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Résumé, — Nous montrons que I’étude de la diffusion bi-harmonique élastique de la lumiére dans
les mélanges liquides est une source de données sur les corrélations entre molécules non-centrosymsé-
triques (par ex. dipolaires) et centrosymétriques (par ex. quadrupolaires), entre molécules dipolaires
et tétraédriques, et entre les composantes des milieux polyatomiques, et qu’elle permet de déterminer
les polarisabilités moléculaires d’ordres 2 et 3 quant a leur signe et leur valeur.

Abstract. — Second-harmonic light scattering (SHS) studies of liquid mixtures are shown to
provide valuable information regarding correlations between non-centrosymmetric (e. g. dipolar)
molecules and centrosymmetric (e. g. quadrupolar) ones, between dipolar molecules and tetrahedral
ones, as well as between the components of atomic media. Such studies moreover permit determina-
tion of nonlinear second-order and third-order molecular polarizabilities as to sign and value.

1. Introduction. — Since the earliest observations
of second-harmonic scattering (SHS) of laser light
10 years ago, a vast amount of work has been devoted
to the study of various nonlinear processes of photon
scattering in gases, liquids, and crystals [1]. Terhune
et al. 2], Weinberg [3], and Maker [4] observed elastic
incoherent SHS in liquids composed of non-centro-
symmetric molecules, whereas Kielich and Lalanne [5]
observed elastic cooperative SHS in liquids composed
of molecules having a centre of symmetry in their
ground state.

The theory of SHS was initially worked out with
respect to gases [6], then for molecular liquids [7, 8, 9],

and recently for atomic fluids [10, 11]. In this paper, -

we develop the theory of elastic SHS in liquid atomic
and molecular solutions similarly as done by us with
regard to usual anisotropic Rayleigh scattering [12].

2. Foundations of the theory. — We consider a
medium of volume V containing N = ) N, molecules.

N; = x; N is the number of molecules of species i
and x; their molar fraction. Assume as incident on V’
a laser light wave with electric field

E(r, ) = E(r, w) cos wt,

of an intensity so large that not only light of the
fundamental frequency @ but moreover of the multi-

k]

ple frequencies 2 w, 3 w, ..., is scattered. We are
concerned with SHS for which the differential cross
section, with analyzer polarisation given by the
vector n, is expressed (in the wave zone and in an
electric dipole approximation) by the formula :

Ny

d 20 2 4 Ni
N

p=1g=1

x (M22.n) exp[i(Ak.r,; )] > .
Above,
Ak =k, — 2k, ,

with k, — the wave vector of incident light and
k,, — that of the SHS wave; the absolute value of
| Ak | is defined .in reference [7]; the symbol ¢
stands for statistical averaging; and

| Poigi | = 10g; = vy

is the distance separating two scattering molecules
at the positions r,; and r,;.

The electric dipole moment induced at the fre-
quency 2 w in molecule p of species i is given generally
by the expansion [3] :

MZ = % hy, B2 : E® E® cos 2 ot )
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where :

hlw =

ni, + 2n} (nf, +2 n%)z 3

2 2
3 ng 3 ng

n, and n,,, being the refractive indices of the scattering
spherical sample V at the frequencies w and 2 w,
respectively, and n, that of the medium surrounding V.

Eq. (2) involves the 3-rd rank tensor Bz“’(rp,, Q,),
which describes the effective nonlinear 2-nd order
polarizability of the p-th molecule of species i with
the position r, and orientation Q. Insertion of (2)

into (1) leads to the product B2 B}, a 6-th rank
tensor which, to start with, can be unweightedly
averaged by taking recourse in general invariant for-
mulae derived by one of us [13] (recently, these for-
mulae have been re-written in rotation matrix
form [14]). By (1), we hence obtain, for the horizontal
and vertical component at vertically polarized incident
light,

doip Mo ¢ [20)*
0 ~ 55 18\ ) D@3 Bty @
daff h%w 4 20) ¢ 4
@ ~ 155 8a\ ¢ ) BoU89Buotdlng), O

where we have introduced the following molecular
quantities, characterizing SHS by many-component
systems :

< 3% (@2 U).(B2 : U) x
ij p=1g=1

X exp[i(Ak'rpi,qj)]> ., (6)
R EL L

— 3(BZ : U).(BZ" : U) } exp[i(Ak.r, )] > @)

U denoting the symmetric unit tensor of rank 2.
The parameter (6) characterizes the quasi-isotropic
properties of the scattering medium, and is thus the
counterpart of the isotropic scalar component in
linear scattering [12], whereas (7) accounts for the
anisotropic properties of SHS.

