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ABSTRACT

The dependence of third-order nonlinear electric polarization on low and
high electric field vibration frequencies in isotropic molecular media is discussed.
Nonlinear electron dispersion is described by classical Lorentz—Voigt theory and
nonlinear processes of molecular rotational relaxation are solved using Debye’s
rotational diffusion approximation for dipolar axially symmetric molecules with
linear and nonlinear anisotropy of polarizability. A strict analysis of temperature
contributions to third-order nonlinear susceptibility is performed, and possibilities
available for the separation of the various relaxational mechanisms by pulsed
techniques are indicated. The general results are applied to the description of such
nonlinear processes as third-harmonic generation of low frequencies, and second-
harmonic generation in isotropic electrically polarized media, as well as optical
birefringencies and dielectric saturation induced by fields of low and high frequen-
cies. These effects constitute the basis of nonlinear relaxation spectroscopy, and
their investigation will provide new data on the 3 rotational relaxation times t,,
75, T3.Telated as 7, = 3 1, = 6 7. Also, available studies on molecular relaxation
processes are reviewed briefly because of their relevance to the laser technique and
nonlinear optics of ultra-short processes.

I. BRIEF SURVEY OF PREVIOUS RESULTS
A. Linear relaxation processes

It is 45 years since Debye [1] proposed his molecular diffusional theory of
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linear processes to explain the relaxation of electric dipoles immersed in a viscous
fluid. Methods of dielectric relaxation are currently applied in the study of rota-
tional and translational molecular motions, correlations between molecular di-
poles, and dynamics of liquid structure [2—7].

Debye assumed that the molecular electric dipoles have a spherical shape,
of radius g, that they undergo reorientation in an a.c. electric field £ (¢) = Ege™ i
vibrating at the circular frequency o and that they are subject to a frictional force
in the fluid medium of viscosity # in accordance with Stoke’s law

= 8na’y (1)
A spatial orientational distribution of the dipoles in the a.c. electric field is

counteracted by Brownian motions, which tend to reinstate the initial randomness.
With regard to (1), the rotational diffusion coefficient is

kT kT
Dg = — = o3 (2
{r 8ma’y
leading to the Debye dipole relaxation time
1 4na®
TIp=—"= Rk (3)
2Dy kT

Debye’s theory [1], in a linear approximation, yields for the total dipolar
polarization of a medium (with the number density p = N/V)

2 _.
P(t) = pm” F, exp.( iwt)
KT 1—iwr,

where F is the (Lorentz or Onsager) local electric field, acting on a molecular dipole
of electric moment m.

Geometrically spherical molecules have only one relaxation time 3),
whereas molecules with ellipsoidal geometry are characterized, according to
Perrin [8], by at least three relaxation times along the prmmpal axes of the mole-
cular ellipsoid.

4

B. Quadratic relaxational processes

Peterlin and Stuart [9] extended Debye’s linear relaxation theory to a
quadratic dependence on the a.c. electric field, giving rise to an w-dependent
optical birefringence of the fluid. Quadratic theory, besides the Debye dipole
relaxation time (3), involves a second rotational relaxation time, characteristic for
optical birefringence,

1 Tp
= — = — 5
5= e 3 )

The following expression for the electro-optical birefringence of a fluid, acted
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on by an a.c. electric field is due to Peterlin and Stuart:
2np cos (2wt —3,)
nt—n? = “y(o { o [1+ A
I 1 15kT Y( A) '))( ) (1+4CD2T]23)%

kT L1+ w2 (1+ o) (1 +4w’t})?

where
(W) = az(wa)—a(w,) and y(@) = az(w)—a,(w) ™

are the anisotropies of optical polarizability of the axially symmetric molecule with
respect to the vibration frequency w, of the analyzing beam used for detecting the
electrically induced optical birefringence and with respect to the frequency w of
the a.c. field.

If the birefringence-~inducing field is static, ® = 0, formula (6) gives the well-
known expression of Langevin [10] and Born [11]. Optical birefringence in a.c.
electric fields was studied by Benoit [12]. At very high vibration frequencies of an
intense electric field, as in the case of laser light (w7 — o), formula (6) defines the
optically induced optical birefringence detected experimentally in liquids by
Mayer and Gires [13].

