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Scattering on molecules, correlated in regions of short-range quasi-
ordering, is analysed with regard to its effect on the spectrum of hyper-
Rayleigh light-scattering by molecular liquids. The general form of
S2e(#, Aw) derived using spherical tensors and expanding the orientational-
positional-time pair correlation function in Wigner functions, is discussed
on the assumption that Vineyard’s [22] approximation can be applied to
calculate Ge[7,(2), 75(0)]. Successive terms of the expansion are calculated
assuming dipole-dipole interaction energy as predominant in the total
molecular electric multipole interaction energy. In the present approxima-
tion the contribution from scattering on correlated molecules is shown to be
given by the difference of two Lorentz lines, whose maxima depend on the
magnitude of the interactions. The integral intensities, calculated from
the formulae derived here, are in agreement with those of the literature.

1. INTRODUCTION

Lasers—sources of high intensity, coherent and monochromatic radiation—
have led to very considerable progress in the spectral analysis of scattered light.
A new laser spectroscopy has developed, with methods which have permitted
one to obtain numerous, quantitative results in the study of linear scattering [1]
and to observe various non-linear, qualitatively new optical effects [2]. The
work carried out in these two directions is a source of abundant information
regarding the structure and dynamics of the scattering medium as well as the
properties of the individual molecules.

Blaton [3] first drew attention to the feasibility of observing radiation of
doubled frequency in scattered light. To Kielich [4] is due the quantum-
mechanical theory of many-photon light-scattering. 'The earliest observations
of second-harmonic light-scattering (SHS) have been reported by Maker and
his co-workers [5], who applied laser technique in their experiments. They
succeeded in observing the integral intensity of a rather strong central hyper-
Rayleigh line of frequency 2w and the intensities of weaker hyper-Raman side
lines 2w + w,, [4], scattered from liquids composed of non-centrosymmetric
molecules (w being the incident frequency, w,, that of a molecular eigen-vibra-
tion).

Subsequent theoretical work was aimed at the elaboration of a more detailed
theory of non-linear light-scattering processes. The influence on integral
SHS intensity of radial and angular intermolecular correlations [6-9] and
molecular fields [7, 9, 10] was studied. This work led to the prediction [7],
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and experimental detection by Lalanne et al. [10], of cooperative hyper-Rayleigh
" light-scattering in liquids with molecules having a centre of symmetry. Also,
the possibility of hyper-Rayleigh scattering by atoms and centrosymmetric
molecules was discussed in an electric quadrupole approximation [11]. The
feasibility of SHS observations in atomic substances as the result of many-body
distortion effects was considered [12]. Freund [13] studied SHS on fluctuations
near the critical point in NH CIL.

Subsequent experimental work applying perfected laser techniques of

measurement permitted a closer structural analysis of the spectra of non-linearly
scattered light. Maker [14], experimenting with compressed methane, initiated
the study of the rotational structure of the hyper-Rayleigh line. He moreover
proposed a theoretical interpretation of the spectrum obtained, which is valid
for spherical top molecules. The rotational structure of the hyper-Rayleigh
line is discussed for linear as well as symmetric top molecules in references [15]
and [16]. Maker [17], too, was the first to measure the spectral distribution
of hyper-Rayleigh scattered light from liquids, and proposed a theory of the
effect based on the assumption that the distribution is related with the Fourier
transform of an orientational positional molecule pair distribution function
G(r, Q,t) of the Van Hove type. When interpreting his spectra, Maker
assumed the molecules of the liquid to perform self-diffusional Brownian motion,
i.e. he approximated the function G(r, Q,t) by the self-diffusional single-
molecule function G(r, Q, t) and, neglecting the contribution of translational
motion to the line width, explained the experimental line broadening in terms
of free rotational motion of the molecules in the liquid. Recently, Maker’s
“approach has been extended to the case of asymmetric top molecules [18].
Also, a theory of the spectral distribution of hyper-Raman scattered light has
been proposed [19]. Quite recently, Yu and Alfano [20] have observed three
and four-photon scattering in diamond and determined the spectra of these
scattering phenomena.