By (4) and (5), we obtain for the depolarization
ratio :

\OI

1 63B,, +8rl,,
20 _ _ 20 2w
D =31%98,, +4T,," ®)

Likewise, by (1) we derive, for scattering at the
angle U = 0, the following reversal ratio of circu-
larly polarized light [9] :

I5r
2w _ 2w
R(0) = 126 B,,, + Iy, ©)
3. Molecular-statistical analysis. — The nonlinear
polarizability tensor of eq. (2) depends on the pro-
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perties of the molecule pi in the ground state as well
as on the orientations and electric fields F(r, #) of its
neighbours. The time- and space-fluctuations of the
molecular field F(r, ) affects the tensor Blf,f" both
directly and indirectly. It directly lowers the intrinsic
symmetry of the molecule by inducing in it higher
nonlinearities, in accordance with the expansion :

B2® = b2® + 2P .F,(r,0) + -, (10)
where the tensor b2® now describes its nonlinear
second-order polarizability at F(r, f) = 0 and the
fourth-rank tensor ¢ describes linear variations in
b2 due to the field F(r, 7).

The field F(r, £), as such, is related with dispersional
interactions between the molecules as well as electro-
static and inductional interaction of molecular multi-
poles, as given by the expression [15, 16] :

Ni
Fr,) =3 % Fq, (11)
k s#p
where
Fow= Y — 070 M2 (110)
pi,sk o (21’1 _ 1) [ pi,sk sk

is the field existing at the centre of molecule p of
species i due to the electric multipoles of molecule s
of species k. The interaction of the two molecules is
described by the tensor VTY, of rank n + 1.

Indirectly, the molecular field F(r, 7) affects the
expansion (10) by way of translational fluctuations,
which cause spatial redistribution of the molecules in
regions of short-range order [9, 12]. The latter effect,
as well as many-body distortion effects, play an
essential role in atomic substances {10, 11].

With regard to (10) and (11), the molecular para-
meters (6) and (7) can be written for a many-compo-
nent system as follows :

=Y x;BY, + 3 x; x; B‘”)
i

ij

+ 3 x;x;x, BEP + (12)
i
Zx r +Zx x; T +
ij
+ Y %, x; x, [0 + (13)
i k

ijk

We shall now discuss the various terms for several
models and approximations.

3.1 No MOLECULAR FIELD. — The first two terms
of (12) and (13) describe additive, incoherent SHS by
individual molecules with the parameters :

B, = 3§ (62 U).07 1 V), (14)

Ife=3% Y5 be i be — 362 : U).(b7 : U)] .

(15)
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The parameters (14) and (15) differ from zero for
non-centrosymmetric molecules only [6]. Their appli-
cation to molecular symmetry groups proceeds as in
the single-component case.

The second and higher terms of the expansions (12)
and (13) account for coherent light scattering on
molecules statistically correlated as to their positions
and mutual spatial orientation [7, 8], and express the
non-additivity of scattering by the components of the
mixture. In a first approximation, neglecting the
molecular fields, we obtain for the two-molecule
correlation parameters :

N;
B{) = §]f’x_< > (b2 1 U).(b2 : U) x

q#p

X COS (Ak.rpi,qj)> , (16)

2 N U w » w
F“’=§‘;<2 {5b57 1 bGP —

q#p

— 3(bZ : U).(b2* : U) } cos (Ak.rpi,qj)> . An
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25N &
)
B2 = Teax, X

Jj n=0

(n+ 1)!
Cn—1DT!
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In this approximation, the parameters (16) and (17)
differ from zero for non-centrosymmetric molecules
only if the statistical averaging { ) is performed with
a correlation function dependent on molecular
orientation.

