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General formulas are derived for the time dependence of the second-order correlation tensor of the intensity of
n-harmonically elastically scattered light in the model of free translational and rotational diffusion for motions of
statistically independent particles.

1. Introduction

Multi-photon scattering processes set off by intense laser beams are of a universal nature, since their occur-
rence is independent of synchronisation conditions. Hence they accompany to a higher or lesser degree numerous
nonlinear optical processes, among others those of harmonics generation. Since Terhune, Maker and Savage’s first
experiment [1],in which they observed second-harmonic scattering (SHS) by non-centrosymmetric molecules,
SHS has been detected from correlated centrosymmetric molecules in regions of short-range order [2], from cri-
tical regions in order—disorder transitions [3,4], and in ferroelectric domains [5,6] . Recently, double- and triple-
photon scattering from diamond has been reported [7].

These and other [8] recent experimental achievements stimulate to continue work on the theory of multi-
photon light scattering from statistically inhomogeneous media [9]. Primarily, the progress in spectral techniques
[10] calls for a transition from integral scattering studies to a spectral approach to nonlinear scattering processes.
The first experimental and theoretical steps in this field have been taken by Maker [11] with regard to SHS in
liquids. Lately, a spectral treatment of three- [12] and multi-harmonic [13] scattering has been outlined.

In this communication, we propose a spectral stochastical analysis of the second-order correlation tensor
G@)(¢) of the intensity of n-harmonically scattered light.

General studies of the processes under consideration for the integral intensity of scattered light GA)(0) have
been performed [9]. Measurements of the time-evolution of the tensor G@)(r) and its spectral density G@)(cw)
can become a new method, revealing the finer details of translational-rotational molecular motion and molec-
ular interaction. Detection of changes in G)(¢) due to “rapid” rotational motions of molecules is possible if the
respective relaxation times exceed the resolution time of the electronic recording device. A situation like this can
occur when dealing with scattering by large molecules, macromolecules, colloid particles, etc., which leads to an
increase in scattered intensity owing to the large polarizabilities of such microsystems [14].

2. Fundamentals of the theory
We consider a system of NV non-interacting particles. This is the case of dilute solutions of macromolecules. We
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also neglect solute—solvent interaction.
In the wave zone at a distance R from the centre of the scattering sample the correlation tensor G%)l(t) for
the steady-state process is given as [15] :

oG = Ky RTHMI (0) MI™(0) M (1) M™ (1)), (1)

ifki
withk, = (nw/c)* = the wavevector value of the n-harmonically scattered light, and M"“ (¢) is the n-harmonic

component of the electric dipole moment induced in the medium by an intense laser light beam Ey (r, £) = E e
X exp {—i(wt — kg°r)} [9]:

Er]i N
Mz"l“’(f)=zn—1 .?1"7: )€1, ey, exp ilneor + AkerP), 2
n:

(Q(p)) is the cartesian tensor of rank n + 1 of the nth order polarizability of a scatterer having position r(P)
ancli or'ientatlon/glven by the set of Euler angles Q(p) at the moment of time £ Beyond electron absorption bands
the tensor is in fact completely symmetric with regard to permutations of indices. The vector Ak =k, | — nk,
has the absolute value |Ak| = 2(nw/c)sin(2 9), with 9 = the scattering angle. {....) stands for statistically averaging
over ensembles of random positions and orientations of the particles and over states of the electric field of the
incident light, assumed as coherent.

For statistically independent particles, the definition (1) becomes:

anl(JZI‘z ()= ["‘*’G(..l)(O) an(l)(O) + an(I)(t) """Gfk(l)(t)] (1- 1) + nwsgflgl(t) 3)
where ”‘*’G(l)(t) is the tensor of the first-order correlation of the n-harmonically scattered 11ght electric field. For
t=0, it goes over into our earlier integral intensity formulas [9] . The correlation tensor ”“’Sl (t) accounting
for the effect of self-scattering and proportional to N only, represents together with the factor in square brackets
multiplied by N—1, the non-gaussian correction.

Generally, the time-evolution of (3) is determined by the translational—rotational molecular motions. It can
be determined by specifying a model of these motions, in particular by the free diffusion model.