The present paper contains a discussion of the part played in hyper-Rayleigh
scattering by the correlation function G (r, Q, #), the existence of which is due
to correlation, in liquids, between the motions of molecules in regions of short-
range quasi-order. _

, Section 2 contains a discussion of the spectral line theory for SHS radiation.
Applying Steele and Pecora’s method [21] of expanding Gr, Q,¢) and
G(r, Q, t) in angular momentum terms describing the orientation of the molecule,
we calculate the shape of the spectral component S2“(#, Aw), due to self-
diffusion of the molecule, and the component S?¢(#, Aw), due to scattering
by correlated molecules. Next, for the calculation of G (r, Q,t), we follow
the approximation of Vineyard [22], who assumes that the molecules are mutually
correlated at the moment of time =0, whereas at ¢ > 0 they perform self-diffu-
sional motion.

In § 3 we discuss in detail the SHS component S2“(#, Aw) on the assump-
tion of a well-specified intermolecular interaction. The dipole—dipole interac-
tion energy is assumed as predominant with respect to all multipole interaction
energies and the S?*(#, Aw) spectrum is shown to be given by the difference of
two lorentzians, with relaxation times 7,' and 7,® defined by the self-diffusing
molecule and height dependent on a parameter ¢'(#), defined by the inter-
molecular interactions. It is also shown that, on integration with respect to
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frequency, the formulae derived in this paper for the SHS spectral distribution
go over into the well-known expressions for integral intensity [4, 7].

2. THEORY OF THE SPECTRAL LINE OF HYPER-RAYLEIGH SCATTERED LIGHT

We consider scattering of linearly polarized laser light
E(r, t)=E; exp [i(k, . r —wt)]

by a molecular medium consisting of a large number N of non-centrosymmetric
molecules. A system of laboratory coordinates xyz is rigidly attached to the
scattering medium ; the incident light propagates in the direction of the y-axis
and is polarized along 2. Observation is assumed to be performed perpendicu-
larly, along the x-axis. Let 6 denote the angle between the principal plane of
the analyser and the laboratory xz-plane. The spectrum of light scattered at
frequency 2w is expressed by the formula [17]

1(, Aw)‘ F (ER(t +t)*ERe(t')), (1)
with scattering phases # =k, —2k,; Aw is the line broadening, measured with
respect to the central line 2w ; &, is the Fourier time transform ; the symbol

( > denotes time and ensemble averaging. E%“(t), the electric field of the
SHS light wave is given by the expression

ni,+2\ (n2+2\2(2w)?
ng(t)=~zﬂ< 23 )< 3 )(0312) I,

x Z Pl (1)] exp {i2kq . ry(t) = 2w(t = Ryfe)]},  (2)

with I, the incident light intensity, and
Pa°1Q(1)] =bZ[Q,(2)] cos 0+ b32,[Qy(t)] sin 6, @)

where b24 is the molecular hyperpolarizability tensor at 2w in the laboratory
reference system, Q,(¢) stands for the set of Euler angles, defining the orienta-

tion of the jth molecule, and n,, n,, are the refractive indices at w and 2w,

respectively.
On insertion of (2) into (1) and introducing the notation
IP(#, Aw)=A*S?*(H#, Aw), 4)
we obtain :
N
s, 0)=F (| $ AR+ O AIO)]
j he

<eoxp i It )-r() ), )

4 2 2 2 4
a0 =T2) (”“”) <”“’3+ 2) 73 (6)

2R%c® 3

We shall be assuming that the origin of the time axis is fixed in a manner to
have #'=0, and proceed to calculate in detail the average over the statistical
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ensemble in equation (5). The sum over the N molecules in (5) decomposes
into the two sums /= j and i# j. For averaging, we introduce generalized Van
Hove [23] space-time functions : self G [7,(t), 74(0)], and correlation G[7(2),
7,(0)] [17, 24], where 7 stands for the set of positional variables r and orienta-
tional variables Q of the moleculet. The expression for S**(#, Aw) now takes
the form of the sum :

S, Aw) = S2(H, Aw)+ S2(H, Aw), (7)

where |
S, dw)=F g5 § § P11 2312(0)]
x exp {i . [ry(t) — ri(0)]1}G,[7(2), 74(0)] d=y(2) d7,(0), (8 a)
S, M) = L | O Q0]

x exp {id . [ry(t) = ryO) G [71(t), m(0)] d7i(2) d75(0). (8 5)

The self-function G[r,(¢), 7,(0)] has the meaning of the probability of finding
molecule 1 at the moment of time ¢ with the coordinates 7(2) if its coordinates
at =0 were 7,(0). The correlation function G [7,(t), 75(0)] defines the proba-
bility of finding molecule 1 with the coordinates 7,(t) at the moment of time ¢
if, at =0, molecule 2 had the coordinates 7,(0).