The second relaxation time (5) intervenes, moreover, in many other processes
of molecular reorientation in a.c. electric fields [14-18], as well as in NMR [19],
Rayleigh and Raman spectral light scattering [15, 20-22], induced Rayleigh and
Raman scattering [23-25], nonlinear depolarization of scattered light [26],
transient scattering by macromolecules [17, 27, 28], optical Kerr effect [29-32], non-
linear optical activity [33] and dichroism [34, 35], and magneto-optical effects [36].

Kielich [26, 297 extended the theory of Debye and Peterlin to arbitrary a.c.
electric fields

E(t) = ; E,exp (—iw,t) (8)

obtaining to second-order accuracy the following distribution function for dipolar
axially symmetric molecules:

F(Q, 1) = £(2, 0)[1 +p(¢) cos 3+3g(1)(3 cos? §—1)+. . .] 9)
where
_ 1 m(w,)E, exp (—iw,?)
M= e S (10)
_ 1 EEyexp [—i(w,+ w,)t]
g(1) T Zb (et @) {v(wa, ;)

L [mwdn(a) | o)) (1)

2kT L 1—iw,1p 1—iw, 1p
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The sums of (8), (10) and (11) extend over all values of @ and b, positive as well as
negative, with w_, = —a,. In the expansion (9), f1 (€, 0) 1s the zero field distribu-
tion function (8) defining random distribution of molecules having the orientation
; and 3 is the angle between the symmetry axis of the molecule and the direction
of the a.c. electric field E(z).

The first approximation of (9) and (10) defines Debye’s [1] linear distribu-
tion function. The second approximation of (9) with (11) leads to Peterlin and
Stuart’s [9] results for the quadratic distribution function. The expressions (9)-(11)
allow us to calculate dielectric disperion and absorption for optical birefringence
[29], nonlinear variations in anisotropic light scattering [26], nonlinear optical
activity [33], and many other quadratic effects [36, 37].

Quadratic molecular relaxational processes play an important part in numer-
ous, recently studied processes, evolving on an ultra-short time scale, such as light
self-focussing by ultra-short laser pulse [38-40], mode locking [41], self-phase
modulation [42], ultra-fast light gate [43-45 ], ultra-short pulse measurement
[46, 47], and ultra-short pulse generation [48-50], opening up a new research field
of ultra-short processes [51-55] dealing with various transient phenomena, in
which molecular reorientation [56-60] is apparent.

C. Cubic and higher relaxational processes

In isotropic dielectrics, the first nonlinearity of electric polarization 1s of the
third order in the electric field strength E. This nonlinearity leads to quadratic
variations in electric permittivity Ae & E2, which is studied as dielectric saturation
(1,18, 61, 62]. Thus, to determine the dependence of Ag(w) on the vibration fre-
quency in an a.c. electric field, one has to calculate the distribution function 9
to an accuracy of the third power of the field strength. Cubic relaxation has been
dealt with by Novikov [63] and Kasprowicz-Kielich et al. [37] in relation to non-
linear electro-optical phenomena.

Cubic dispersion processes involve in general,in addition to the relaxation
times (3) and (5), a third rotational relaxation time
1 75 1

_ 12
12D, 2 6 (12

T3 =

which, incidentally, is obtained from the general solution of free rotational diffu-
sion for the nth relaxation time [64]

. = 1 21y
" n(n+1)Dy  n(n+1)

(13)

Higher relaxation times occur also in the spectral theory of double-, triple-
and generally multiple-photon scattering processes. Maker 165] proved that spec-
tral broadening of double-photon elastic scattering by symmetric-top molecules
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depends on the two relaxation times z; and 75 and that their numbers increase for
asymmetric-top molecules [66]. Similar times intervene in hyper-Raman light
scattering spectra [67]. The spectra of triple-photon scattering [68] depend on the
relaxation times 7, and 7,, whereas successive higher times (13) occur generally
in multiple-photon scattering [69].

D. Nonlinear electron dispersion

Lorentz [70] is the founder of the classical theory of dispersion. Voigt [71]
extended the theory to include nonlinear electron dispersion. In a modern treat-
ment, the electron theory of matter is developed in Rosenfeld’s monograph [72],
as well in other books [73-77]. Voigt’s ideas on nonlinear distortion of micro-
systems in strong electromagnetic fields have been developed by Born [11, 73],
Van Vleck [74], Piekara [78, 79], Volkenshteyn [76] and others (see the review
articles [18, 80-83]). Nonlinear dispersion of isotropic bodies has been described
in terms of classical electron theory [82-86] as well as by quantum mechanical
methods [85-96]. Modern laser techniques and nonlinear spectroscopy [98-100]
provide effective methods for the extensive investigation of nonlinear dispersion
and absorption in molecular substances throughout a wide range of frequencies.