3.2 INFLUENCE OF THE MOLECULAR FIELD IN THE
ABSENCE OF ANGULAR CORRELATIONS. — Averaging,
performed with the (angular correlation-independent)
radial correlation function, causes the two-molecule
parameters (16) and (17) to vanish. The contributions
from the molecular field (11), inherent in the expan-
sion (10), have now to be taken into account. The
non-zero result thus obtained is, obviously, propor-
tional to the square F? (in the linear approximation,
it vanishes on isotropic averaging). On assuming
moreover for simplicity the nonlinear polarizability
tensor

20 _ 1 . 20 .
;i =5U:¢:U

as isotropic, we obtain :

{(c°)* (M"[r] M) + (c3)? (M{"[n] M{") } < % r;.-,zq}"”’> . (18)

and 'Y = 0. This approximation, consequently, yields no contribution to the anisotropic parameter (7).
In the same way, we derive for the quasi-isotropic parameter of three-molecule correlations :

. 25N © n+ 1! N;j Nk
B0 — ciz“’ oo —_— (")[n] M(n) % pon+2) r—(n+2) %
FP20 81 xjxk J "= (2n _ l) 11 qu S;q pi,sk

where P, , is a Legendre polynomial of order » + 1.
Here, too, I'{# = 0. Clearly, the anisotropic para-
meters pI'$), (T will differ from zero in the absence
of angular correlations only if anisotropy in the
tensor c { is taken into account [5] or if, in the expan-
sion (10) higher nonlinearities are taken, thus the
quadratic nonlinearity df,,f" F(r, ) F(r, 1) etc, or
other components, due to the action of the field
gradient etc. [16, 17].

r.g.r :
y Pm(w) cos (Ak.rpi,qj)>, (19)
pi,sk* s

sk,qj

i)
B2
q#p

N
=3—iji2‘”,ui{(7§‘°+s}?“’)<z (3COS 9 _ l)r 3

3.3 INFLUENCE OF THE MOLECULAR FIELD IN THE
PRESENCE OF ANGULAR CORRELATIONS. — In the pre-
sence of orientational molecular correlations the
non-vanishing contributions are those linear in the
molecular field F. However, for the sake of simplicity,
we shall assume the molecular species i as dipolar
(albeit without higher multipoles) and the species j as
centrosymmetric, b = 0. We now get, for the two-
molecule angular correlations :

pi,qj

X COS (Ak.rp,-,qj)> + (3% + 792°) x

N
X < Y, (3cos b, cos 0, ;cos 0,; — cos? 0, ) r:3; cos (Ak. - qj)>} , (20)

q¥p

N;
ST = ix?w s {5?‘0 < Y (5cos?0,,,; —
[ 2xj i i Jj pL,4qj

q*p

X COS (Ak.rp,-,qj)> + 3y <

3)(3cos 6

—3

pigj X

X cos 0, cos 0,; — cos® 6

pi,qj pi, qJ)

N
Y, [(5cos?0,,,; —

qa#p

1)(3cos® 0, — 1)

— 2(3cos B, ,; 08 0,,cos 0,; — cos? 0, )] Ty X €OS (Ak.rpi’qj)> } , 1)
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with the notation :
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K2® = 333 -3 b113 » 22)
b2® = ?(baa‘s + 2 b}%,)
e =ity , v =33 cls — €l )

2w _ ple
0% = €711 —

2w 2w
6ciT3s + €3533

These formulae describe a curious situation in which the fields of electric dipoles u,; of a non-centrosymme-

tric molecular species induce nonlinear electric moments cz“’ F

qi.pi 0 the molecules of a centrosymmetric

species thus destroying their centre of symmetry and rendermg SHS of a cooperative kind possible [5]. We
are dealing here with a mixed SHS due to the intrinsic absence of a centre of symmetry and to the removal

of one by a molecular electric field.

The contributions (20) and (21) are easily seen to vanish on isotropic averaging. However, averaged with
a two-molecule angular function correlating a dipolar molecule y; and a quadrupolar one @; :

gEJZ)(rpqﬂ Qpi’ qu) = gij(rpq) X

{3
X exp

they become, in a satisfactory approximation :

By @j
2kT

(cos 6,; + 2cos 0

pi,aj

cos O,; — 5cos 8, cos® 0,) r%; + } , 29

4 Ny} 6] ) ) N;
FBS) = 5 BT }2 b?°(42 y}° + T} + 563%) x < Y. oy cos (Ak.r, qj)> , (20a)
J : q#p
24 Nu? @,
I‘(lj) — _—l____]_ 20 20) Ak v . . 2la
1225 x; k2 T? ki <q§p rpt i j cos ( pi, q1)> Q2la)

Now let us see what happens when the species i is dipolar but the species j tetrahedral. By (16) and (17),

we now get :

B =

r$) =15 N} bigs; xj < Y cos 831 cos 032 cos 6413, cos (Ak.r ;. qj)> ,

q#p

630,

pL4qJ

0 H
25)

pL,qJ

9 (k = 1, 2, 3) denoting the angle between the permanent dipole and the k-axis of molecular coordinates,

attached to the tetrahedral molecule.