Further, so as not to complicate our formulae, we shall be considering the
spectral distribution of the polarized component IZ¢ of scattered light, i.e. we
shall put §=0°. Also, we shall consider scattering by a unit volume of the
medium. Hence, and on the assumption of translation-invariant molecular

functions G, and G, we obtain by (8 a) and (8 b) :
S, Aw)——— F§§§ 02l Qu(e)]*02 [ (0)]

x G[(t), 2(0), 7] exp (G . v)) dQ(2) d2(0) dr,,  (9)
where r;=ry(t)— r1(0), and

S, Do) =1 7 § [ § BEAIQU(0]H2[20)]

x G [QP(1), QF(0), 712) exp (i . r1;) dQI(t) dQ3X(0) dQyprty dryy,  (10)

where rj,=r(t) —ry(0).

In the above, p is the number of molecules per unit volume; whereas
Q12 Q12 stands for the orientation of the molecules 1 and 2 with respect to a
system of coordinates, the z-axis of which is directed along the vector ry;;

+ Van Hove [23] introduces the positional time pair distribution function G(r, t),
which he decomposes into a self-function Gs[r,(¢), r1(0)] and a distinct function Ga[r,(?),
r,(0)]. Ours is an orientational-positional-time pair distribution function G(r, t), with
=0, r, which we decompose into a self-function Gs[7,(2), 71(0)], or autocorrelation func-
tion, and a function analogous to Van Hove’s Ga which, however, we prefer to denote as
the correlation function Ge[r,(t), 75(0)], accounting essentially for correlation between
molecules.
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Q,, denotes the orientation of the vector r;, in the system of laboratory co-
ordinates xyz [24].

The explicit form of G, and G, is, in general, not known. Especially, we
know very little about the function G,. Nonetheless, following the procedure
of Steele and Pecora [21], we can expand the two functions in the set of ortho-
normal functions D'}y, [Q]=+/(2]+1/87%)D%,[Q] (where the Dy,[Q] are
Wigner matrices) :

G, UL r]= T Faelro DD HOD O, (1)

Gc[Q}Z(t)» Q?(O), )= Z 3%21)5,11(\/%()1), K(2), M(z)(”n, t)
J(1), K(1), M(1)
J(2), K(2), M(2)
x DK, i [ Q) IDEDy, [ Q2(0)],  (12)

and insert the expansions into equations (9) and (10), thus considerably simpli-

fying the problem of integration over the orientations. The task becomes

quite simple on transforming the cartesian tensors 422, occurring in equations

(9) and (10), to spherical coordinates, [17] :

blQ]= ¥ B Ql, (13)
kim

rst

as now the transformation from the laboratory to the molecular coordinate
system is of the form [25] :

B,[Q]= ¥, D, [Q]B,, (14)

and the two formulae (9) and (10) become orientation-dependent by way of
Wigner matrices Dk,[Q] only. On carrying out the integration, we obtain

SIAH, Aw)=F p§{} ¥ fh, m(re t)BLB,
+% Y froare t)B'f,,:Bfm} exp (i . r))dr, (154)

S, Dw)=F p* [ s X (=1 ™gk, —r —mlrin B)

R, my, m,
X Bﬁn‘:g}n,'*‘??ﬁ Y (=) ok —mlT120 B)
R, mg, my
~awmq o SID T
x BB} 2 dmry dryy. (15 b)
12

The formulae derived above are of a general nature. However, when it
comes to determining the explicit form of the expansion coefficients f4; 5.(r,, t)
and, g2 k@), ma) (712 1), one has to make assumptions specifying the model
of molecular motion in the liquid. We shall now discuss the shape of equations
(15 a) and (15 ) for the following conditions.

(i) When calculating G [€4(2), ©,(0), 7,], we assume [26, 27] :

(1) translation and orientational motion as mutually independent :

Gl (2), 24(0), 7] = Grl(2), 2,(0)]Gr(ry)- (16)
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(2) translation and orientational motion as free, i.e. Gy and Gy as solutions of
the following equations :

3Gy

‘—a—t—=DTAGT, (17 a)
oG
a_tR =L;D;;RL,Gr, (17 5)

in (17 a), Dy is the coefficient of translational diffusion; in (17 5), D;® is
the tensor of rotational diffusion; and L, L, are operator components of
molecular angular momentum.