E. The aim of this paper

We shall be considering electron and dielectric dispersion of third-order
polarization in isotropic media. First, we shall propose the general fundamentals
of the theory in the semi-macroscopic treatment initiated by Kirkwood [101] and
at present applied to nonlinear phenomena [18, 102]. However, we shall refrain
from entering into the details of the molecular correlation and statistical fluctuation
mechanisms, discussed with regard to nonlinear effects in previous papers [9, 61,
102, 103]. Next, we shall give a discussion of nonlinear electron dispersion in the
classical Lorentz—Voigt approach.

A further step will consist in the calculation of the time-dependent distribu-
tion function (€, 7) from the equation of rotational diffusion, perturbed by an
a.c. field of the form (8), to an accuracy of the third order of approximation.
Since, in the general case, the solution of the problem is not straightforward, we
shall neglect molecular correlation, assuming for simplicity that the dipole mole-
cules are axially symmetric and that, at the same time, they have anisotropic
linear and nonlinear polarizabilities. The distribution function (€, ¢) derived on
these assumptions allows us to calculate the nonlinear polarization of order three,
describing various molecular relaxation processes in isotropic fluid media.

The solution of the nonlinear molecular relaxation problem using the
approximation of Debye rotational diffusion is dictated by simplicity, and provides
insight into the kind of new information to be expected in the third approximation.



280

Obviously, various problems of molecular relaxation have been solved in recent
years by methods of time correlation function, resulting from Kubo’s [104]
general theory of response to external perturbations of the system. The time
correlation functions, as it were, span the gap between the relaxation nature of the
dynamic quantities describing the return of the perturbed system to equilibrium
on the one hand and the relaxation nature of their fluctuations in the state of
thermodynamic equilibrium on the other. Kubo’s formalism was first applied to
processes of linear dielectric relaxation by Glarum [105] and Cole [106] in Kirk-
wood’s semi-macroscopic treatment. Recently, Kluk et al. [107] developed a
stochastic group theory of dipolar dielectric relaxation, and discussed the local
field problem by Kubo’s linear response theory. Ivanov [108] was the first to apply
group theoretical methods to the rotational theory of Brownian motion.

Although the nonlinear response theory was formulated by Kubo [104]
himself, its application to the second and third approximations of relaxation
processes is by no means simple, and will be the subject of a separate paper.
Obviously, proceeding by Kubo formalism in the semi-macroscopic approach, one
can find appropriate relations between the macroscopic and microscopic time-
correlation functions, rendering apparent the correlations between the motions of
the individual molecules with regard to their mutual interactions. In the absence
of interactions, the autocorrelation functions of successive (first, second, third,
etc.) orders will yield results which should correspond to those we shall derive here
using Debye’s rotational approximation. Lately, Ben Reuven and Klein [109],
applying the Kubo-Zwanzig method, performed an analysis of the nonlinear
optical field response of independent molecules.

II. NONLINEAR POLARIZATION IN THE SEMI-MACROSCOPIC APPROACH

Consider a semi-macroscopic ellipsoid, with the electric permittivity tensor
&;;, in an isotropic continuous medium of electric permittivity . If an electric
field E? is applied externally, a mean macroscopic field E, generally differing from
E°, will exist in the dielectric ellipsoid. By electrostatics, the two fields are mutually
related as follows [18]:

where the summation convention applies to the recurring subscript j.
The tensor relating the field strength components E; and E;is-

Li; = &5 '[e00y+ (e —20 3u)Dy;] A (13)

d;; is the Kronecker symmetric unit tensor, and D,; a field depolarization tensor
dependent on the shape of the ellipsoidal sample. In particular, for the sphere one
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has D,; = 6,;/3 and the tensor (15) becomes
J J

L, = fit280 (152)

ij
3e,

If, moreover, the electric permittivity of the spherical sample is isotropic, ¢;, = &3,;,
eqn. (15a) assumes the well known form

3g,

L.,

iJ

ij (15b)

We now proceed to consider the case when the external electric field E° is
very strong, causing the potential energy of the sample to be a nonlinear function
of E. This can be expressed, to sufficient accuracy [102], as follows:

U(T', E) = U(', 0)— M{)(I')E) — 34, (T')E}EY
_%Bijk(F)E?E;’)El?_71?Cijkl(F)E?E?El?E? T e e (16)

Above, U(T, 0) is the potential energy of the sample at the configuration I in the
absence of an external field. M} is the electric dipole moment component of the
sample at E® = 0, and Aj;; its linear electric polarizability tensor. The tensors B,
and C;;, of ranks three and four define, respectively, nonlinear polarizabilities of
orders two and three.