The problem of rotational diffusion can be solved simply in the irreducible spherical tensor representation.
The solution is further simplified by assuming the scatterer to have mechanical symmetry of the spherical top or
symmetric top. For particles of asymmetric top it is not possible to give the general form of the probability dis-
tribution function of molecular orientations for arbitrary angular momentum values.

The unit vector e of the polarization state of the incident light (e+e* = 1) can also be transformed to the spher-
ical reference system. We refrdin from effecting this here, without loss of generality. If the laser beam is linearly
polarized, it is even more convenient to use the cartesian basis. However, in order to describe arbitrary light polar-
izations and angular dependences of the scattered light, it is convenient to apply Racah algebra [16].

We assume the light incident along z' and linearly polarized along the axis x' of the laboratory system, rigidly
attached to the centre of the scattering volume. The scattered nth harmonic is observed at an angle 9 in the plane
yz =y'z' along the z-axis of the xyz coordinate system. For rigid molecules we obtain:

1 ~
"WGg)(t):cn 2 o T o KTyl 2g(r) exp {inw — 151}, )

where ”"’51{,[ is the Mth component of the Jth rank spherical tensor of the n-order polarizability in the molec-
ular reference system attached to the principal axes of the microsystem. The

- JK JK
i, nx 15 °X

are coefficients of the transformation from cartesian to spherical laboratory coordinates. Generally, on the as-
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sumed complete symmetry of the polarizability tensors” wzd > the numbers J are: even, from the interval [0,n+1],
for odd n; and odd, from [1,n+1], for even n.

Ty 18 the rotational relaxation time which, for axial particles, is:
Tk =JU+1)D; + M2(Dy - D). )
In the spherical top approximation D3 = D;. By g(¢) we denote the translational part of the correlation tensors:
g(6) = exp {~(&k)* D1}, (6)
with D is the translational diffusion coefficient, and Ak defined above. The coefficient C,, is of the form:
C,., =@ ) 2Nkt (B2, (7

The non-gaussian correction is:

nw o(2) —12 _ Ky +K4—K—-My—Ma+M J1Ky *J2K2 J3K3 *JgK4
S =N"Cp, &4 1) Q@ID)e; Lt et episc) e
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X ”“’51{,}1 "“’E;I? ”‘”51{{33 "‘*’3;}‘2“ exp{— t/TK}
My -M,—M|\ K, ~K,—K || My-M, M|\ K, K, K ®

The parentheses () are Wigner 3j-symbols.
Egs. (4) and (8) are at the present stage directly applicable if n=1,2, 3. For these n, the coefficients c and
the polarizability tensor elements ”""a have been tabulated [11,12,17].

3. Applications and discussion

In the approximation of non-interacting particles eqs. (4) and (8) vanish for even n-harmonics for microsys-
tems having a centre of inversion in the ground state, since the polarizability tensor elements nwy! a@y, then vanish.

Asin ref, [15], the general notion of second-order depolarization of n-harmonically scattered light can be in-
troduced. We shall not consider this here for the sake of brevity.

Eqgs. (3), (4) and (8) show that studies of the time-evolution of the tensor G(z)(t) and its spectral density
G@)(w) are a source of data on the higher-order rotational relaxation times, intervening in the theories of other
nonlinear optical effects as well [18].

Finally, et us apply egs. (4) and (8) to SHS, in the simplest case of spherlcal to f particles with tetrahedral
symmetry. Here, only a single independent 3phencal tensor element, 2w 3 = 2wy 3 exists, directly related to

the cartesian tensor element /3 b%“% = 2wy [1 1]. From (3) we calculate but 2 of the 8 non-zero tensor elements:

the polarized one, G( ) (t) and the depolarlzed one, G y;yy(l‘)
chzx)xx(’) = o C%w(b123)4 {1 +exp(-2t/75)g 2(n+N"1[- exp(—bt/T3)g2(t)+ B1exp(—t/1y) + f57sexp(~t/7)]
2 —
G, (0= G, 015
X {1+ exp(~2t/7;)?(r) + N1 [—exp(~-21/7,)g? (1) + & exp(~t/1,) + Eh exp(~t/1)] ). ©)

Thus, the non-gaussizn correction involves higher relaxation times which will be accessible to measurement at suf-
ficiently small V. Likewise, the general formulas (3), (4) and (8) can be applied to calculate the other correlation
tensor elements and to solve cases of other molecular symmetry.
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