(ii) When calculating G/ [r,(t), 75(0)], we assume that the approximation
proposed by Vineyard [22] :

Go[71(2), 75(0)]= § £@[74(0), 7o(0)]G[7:(2) — 75(0), £] dy(0), (18)

is applicable (g®[7,(0), 75(0)] is the equilibrium pairwise correlation function).
Vineyard assumes that the molecules are correlated at the moment of time t=0
and that, at ¢ > 0, they move in conformity with the laws of self-diffusion.

The solution of (17 a) is given by a Smoluchowski function of the form

1 re
Gnlr, t)=W exp <_4DTt>’ (19)

whereas that of (17 &), on the assumption that the molecules are of the symmetric
top, i.e. that the tensor DY is diagonal and Df = D} # D%, is given by coefficients
fhar(?) of the expansion of Gy in Wigner functions D%, [Q,(0)], D% [4(2)]
[26]:

el =8usr o0 (=), (20)

M

where
i =[J(J+1)D}+ M¥ D% - D})].

On insertion of (19) and (20) into (15 @) and on calculation of the complete
Fourier transform, we finally obtain, with regard to the explicit form of the non-
zero parameters |B},|? for non-centrosymmetric molecules [15] :

SE(H, D) = pLheh(H, B B2+ s T ghan( o, Do) Bl @)

where

1
2+ oy )

™

g{\/lM(jf’ Aw)=< (22)

5 .
—+ %2DT> +{Aw)?
™

This result is in agreement with that of Maker [17].
In order to achieve a higher degree of clarity in the presentation of our
calculations leading to S?“(s#, Aw), we introduce the following system of
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co-ordinates for the analysis of the function G [r,(¢), 75(0)] :

7(0)
7 t=0

By (18), we now have
Glra@), 01 =L [ £¥1ri(0), rdO)]Falr(t) ~r,(0), 1]
x Gp[(2) — Q(0), 1] dry(0) dQ,(0),  (23)
where
&®[11(0), 75(0)] =82 N(1)2N(2 g5, k@, ma[71(0)]
x D', o[ Q0) DB, ) [Q4H(0)],  (24)
Gr[(t) - (0), t]= Z (D ka2 () ID [ Q4(0)]. (25)
On insertion of the expansions (24-) (25) into (23) and of (23) into (10), and

on integrating over orlentatlons, we obtain

S, o) =pF [ s T (<1

my, My

X ER oy -k, w18, 11BB 45k X (- 1)

R, m;, m,
X &8, my — &, -mlri(t), 11BI2B;, } exp [i# . ry(2)] dry(2), (26)
where gy noylra(t), t] is of the following form [21, 27]:

gfré(ll))%()l) &), molr(?), t]= }871# Z 152, a2

x § gl IP ko, M(2)["1(O)]g'r["1(t)”‘ ri(0), £] dry(0).  (27)

We occasionally write N(1) ; N(2) to denote the set of numbers J(1), K(1), M(1);
J(2), K(2), M(2).

Integration over ry(t) and the calculation of the Fourier time transform in
(26) is equivalent to calculating the complete Fourier transform. On applying
the theorem concerning the transform of a convolution of functions, we have

SZ( A, Aw) = p{is Yy (= DRIy (), Aw)

R, m;, my, M’
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XyEhe, -k, -m(H)BuBL +eds X (—1FT™

ms, m,, R, M’
X D3 (5 Bo)yk e, -r —w(H)BRBL),  (28)

where, assuming the molecules to be of the symmetric top :

2 ( ,#ZDT>
T
M, (5 Dw) = T Spars (29)
< + DT> + (Aw)?
™
whereas the radial correlation parameters

sin Jfr

Yy, N ) =4 I &nay, Na)(?) r* dr, (30)
are of a form similar to that derived by Berson et al. [6]

Single-molecule hyper-Rayleigh light-scattering can take place only for
molecules without a centre of symmetry [4]. With regard to the shape taken
by the non-zero parameters B, for such molecules, equation (28) reduces to

S, Aw)=p*{T'§ o #, Aw)y's: ()| Bi|?
gzgz I3(#, Aw) Y (—1) y'3 3 JK)B” A (31)
where

V'{VIJ—m (#)= Z(—I)R'VRM ~R —mH)- (31 a)

Equation (31) states that, in the approximation made here when calculating G,
the contribution to the light-scattering spectrum from scattering by correlated
molecules is a sum of Lorentz lines, the characteristic relaxation times of which
are identical to those of self-diffusion scattering. This statement results on
comparison of equations (22) and (29). The intermolecular correlations,
described by the factors vy w2y #) (30), modify the heights of the individual
Lorentz lines. The lines height related with the relaxation time 7§ has to be
multiplied by }y'3 §(#), whereas those related with relaxation times 3, by

IDNES VISR ED)
On frequency integration of (31), we obtain for the integral intensity of
radiation, scattered by correlated molecules :

S‘“teg(f) p2{1*5‘)/'1 1 ”)lB |2+245 Z (_1)’"?,:1;1/13—"! B3*B3} (32)

It will be shown in § 3 that, for a specified model of intermolecular interac-
tion [28], equation (32) coincides with the formulae previously derived by
Kielich [7].