On averaging, performed isotropically or with the
function (27), the anisotropic factor I'$? vanishes ;
for dipole-tetrahedral octupole interaction, it will
differ from zero only in the fourth approximation of
the distribution function expansion (~ p Q}/k* T?)
and will thus be practically negligible.

Furthermore, taking into account the molecular
field of the dipoles and a nearly isotropic tensor cf-“’,
we get

BS) = SN po o i (3cos? b, — 1
F 9x_ “1 i J pi ) x
i q#p
X ry3icos (Ak.r,; qj)>, (26)
rg) =o.
F! 20

On averaging the preceding expression with the
angular correlation function for interaction between
the permanent dipole and the dipole induced in the

tetrahedral molecule :

gu (rpq’ va ‘qu) = gii(r ) %

X exp{;kTBcos 0, + l)rpw} 27

(with a;-linear optical polarizability), we obtain in the
first, nonvanishing approximation :

2Nul 2] w
le b2 2 < Z rP“IJ

X COS (Ak.rp,-,qj)> . (26a)

B(tﬁ =

The preceding formulae for specific molecular
symmetries prove that temperature-dependent studies
of SHS in liquid mixtures are a source of information
not only concerning the two- and three-molecule
distribution function (19) but, primarily, permit one
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to determine the signs of the tensor elements of
nonlinear second-order and third-order polarizabili-
ties. This information is essential to our knowledge
of molecular structure.

3.4 ATOMIC DISPERSIONAL INTERACTIONS. — In the
case of SHS in atomic media, we have by (6) and (7) :

F2w=0,
25 M
B-Hr (Y

X (Fyi - Fyjs) cos (Ak. i) > , (28)

with F now denoting the field of London dispersional
interactions. The tensor ¢ is defined as in eq. (18).
By (8) and (9) we find that D2® = § and R?**(0) = 0
for all orders of atomic interaction.

We see moreover, from (28), that even in the limit
Ak.r, i — 0 the molecular factor of quasi-isotropic
scattering already differs from zero for two-body
interaction of different atoms. For i = j the factor (28)
vanishes in such cases [10], since a pair of identical
atoms is still a centrosymmetric element.

The molecular quantities (6) and (7) are accessible
to discussion by the method of statistical perturbation
calculus [17] for polar molecules with arbitrary sym-
metries and interaction energies, as done previously
for the molecular polarisation of many-component
systems [18].

4. Discussion and conclusions. — For a binary sys-
tem, the expansions (12) and (13) are conveniently
written as a series in powers of x (= x, — the molar
fraction of the solute; x;, = 1 — x — that of the
solvent) [19] :

00 = Qo+ 01 ¥+ Qsx* + = § 0,x
29)

where the expansion coefficients :

0 _ 1 (B, o 0 1 (0T,
T\ axt ), " x" ).

(30)

are accessible to direct determination by measurements
of B,, or I';,,.

The coefficient Q, of (29) describes the properties
of the solvent alone and, with regard to (12), is given
by :

Qo = (B + BLY + B + -9,

The other coefficients of (29) describe the solution ;
by (12), they can be approximately expressed as :

Q1 = (B;f,,)

(30a)

1 12 21 11
B() ()+B() 235(}))_

— 3BYIY 4 - (305)

)x=() H

ELASTIC SHS BY LIQUID MIXTURES

1019

12 21
Béw) - Béw) +

+3BYEID —

0: = (BYY + BED
(30¢)

Vo -

Similar expressions can be written for the I',,’s.
Knowing the properties of the pure solvent, eq. (29)
can be re-written in the form of the variation :

0x) — Q ,
AQ(x) = =— =0 Q1 + x4+ Qyx? 4 =
' =Y 0. ()
n=1
For an infinitely dilute solution, (31) becomes :
lim AQ(x) = Q, . (3la)
x=0

Thus, the infinitely dilute solution is characterized
by the quantity Q,, defined by (305). Concentrated
solutions markedly diverge from additivity i.e. from
linearity in x, so that higher terms of (31), like Q,,
Q,, ..., have to be taken into account.