By definition, the vector of dipolar polarisation of the sample of volume V'is

P(E) = % f M(T, E)f(T, E)I (17)

where, to an accuracy of the third order of approximation, the component of the
total electric dipole moment in the presence of a strong external electric field is [102]

M(T,E) = M?(F)+Aij(F)E?+%Bijk(F)E§.’E,?+%Ci a(DESEREY+ ... (18)

If, when acted on by the d.c. electric field E, the system is in thermodynamic
equilibrium, its statistical distribution function is given by Gibb’s formula

Jexp [~ BU(T, E)JdT

where g = (k7)™ 1.

Now we consider the situation which exists when the system is acted on by
a time-variable electric field (8) and is thus no longer in thermodynamic equilib-
rium. Its behaviour in time can no longer be described by the Gibbs distribution
function (19). The explicit determination of the time-dependent distribution func-
tion of the system for the case under consideration is in general not at all easy.
Nevertheless, by analogy to the statistical perturbation expansion in powers of U
of the Gibbs function (19) with the energy (18) one can write, for a time-dependent

(T E) =
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perturbation of the form (8‘), to an accuracy of the third approximation,
ST @) = S0+ T SO0 @) ENw,) exp (—io, )
+ Z [f} 1)(I‘ @) HA(T, 0a)]EY(@,)E N (wp) exp (—iw 1)
+ g;[fz(l)(r Wabe) +f1(ﬁc)(r Wgpe) Ty (3)(F Wape)]
x E{(w,)E)(wy)EQ(w,) exp (—iwp. 1)+ . .. (20)
where, for brevity,
Wy = W+ 0y, Wope = W+ 0+, (20a)

In general form, the tensors of the successive perturbations of the distribu-
tion function (20) cannot be derived simply. We begin by writing them for the case
when the system is in thermodynamic equilibrium obtained by (16) and (19)

JEL0) = A OMAD), £ 0) = £ s 0pmay(n)

.0 = g omouirmo, 50 0) =L oypu)
fur, 0) = B ’ f(F 0)M(MNAA;(T)

ST, 0) = ﬂ = (0, O)IM(TMNIM(T) =3M(TXKMATMAT)] 21

where AA4;; and A(M;M;) are, respectively, fluctuations of the polarizability
tensor and the product of dipole moments

Ad;; = Ay;—L Ay, AMM;) = MM ;— (MM 5

the symbol ¢ ) denoting here a statistical average with the unperturbed distribution
functionf (T, 0). The expansion (20) for v, = w, = @, = 0,in conjunction with the
tensors (21), represents the distribution function expansion for the case of a static
electric field.

Later we shall show that the frequency-dependent tensors of successive
perturbations f{(w,), . - ., /3% (@a) can be found in explicit form for the simple
model of rotational diffusion. At the present stage, we shall assume their analytic
form as known. This will enable us to write the nonlinear polarization in the third
approximation, using the definition (17) and the function (20), as follows:

PEs)[E(t)] = ; X?}lllc'ic(wa > Wy wc) Ej(wa)Ek(wb)El(wc) CXp (—iwabc l) (22)

We have introduced above the tensor of the third-order nonlinear polarizability
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of the isotropic medium

Dabe

1 Wape W, we Wabe
Kin(w,, oy, 0)) = T Lol L Lis{ Coprs(o,, 0y, ) (22a)

In deriving the expressions (22) and (22a) we had recourse to the tensor
relation (14) between the fields, since in general an isotropic medium subject to the
action of a strong electric field presents a tensorial electric permittivity. In particu-
lar, for a spherical sample, and on neglecting induced anisotropy of the electric
permittivity, we can assume the isotropic relation (15b); then (22a) reduces to

Wabe 1 Dape fOa W W Wabc
Xij';clc(wa’ Wy, CL)C) - 6V — L L L”L <C11kl (wa’ Wy, wc)> (23)