3. ANALYSIS OF THE CONTRIBUTION S2%(#, Aw) FOR A SELECTED MODEL OF
INTERMOLECULAR INTERACTION

We shall now analyse in detail the contribution to the light-scattering
spectrum from correlated molecules on the assumption that dipole-dipole
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energy predominates in the total interaction energy of electric multipoles in
the liquid. The assumption seems justified since, in order to cause hyper-
Rayleigh light-scattering, the molecules of the liquid cannot possess a centre of
symmetry, and thus fulfil the pre-condition for possessing a permanent electric
dipole moment. The expansion coefficients gii5721, k), ame)r) of equation
(30) required for our analysis are accessible to calculations once we know the
form of the equilibrium two-molecule distribution function g®)X(7, 7,), since
then

1 ,
RS, ke, M) T1z) =3 § § 8@y, ma) DR a7
X D%gz); M(Z)[Q%Z] dQ}2 Q3. (33)

On calculating g®)7,, 7,) with the Yvon-Born—-Green-Kirkwood equation
(e.g. [29]) and rejecting all but the two-molecule correlation, we obtain [7]

¥ ) =exp | -2 | (34)

where U(ry, 7,) is the potential energy of interaction between two molecules
and can be written in the form of the sum

U(ry, 73) = Up(Qy, Q, 715) + Ug(71s)- (35)

UA(Qy, Q,, 7y,) is the energy of angular interaction of electric multipoles [28],
whereas Ug(r,,) is that of radial interaction of the molecules.

Since usually U, <kT, one is justified in expanding exp (— U,/kT) in
U,/kT, whence

n!

g(2)(7'1, 79) =8(15) "20 ! (_%)” (36)

Assuming dipole-dipole energy, one has [30]

8m?

Un(Qy, Qy, 1) = —rip’n? == (2D'5[Q17]D'50[ Q7]
+ D[ Q11DL o[ Q1]+ DLy [Q1PID5,[Q3%]),  (37)

with u the permanent electric dipole moment of the molecule.

We shall calculate the coefficients gy ne)(712) With accuracy to the fourth
term of the expansion (36) inclusively.

By (30) and (31), SHS is described by those coefficients gy« ne)(712) for
which J=1 and 3. Such terms are obtained in the first and third approxima-
tions. The terms obtained in the second approximation are related to linear
light-scattering [31, 32]. On calculating higher and higher powers of the
energy U, of equation (37) and performing integration in conformity with (33),
we obtain :

(i) In the first approximation

g(‘)ﬁ (1), 0, o(r12) = §/1(712), }

gl—’ 11 0,1, 0("12) =g}: (1) -1, o(r12) = $J3(712)-

(38)
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(ii) In the third approximation
gtl)l (1), 0, 0o(r12) = 78J5(r12)s
gl 11 0,1, 0(r12) =816, -1, o(r12) = 75/5(712),
85,5, 0,0(712) = &'5J5(r12)s

g (39)

é’]—’ 13 o,1,0("12) =g?§(3), -1, o(712) = 3'85J5(712)s

g3_' g 0,2, ol712) =g§; g, —2,0(r12) = 155/3(712)5

gJ—’g, 0,3, o(712) =g§j (3), -3, o(r12) = 108/5(r12), ]

where we have introduced the notation J,(r,) = B"u"r3;*"g(ry;). The remaining
values of g(y1) n2)(712) vanish in the approximation applied here.

Analysis of the above results shows that the only non-zero components of
Enay, no712) are of the type gily _g or12) and gk %, _r o{712), Whence, in the
approximation under consideration, S, depends solely on the hyperpolarizability
components B} and B} of the molecule and the sole relaxation times to be related
to light-scattering by mutually correlated molecules are 7} and 73. Moreover,
analysis of the values (38) reveals that the contribution to SHS from the first
approximation is but apparent, since with regard to (31 @) and (38) we have

’1 1(%)“ 2(—1)R‘}’R0 —R, o(#)=0. (40)

Consequently, the lowest contribution to SHS comes from the third approxima-
tion [7].