Let us consider the case when the solvent molecules
are centrosymmetric and those of the solute noncen-
trosymmetric. We now have in the absence of corre-
lations for the solvent, by (14) and (15) :

Bl =0, TI{=0.

(32)
In the dilute solution, the predominant role belongs
to molecules which, by interacting with one another,
cause cooperative light scattering as given by eq. (18),

~ unless one takes anisotropy of nonlinear polariza-

bility into account. In particular, for quadrupole
molecules one has by (18) and (19) :

N
B(ll) = SN(cfw @1)2 < Z ",;_18,41> s (33)

Z Z rplslrslql X

q*p s¥q

Bétull) — 25 w @1)2<

x P3<'ﬂ—“—ﬂ) cos (Ak.rplyq1)>, (34)

pl st Fs1 gl

where O, is the electric quadrupole moment of the
solvent molecule.

For highly symmetric e.g. octahedral solvent mole-
cules the first non-zero electric moment is the hexa-
decapole @, and one has by (18) :

N
mm—”mmﬁ¢m<2mﬁ> 35)
q#p

189

Likewise, by (19), a contribution is derived for triple
radial correlations.

In the infinitely dilute case, with regard to (304),
(14) and (15), it suffices to consider for the solute
the quantities

%ﬁ—gwm (36)

b3%; + b3$.)?,

Fﬁ;) = —(2 b333 -3 b113 -3 b223 2 (37)
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only, since the probability of correlation between
the scarce solute molecules, separated by very nume-
rous molecules of the solvent, is small. In this situation,
however, one has to consider correlation between
a non-centrosymmetric solute molecule and its cen-
trosymmetric neighbours. Neglecting angular corre-
lations in a first approximation, one has by (18) :

25N ® S
162 {2( 2 .u2)2 < Z rpl6,q2> +

q¥*p

+ 3(c3° 0,)° < Y q2>}7 (38)

qa*p

B(l 2)

where y, is the dipole moment of the solute molecule.
The quantity B2 is defined similarly.

If correlations between the solute and solvent
molecules are anisotropic, one has instead of (38),
by eq. (20a) and (21a) :

BED = 2 b20 13 027 62 + 4293 + 563°) x
525
N
X (kT)‘2< Y r;zfq‘l cOos (Ak.rpz,q1)>, 39)
. q#p
F(Zl) - 24 N #3012 20 520 %

1225 kT2 2 "

N
X < Y rpotay €OS (Ak.rpz,q1)> . (40)

q¥p

Hence, the variation AB,, (x) in an infinitely dilute
solution is described by the quantities in (30b) with
_the terms (33), (34), (36) as well as (38) and (39).
On the other hand, the variation of the anisotropic
parameter is, in this approximation :

lim A, (x) = I'{2 + T'EH +

x=0

(41)

where the non-zero contributions are given by (37)
and (40).

One can likewise discuss the inverse case of a solute
consisting of quadrupolar centrosymmetric molecules
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and a solvent with tetrahedral ones e.g. CCl,, for
which by (14) and (15) one has in the absence of
correlations :

Bélw) =0, F = 15 N(b123(1))2 . (42)

In the presence of radial correlations only, I'§," =
and by eq. (18) one has :

80
B(“) 7N(wa Q123(1))2 < Z rpl ql > , (43)

where €, ,, is the octupole moment component of the
tetrahedral molecule [17]. On taking into account
interaction between molecules of the solute and
solvent, one has :

5N No_
54 {5( 3*0,)? < Y rpl?q2> +
q#p

+ 16(c3® Q123(1))2 < Y ’;11,¢?2> } (44)

12
Bl =

Since the octupolar contributions are generally
much smaller than the quadrupolar ones, the infinite
dilution method suggests itself for the determination
of the quadrupole moments of molecules from eq. (44).
The values thus obtained will surely be more accurate
than those previously determined from SHS studies
of pure liquids [20].

For concentrated solutions, higher terms of (31)
have to be taken. By eq. (30¢) etc., they now involve
also parameters related with correlations between
molecules of the solute.

The preceding example proves that the investigation
of the quantities B,,(x) and I',,(x) vs. concentration
permits to study the correlations existing not only
between molecules of the same species, but, in the
first place, between molecules of different species.
If the dependence of B, (x) and I',(x) on the concen-
tration x is linear, one deals exclusively with an
influence of the solvent on the molecules of the solute
amounting to at least 10 %.
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