IIl. THE TENSOR OF THIRD-ORDER NONLINEAR POLARIZABILITY

By the expansions (16), (18) and (20), the mean statistical value of the
tensor of nonlinear polarizability of order three can be expressed in the form

(C> = CCHDO YV +HCRY P +<Cry P + (24)
Above, we have in explicit form for successive contributions, in accordance with
increasing powers of f in (21)

<C?},;(1;c>(0) = f Cijkl(F’ —Wape > Wy Wy, wc)f(o)(l", O)df (25)

<Cwnbc>( n _ f [3Buk(F Wape s Wg s wb)fl( 1)(F’ w")

+6Aij([‘a —Wype s D, )fk(ll)(r Wy, wc)
+6M1(F, _wabc) _](kll)(r Wy, Wy, O c)]dr (26)

<C$lllc'l’c>(2) = 6f [Aij(r’ _wabc’ wa)fk(IZ)(F’ wb, wc)
+M?(F’ _wabc)Lglczl)(F’ 6Oa > Wp, wc)]dr (27)

(Cue>® =6 fM?(r, = Oap) [ (s 4> 4 0)dT (28)

Recently, Bedaux and Bloembergen [110] carried out an analysis of the
relationship between the macroscopic nonlinear susceptibility y*? and microscopic
polarizability «‘*) at optical frequencies, taking spatial dispersion into account.
They used the method of the local Lorentz field; that is to say, they employed a
procedure that is different from the semi-macroscopic method used here. In the
semi-macroscopic approach, we begin by finding macroscopic corrections of the
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form (15) resulting from the phenomenological relation (14), which, for time-
variable fields, has to be written as

EX(r. 1) = Ly, K)E,(r, 1) (14a)

This expression is dependent, besides the frequency w, on the wave propaga-
tion vector k, describing spatial dispersion of the electric permittivity tensor [111]
¢;;(w, k). In the second step, the macroscopic corrections are found by a molecular
statistical analysis of the nonlinear polarizability tensor (24); thus, for the dipole
moment of a dense medium in the absence of external fields, we write the expansion
{18,102, 112]

MXI) = Z [m(")+a(")F (rp, )+ EbRF (r,, OF(r,, 1)

-cf}’,2,F (r,, OF(r,, OF(r,, )+ .. .] (29)

where m® is the permanent dipole moment of the pth molecule of the medium,
which is taken as consisting of N molecules. The other tensors of (29) describe
linear and nonlinear electric polarizabilities of the pth molecule. The electric field
existing at the point r, of the latter due to the electric charges of all the other N—1
molecules of the medium is, in the dipole approximation,

N
Fi(r,, 1) = Y TOm{(r, . 1) o)
q¥p
where
Ti(qu) = —(v, Vj+k255j)r;,11 exp (ik | "od) 1)

is the dipole interaction tensor between molecules p and ¢, distant by r,,. Similarly
to (29), we write expansions for the tensors 4;;, B;; and Cijy.

However, we are not concerned here with the calculation of corrections
arising from the molecular fields (30), and so we restrict our considerations to
macroscopic corrections of the form (15) and (15b). It should nevertheless be
noted that Bedaux and Bloembergen [115] did not consider the temperature-
dependent terms (26-28).

In the isotropic case we can perform an unweighted averaging on (25). To
this aim, we carry out a transformation of the nonlinear polarizability tensor

Cukl Cia c_)ﬂ cky Cys Caﬁyb

where the c;, are cosines of the angles between the axes i = X, Y, Z of the labo-

ratory coordinate system and the axes « = 1, 2, 3 of mobile coordinates, rigidly

attached to the body. On performing the unweighted averaging we obtain [114]
1 i 5le 4 —1 —1\[6,5 6,

{CinCipCryCis00 = 0 S 0| —1 4 —1){0, Ops (32)
-1 -1 4/ \o,5 g,

o 5jk
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hence, using (25) and (32), we have
(G = Clate 1y Gt Come 63 85+ Come 5,10 5  (25a)

xXyxy xXyyx

with the notation

Cliyy = 36<4Cogs — Cages — Cappe> (33)
The other two components of (25a) are obtained by an appropriate interchange of
the indices xa and yg in (33).

One notes that, in the zeroth approximation, the tensor of third-order non-
linear polarizabulity is dependent on high frequencies and also, but very weakly, on
molecular redistribution [18, 29].

