH1 + Ko ®X(2) = Ry (8) = Ry *()1} - (32)
measured at crossed analysers, or accessible to determination from the relation
Gayy @ (@) + Goyye (1) = HGiport V() = G P(8) = Gy P(@)}, (33)

where G, ®(#) is the autocorrelation function for the total light intensity
scattered into a given direction.
The other two components :

Gzyzy(z)(t) = Gymyz(2)(t) = N_erzw(l)(O)ny(l )(O)Rxm/z@)(t)’ (34)

have to be measured in a more highly ingenious manner with regard to their
smallness and, moreover, their form (cf. equation (6), the disposition of the
coupling symbols).

Above, we have introduced the notation

|G M)(2)|? NS;;::®(t)

Kum(t)={Gii(1T)}2, i (t)_m, i=xor y,
@) @) NSoz, *Xt)
Rmyu (t) = Ryywz (t) G (1)(0)0 (1)(0)
NS,,.. (¢
quwc(z)(t) =Ry ®At) = Ry, ® (= wa(z)(t) G a )(981;18 ((12(0) (33)
zz vy

We now proceed to the depolarization ratios of second order [16] :

G’.'IWIU @ (t) 2 1 + Kyy(z)(t) - N—l[l + KUU(2)(t) — RUUUV(2)(t)]

(2)
D =g we P R0 N T K () - R @] OO
Gy (1) + G ®2)
D (2)( ) vy Gxxxx(z)(ty)y
_D1+Kacy(2)(t)_N_l[1+ny(2)(t) Rzzyy(Z)() Rzyyx(z)(t)] (37)
- 17 R0 - N[ 7 K®(0) - Ro®()]
(1)
%mm=awm$ﬂGm¢wn
14 K,,0(0) = N[+ K,y (0) = Rypoy (0] o

1+ Ko, ®(t) = N1+ Ko, @(2) - me‘“(t) Reyya®(®)]
where D is the usual depolafization ratio :

D=G,,%(0) : G,,%(0). (39)
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From (36) and (37) we directly derive the simple relation between de-
polarization ratios :

D,®(t) = D,®(#)Dy)2), (40)
and, on combining equations (33) and (37) and (38):
Gt 22
Do) =1 { g - D1, (#1)
Gios A1) 1 -1
(@), — tot _ _
D)= 2GS )

Experimental studies of the relationships (40)—(42) can serve as a means of
checking the light-scattering model proposed here.  Studies of the depolarization
ratios (36)-(38) will be most useful in determining the value (and sign) of the
optical anisotropy of scatterers, as well as relaxation times. The depolarization
ratios, defined as quotients of correlation tensor components, are no longer
dependent on the constants of the measuring device.

Equations (5) and (35), with (19), (27), (28) and (30), yield for symmetric
top particles [21]

G,,(t) = $NkAIR-2a% exp (—t/75)g(t),
(43)
G,,0(t) = Nk AIR-2atg(t) + 4G, (t),
and
K,,®(t)=exp (—t/75)g¥2),
5 exp (—t/7y) +4x? exp (—t/73)
@)t} = ?
K,,®(t) W £, s (44)
25+ 40k? exp (= #/73) + 16x4 exp (—t/75)
@)(f) = ’
wa (t) (5 T 4K2)2 g (t))

where, on the model of rotational diffusion, 27, =7, is the relaxation time given
by (25) for J=3. It is noteworthy that the relaxation time 7, of equations (44)
occurs as well in the spectral theories of non-linear second-harmonic light
scattering [22] and hyper-Raman scattering in liquids [23].

Moreover :

wa(z)(t) =1+ 1%[5 exp ( - t/"'z) +9 exp (_ t/7'4)])

4w 5(7 + 2«) exp (—t/7my)— 24k exp (—t[7,)
49 5+ 4«2 ’

R, ®(t)=1+

(7 +2)2 exp (—t[75) + 2452 exp (—t]7y) (45)

5+ 4x*

Rzyyw(z)(t) =4

1662 5(7 + 2)2 exp ( —t/75) + 36k? exp (—t/7,)

R,...2(1t)=1 .

By (9) and with regard to the form of equations (43)—(45), one has the possibility

of determining the sign of the optical anisotropy of microsystems provided the
non-gaussian corrections are measurable.
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The relaxation times 7, and 7, intervene, too, in third-harmonic light scatter-
ing by liquids [24].