With regard to equation (31) and the values of coefficients (39), the intensity
of the SHS radiation scattered on correlated molecules amounts to

S, Aw) = pX{(F5)(F)L'G, o #, Aw)y'(#)| By
— (z235)(335)3 o, Aw)y'(#)|B}|?}, (41)
where

sin ” ’12 72, dr,,. (41 a)

y'(H)=4rfp’ f 72’ 8(r12)
On performing in (41) an integration over Aw, the integral intensity of
scattered radiation is found to be

Sos( o) = () E5)y () | B~ (eta)st)y () B (42)

On going over to # -0 in (42), one obtains the result previously derived by
Kielich [7]. Similar analyses can be performed for electric multipole correla-
tions [28] as well as dispersional London interactions [31].

4, DISCUSSION AND CONCLUSIONS

As seen from equation (41) in the present approximation the contribution to
the spectrum from scattering by mutually correlated molecules is equal to the
difference of two lorentzians with half-widths 2[(1/7,'" )+ #2Dy] and heights
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proportional to their correlation parameters y'(#)t. Hence, with regard to
our results, if Vineyard’s approximation is applied in calculating G [r,(t), 7,(0)],
scattering on correlated molecules is defined by relaxation times with values
determined by self-diffusional scattering. The molecular correlations define
the statistical weights of the respective lines, composing the total scattered
spectrum.  Our result, stating that the only relaxation times active in S2(#, Aw)
are the times 7§ and 73, is a consequence of the dipole-dipole intermolecular
interaction approximation assumed. The inclusion of higher multipolar inter-
actions in the expression for the energy U,[Q,, Q,, r,,] will lead to the occurrence
in equation (41) of terms with relaxation times 3, for which M #0. However,
from Steele’s work [30], if a molecule possesses a symmetry z-axis of order 7,
the values permitted for M are 0, +n, +2n, ... only. Hence, for molecules
with a three-fold symmetry axis, only the relaxation times 7}, 3 and 73, are
permitted, whereas in the case of molecules of higher symmetry only times
74, 75 can occur in the correlation-scattering spectrum. Moreover, since dipole-
dipole interaction predominates, the statistical weight for lines with 73,, M#0
yields but a small contribution to the total spectrum. We hence deduce tenta-
tively that scattering by correlated molecules is defined essentially by the relaxa-
tion times 7} and 3.

Besides, equation (41) leads to the following interesting conclusions :

(1) Molecules for which the hyperpolarizability tensor elements B} and B3
vanish, cause no correlation scattering (in the present approximation) ;
(ii) S2(##, Aw) from arbitrarily symmetric molecules, active in single-molecule
hyper-Rayleigh scattering, has to be identical to correlation scattering by linear
molecules having hyperpolarizability tensor elements equal to the tensor elements
Bj and B} of the former ; (iii) the intensity of the spectral line of correlation
hyper-Rayleigh scattering depends on temperature decreasing with the third
power of the latter, 7-3.  Our conclusion regarding the equality of the relaxa-
tion times for the spectral distribution of light intensity scattered by correlated
molecules and that of self-diffusional scattering differs from the conclusion
drawn by the authors of references [33] and [34], who calculate the spectrum
of linearly scattered light applying Mori’s theory. Albeit, the Vineyard ap-
proximation, to which we have recourse, permits one to analyse the influence of
intermolecular interaction on the spectrum. This would be beset with con-
siderable difficulties if proceeding by Mori’s approach.

By integrating equation (41) over Aw we obtained an expression for the
integral intensity in agreement with the one previously derived in the literature
[7]. This proves that the curve of (41) determines a spectral distribution of
scattered light under which the area is defined correctly.

Any further development of the method proposed here will have to apply a
corrected Vineyard approximation [35]. Moreover, the role of the molecular
fields existing in liquids [28] will have to be analysed in fuller detail. There
can be no doubt but that these fields affect the scattered light spectrum and
molecular relaxation times [36]. The present theory can be extended to
comprise various polarization states of the incident and scattered light as well
as the angular dependence of the latter [37], with various molecular correlations

T Numerical values of y'(#) for various radial interaction potentials are to be found in
reference [44].
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taken into account [38]. Work on an extension of the present analysis to other
types of many-photon cooperative processes [39-43] is under way.

The authors wish to thank the Institute of Physical Chemistry of the Polish
Academy of Sciences for sponsoring in part this investigation.
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