In particular, if C,;,; is a completely symmetric tensor, as is the case in the
absence of electron dispersion and absorption, one has

Cxxyy = nyxy = nyyx =1 5<szﬁﬂ> xxxx (333‘)

To carry out the averaging of the temperature contributions (26)-(28), we
need to know how the tensors (21) of the distribution function (20) depend on
frequency. The problem will be solved using the Debye rotational diffusion model
in Sect. V of this paper. But here we shall calculate the tensors (26)-(28) for the
static field case, when use can be made of expressions (21). On the assumption of
complete symmetricity of all polarizability tensors (v, = w, = 0, = 0), we obtain

Ciu'V = 3% [90<(4A4)*)8;; 64+ 2<3B,,p My+M,B,ss>0:u

+ <3A¢,, Agp— Ay AgpdH 111 (262)
{Ciy® = [15<AAAM >34 611

+ <3Aa,, M, My— A, My Mp>H#, 0] (27a)
<Cijkl>(3) = g [5<(AM2)2>5U Ou— <M4>’1ijkz] (28a)

where we have introduced the following unit tensor operators:
Oijut = 040+ 0y 051+ 040
Hija = 30340, +306,03,—25,; 6
Nija = 45ij5kz“5ik5j1_5i15jk (34)
and
A= A,/3, M? = MM,

Thus, in the semi-macroscopic approach, each of the temperature contribu-
tions (26a)-(28a) consists of an isotropic part, which is related to fluctuations of



286

the polarizability or the dipole moment of the medium, and several anisotropic
parts, which are strongly dependent on various angular molecular correlations [18].

IV. NONLINEAR ELECTRON DISPERSION

Consider a molecular system, composed of n electrons, the sth electron
having the mass my, electric charge ¢, and radius vector r,. In the classical theory
of Lorentz, the equation of motion of the electron is of the form

d?r (1) dr(t) .1 B

g Tl = G

Quite generally, the electron is acted on by a Lorentz force

d
f 1) = e, [E(r, n+ L0 g, t):| (36)
c dt

E(r, t) and H (r, t) denoting the electric and magnetic electromagnetic field vectors
in the space-time point (r, ).

In accordance with Voigt’s hypothesis [71], the electron is bound to the
centre of the microsystem by the anharmonic force

F30r, 1) = aPra(+ 3B ra(Ora) + &y Gura(Ora(ra() + - - . (37)

where ofY are harmonic and B, ¥ anharmonic vibrations of the sth electron.

In the absence of damping forces (I'; = 0) and of the Lorentz force (36),
the electronic oscillator performs harmonic vibrations
o = —m 0l (38)

at the circular vibration frequency w;.

In the presence of a Lorentz force with a time dependence of the form (8),
the electron performs forced vibrations with the fundamental frequency w, and sum
frequencies (20a), i.e.

ra(t) = Za: ra(w,) exp (—iw, 1)+ % rs(wg) exp (—iw,, 1)
+ a;c Fi(Wape) €XP (—iwgpe 1)+ . .. (39)

Our solution will be restricted to the electric part of the Lorentz force (36)
(the magnetic field has been considered in Refs. 85, 86); hence, by (35)-(39) and
(8), we obtain
rsi(wa) = est(wa)Ei(wa)
rsi(wab) = %ﬁl(jsi Ds(wab)rsj(wa)rsk(wb)
rsi(wabc) = %{3ﬁ§js'l)c[rsj(wa)rsk(wbc) + rsj(wab)rsk(wc)]
+ ’yf;l)cl rsj(wa)rsk(wb)rsl(wc)}Ds(wabc) (40)
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where we have introduced the complex electron dispersion functions
DN (w,) = myw] -} —iw,T})
D Nwg) = mf o} —(w,+ @) =i, +w,)I,]
D ) = m{0f —(@,+ 0yt 0,)* — i@, + 0y + )T, ] (41)

Since, by definition, the total induced electric dipole moment of the molecule is
2(0) = ¥ earlt) @)
we obtain, by (39),
p(1) =Y p(w,) exp (—iw, 1)+ Zb PP(@,5) exp (— @,y t)
b P o) exp (<itner) .. (@)

where the dipole moment components of successive orders are
piw,) = af(w)EN(w,)
PP@a) = 350, wp)E(@,)EY(w,)
P (@) = 565000 > 035 0)EY(@,) ER(5) ER(w,) (44)
The tensors of the linear electron polarizability and nonlinear electron
polarizabilities of the molecule are expressed as follows:

at(o,) = ¥ eiD,(@,)o, (43)
b?}’;cb(wa ’ wb) = Zl es3 D s(wa)D s(wb)D s(wab)ﬁ f;l)c (46)

n
c;;'r;cllw(wu H wb ] wc) = JZ' Z eg[3ﬁl(;l)l ﬁr(rf}sz(wab)'i' 3ﬁl(jr)n r(:lles(wbc)
s=1