5. DiscussioN
In particular, equations (43)—(45) yield in the limit :

(i) Of £=0
Glly “ )(O) = %Nks‘lIR-zaZKZ’ (46)
Gy (0) = §NkSAIR2a%(5 + 44*),
K, ®)(0)= K, ®(0) = K., (0) = 1, “7)
4 5— 2k
Rylmy(z)(o) =% Rzzyy(z)(o) = Rzuyz(2)(0) =1+ 7 m’

(48)
16x2 35 + 20x + 8«2
(2) = :
Ry ®(0)=1+ 7 (5 + 4x2)2

(if) For t -0, i.e. for a shift in time much in excess of both the translational and
rotational relaxation times :

Kw(z)(oo)=ny(2>oo)=Km(2)(oo)=O, (49)

Ry (00) = Ry P(00) = Ry ®(0) =1, Ry ®(0)=0. (50)

(i11) If the resolving time of the detectors exceeds the rotational relaxation times,

i.e. if the fluctuations in scattered-light intensity due to rotation of the micro-

systems are too rapid for recording (as is the case for small molecules) equations
(43)—(45) approximate to the form :

yyyy XYY TYYT

25
Ko (0)= Koy (0)=0, Koo®(0) =1 £0) ey

and the tensor components R®)(¢t), as dependent on rotational relaxation times
only, fall sub (ii) and are thus given by the expressions (50).

Let us first consider the general expressions of §4 for the case (iii).
Equations (31)~(33) now become

G’.W/JI?/ (2)(t) = _2g5‘FN2k5812R"4a4K4)

TYyyT

Gy ®(1) + Gy ®(t) = 5T N?R EI2R-428%(5 + 4x7), 52)

2)2
o) = PR (S 1 W) ),

and (34) yields G,,,,® =G, 2(t)=0. It is immediately obvious from (52)
that the depolarized strictly anisotropic component and the cross components
are time-independent and present the case of uncorrelated intensities. Hence
the conclusion that, in order that there shall be any correlation altogether in this
case, it is necessary that the system shall present sufficiently slow rotational
molecular motion.
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The time-evolution of the polarized component is obviously determined by

the translational molecular motions alone, but its distribution at I'=1 is not
gaussian even if N >o00. By (12), (17), (19), its spectral density is

B (w)=I'N2kSI*R%a*

(5+4x?) - 2(AR)2Dq
(ST w0 ) )

acaca:z

with Ak given by (18). The first term describes a time-constant part, usually
filtered away in measurements. The second term represents a Lorentz line,
centred at w=0 and of a half-width Aw=4r,"1=4(Ak)?D; twice that of
G,.Y(w). Our result is thus in conformity with the theorem of the convolution

of two Lorentz-lines of the same width.
With (52), the depolarization ratios (36)—(38) defined by us take the form

D,®(t)=D;* Dy)(t)=D,

(5 +42)2 (54)

D,®(t)=D (5 +4x2)2+25(1 — N-1)g2(t)

where D = 3«?/(5 +4«?).

On making the limiting transition ¢ >o0(g(c0)=0) thus fulfilling the condition
(i1), we get by (52)-(54) a result coinciding with (10}, i.e. corresponding to an
absence of correlation. It should, however, be stated clearly that equations
(52)—(54) should not be applied for symmetrically disposed detectors (#=0),
since at the outset we neglected the factors related to fast orientational motions.

In the general case, when both kinds of motion are recorded, the final
formulae for the time-evolution of intensity correlation are of a more highly
complicated form and can be derived directly from the definitions (31)-(34) and
(36)-(38). We restrict ourselves to adducing the spectral densities for the
components

Gy Nw) =T N2k S PR 4% 8(w) + Li{w) — N7 Ly(w) ]
= #(5Ly(w) + 9Ly(«)) 1}
Gy P(@) + Goyye ) = ST N*R IR~ a*{(5 + 4x?)3(w)

+5Ly(w) +4x2Ly(w) — N[5 Lo(w) + 4x2L () — 45(5(7 + 2k)

x (7 + 6K)L4(w) + 24x2Lg(w))]},
= (55)
Grrae® (@)= HI‘N%SSIZR“‘a“{(S +412)28(w) + 25 Lo w ) + 40k Ly(w)
16«2
49

+ 1664 (w) ~ N‘l[ZSLa(w) + 40k Ly(w) + 16x2L,(w) —
X (5(7 4+ 2x)2L ) + 36K2L5(w)):|}.
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Above, for brevity, L;(w)— Ls(w) denote the following Lorentz line-shape
functions :
Ly )_1 12D + 2(AR)*D
N = R+ 416D, + (AR:D LY
1 6D, +2(Ak)2Dy

L) =2 app s (AR)D,

(56)

dependent on both the rotational (D,) and translational (Dy) diffusion co-
efficients :

1 2(Ak)*Dy
)= T HaRTD e
dependent only on translational motion, and
1 6D,
Ldw)=2 Sixseny
(58)
Ly )__1 20D,
N L @+ 400D,

dependent on rotational motions only.