+ 23’5‘7()1 ]D s(wa)D s(wb)D s(wc)D s(wabc) (47)

Once it is known how these molecular polarizability tensors depend on high
(optical) frequencies, we are in a position to determine the electron dispersion and
absorption of the macroscopic polarizability tensors of eqns. (25)-(27). In fact,
high-frequency dispersion, which is due to electron processes being practically
independent of molecular correlations, can be written, to a very good approxima-
tion, for a medium of N molecules

N
A?;’a(r s wa) = Zla?}"(l‘ P wa)
pN
B?}"l‘b(r’ Wy, wb) = Z b?}lllcb(rp’ Wy s wb)
p=1

N
C;‘;";c'ic(r’ Wg 5 Wy, wc) = Z c;‘}‘;c'ic(rp’ Was Wy, COC) (48)
p=1
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On the assumption that all N molecules in ¥ are of one species, the sum of eqn. (48)
can simply be replaced by N. Thus, formulae (45)-(48) describe linear and non-
linear electron dispersion and absorption by resolution of the complex functions
(41) and their products into real and imaginary parts.

V. TIME-DEPENDENT DISTRIBUTION FUNCTION IN THE ROTATIONAL DIFFUSION MODEL

On Debye’s model [1], the time-dependent distribution function can be
determined from the kinetic equation of diffusion

af(%;t) = Dij{ViVj f(r, t)+ﬂ[Vif(F, t)Vj U([‘, t)-}—.f([" t)ViVj U(F, t)]}
(49)

with D;; the second rank symmetric diffusion tensor and V; the operator of spatial
differentiation.

Its solution with a potential energy of the form (16) with field (9), and
successive perturbations of the distribution function in the form (21), is highly
complex. We accordingly simplify it to the case when no molecular correlations
or statistical fluctuations are present in the system and the dipolar molecules are
symmetric about their s-axis. For axially symmetric molecules, the dipole moment
and polarizability tensors can be expressed as follows:

m; = ms;, a;; = ad;;+5y(3s;5;—0;;)

b = %{3b(si6jk+sj5ki+skéij)+x(5sisjsk—siéjk—sjéki—skéi}-)} (50)
where we have denoted the mean polarizabilities and anisotropies of linear and
nonlinear polarizability as

a= (az3+2ay,)3, y = d33—dy,

b= (b333+2by13)/3, K =>b333—3b13 (51)

With regard to eqn. (50), the distribution functions of the successive approx-
imations (21) are dependent on the polar angle 9; when solving eqn. (49), this
enables us to restrict ourselves to the part describing rotational motion of axially
symmetric molecules, in accordance with the Debye model

#S.0 _p { ! é«(siné)g)
ot “lsin 9 49 ot
+B [ﬁfg + L ?—(sinsa—Uﬂ} (52)
39 09 sin 9 09 29

On taking into account (16) and (21) for the case (50) and the field (8), we
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derive a solution of eqn. (52) in the form (20), with
S, ) = BT, O)m(wp)R, (w,)s;

ST, w) = i;f(r, 001> 0p)Ro(e0,6)(35,5,— 53;)
i(jZ)(F’ Wg) = %Zf(ra O)m(wu)m(wb)R1(wa)R2(wab)(3Si Sj_éij)

fig'}c)(r’ wabc) = 3% f(F, O){3b(wa9 Wy, wc)R1(wabc)(Si5jk+sj Ot 5, 5ij)
+x(w,, 0y, wc)ﬁli(wabc)[ssi 88k —(5:0 5 +5; 0+ 5,.6,;)1}

2
J/; ig'i)(r > wabc) = % f (F s O)M(wa)?(wb > wc)[3K 3(wabc)si S;iSk— Kl(wabc)si 0 jk]

3) o = ﬂsql O)ym(w,)m{w,)m(w S (w 5;8:85,—S (o S-’ i
fz(Jk( s llbc) ; ( ’ ) ( a) ( b) ( c){ 3( abc) ivj ok 1( abc) Léjk}

Above, the following complex relaxation functions have been introduced:

Ri(w,) =(1-iw,7))"

Ry(wm) = {1 —i(w, +wy)T,}

R3(wabc) = {1 - i(wa + Wy + CL),_.)‘L'3}_ !