All the lorentzians of equations (55) are centred at w=0.

The simplest in form is thus the anisotropic component G, (*)(w). It
consists in general of four lorentzians ; and the part proportional to N2, which is
predominant, involves L,(w) alone. The half-width Aw=24D, +4(Ak)2D, is
twice that of G, V(w). '

Within the cross component, the part proportional to N? includes two
lorentzians resulting from rotational-translational motions, the broader one
L;(w) involving the fourth power of the optical anisotropy «, and the narrower
one, Ly(w), its square. Hence the conclusion that, if « is small, the lorentzian
Ly(w) predominates. In the inverse case, both lorentzians have to be taken into
consideration when analysing experimental data.

The polarized component (omitting corrections of order N~!) contains three
lorentzians. A sharp line, due to translational motions solely, is given by Ly(w).
The other two lorentzians, Ly(w) at «? and L,(w) at «%, of considerably larger
half-width, form the wings of the spectral line. In the case of small anisotropy
«, the contribution from L,(w) can be regarded as a background (as was the case
for the cross component). The preceding interpretation, though based on the
simplest of models, appears to suit Lallemand’s experimental results for glycerol
[15] exhibiting two lorentzians. In our discussion we have omitted the term of the
type 8(w) which, as already mentioned, is usually blocked in measurements.
Correction terms of order N-1 still contain several Lorentz lines, but are so small
that the lines will be discernible against the background in particular cases only.

In the case of scattered-light modulation by extremely rapid rotation processes
and hence inaccessible to recording by the detectors, corresponding in equations
(56) and (58) to the limiting transition D; -0, the expressions (55) go over into
(52) and (53).
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In the limit of =0, on integrating (55) over w or from (31), (32) and
(46)—(48), we obtain the following mean integral values of second-order correla-
tion tensor components :

@)(0) = E%FN2kSSI2R—4a4K4{2 + -7—1]\—,}

GWIWI

Grrryy®(0) + Gy ®(0) = FsT N2k ST2R-4atic*(5 + 4K2){ 24K S }

TN 5 + 4«? (59)

@)(0) = 4T N2k SI2R-4a%(5 + 4x?)?

1642 35 + 20s + 8«2
—1 _
X {2+N l:l 7 G4y ]},

(;$zxm

whereas, on omitting corrections in N~, the depolarization ratios reduce to
D,®(0)=D?% D,®(0)=D4®(0)=D. (60)

For isotropically polarizable microsystems we obtain from (55) with x=0, i.e.
on neglecting rotational effects related with optical anisotropy, but a single
non-zero polarized component with a spectral distribution defined by transla-
tional diffusion (57):

G

ZTrTIT

2(Ak)2Dy
2) — 2L 8 J2 R—4,4 NVl o
(w)=TN2kSI*R a{S(w)+(1 N-1)n w2+4(Ak)4DT2}, (61)

in agreement with reference [3].

6. CONCLUSIONS

We have proposed a general formalism, permitting one to calculate the time-
dependence of the intensity correlation tensor G'@)(t) and the corresponding
spectral density G®(w) of light scattered by N non-interacting, anisotropically
polarizable microsystems. Experimentally, the case is that of, e.g., a dilute
solution. With regard to the translational and orientational motions of the
microsystems, we assume the free diffusion model ; especially in the case of
dilute solutions of relatively large microsystems, this assumption is justified, and
can be used in the spectral theory of second-order correlation tensor. On this
model, we derive strictly results valid for anisotropically polarizable, electrically
and mechanically axially symmetrical microsystems. Within this framework,
we neglect interaction between the microsystems and between the latter and the
solvent molecules, though this by no means negates the influence they may exert
on the G®(w) spectrum and the second-order depolarization ratios. If inter-
actions are present, the rotational and translational motions have to be dealt with
as statistically dependent [25]. Moreover, in general, the translational diffusion
coefficient has to be taken as anisotropic in the calculations, though the experi-
ment of Schaefer et al. [26] on light scattering by Tobacco Mosaic Virus has led
to a zero value of this anisotropy. We nonetheless are convinced that even the
present, very simple approach can prove useful in the interpretation of experi-
mental results.
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Surely, more information concerning the motions of the microsystems is to
be derived from G®)Y(w) studies of light scattered in situations where rotational
motion is modulated by a slowly variable electric field. Studies of this kind are
now under way.

It would also be most interesting to compare the rotation relaxation times 7,
determined from light-scattering spectra, and the corresponding relaxation times
inherent in non-linear electro-optical phenomena [27].
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