Rl(wabc‘) = {1_i(wa+wb+wc)rl}_l (54)
involving successively higher and higher rotational relaxation times, defined by
eqn. (13) withn = 1,2, 3, ...

The tensors of the distribution function (53) contain the following relaxation
functions:

K 1 (wabc) = {6R1 (('Da)[1 - ES(wabc)] + RZ(wbc)[4 - 3R3(wabc)]}ﬁ 1(wabc)

k?p(wabc) = %[2E1(wa)+ﬁz(wbc)]ﬁs(wabc) (55)
S (@ae) = Rl(wa)RZ(wab)[4_3R3(wabc)]R1(wabc)
5 3(@ae) = Rl(wa)RZ(wab)ﬁ3(wabc) (56)

VI. RELAXATIONAL CONTRIBUTIONS TO NONLINEAR POLARIZABILITY

Knowing explicitly the frequency dependence of the distribution function
tensors in (53), we can proceed to calculate the relaxation temperature contribu-
tions (26)—(28) for a fluid with N axially symmetric molecules immersed in it. On
taking the unweighted averages of the unit vectors [19]

$sisida = $9i5, $8i5;8k5100 = T50iju (57)
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and on insertion of (53) into the tensors (26)—(28), we get in the absence of angular
correlations

Oape N <
<Cij‘,‘(lc>(1) =FE {3[3b(_wabc’ wa, wb)m(wc)Rl(wc)

+ m( - wabc)b(wa L] wb ’ wc)Rl (wabc)]aijkl

+ ))( - Cl)abc s wa)?(wb ’ wc)R'Z(wbc)‘;{/ijkl} (58)
2
Wabc N D D -
Cij Y = 51“5_ {7(~ @ape» wa)m(wb)m(wc)Rl(wa)Rz(wbc)’/fijkl
+m(— wabc)m(wa)y(wb , . )[3 K:&(wabc)aijkl
-5K 1(wabc)5ij 5kl]} (.59)

3
(CEey® = ﬁ1TN m{ — gy )m(w,)m{w,)m{w,)

X [§ 3(Dape)Oija— 58 1(@ape)di; 0] (60)

with the tensors o, and 5, ;, defined by (34).

For w, = w, = w, = 0, all relaxation functions (54), (55) and (56) become
equal to unity and the contributions (58)-(60) are particularizations of the
expressions (26a)—(28a) for the case of axially symmetric molecules in the absence
of statistical fluctuations and molecular correlations.

For the isotropic body, the well-known relation for the third-order nonlinear
susceptibility tensor holds [88]

it = Ly X5k + X0 (61)

thus with regard to (23) an identical relation is valid for the tensor of nonlinear
polarizability

(> = CLyy > +LCy > +<Cye (62)

In the zeroth approximation, we obtain by (25a), (33) and (48), in the
absence of molecular correlations,

N oune
Coaz> ¥ = 1 (o + Capa + Cafig) (63)

In this approximation, the tensor of nonlinear polarizability is not directly
affected by processes of rotational molecular relaxation. The expressions (63) can
be written out explicitly for specific molecular symmetries, for which the nonzero
and mutually independent tensor elements ¢4, are known in full [18, 115].

The relaxation contributions (58)-(60) derived above for axially symmetric
molecules also satisfy the relation (62). With regard to (58), we have
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®abe N -~
(Cogy') = % {303b(— Wape » 0> Wp)M(w IR, (00)
+ m( - wabc)b(wa > Wp» wc)lgl(wabc)]
- 2‘))( — Wype wa)y(wb 5 wc)RZ(wbc)}
<C§>;;;>(l) — <Cwubc>(1)

xyyx
N ~
= P 30— 0 04, 00 )R ()
+ m( - wabc)b(wa s Wy, wclﬁl(wabc)
+ 7)( — Wape > wa)y(wb s wc)RZ(wbc)] (583‘)

hence
waren (1) _ BN i3
<Cxxxx> = TS— {9[3b(_wabc s Wy s wb)m(wc)Rl(wC)
+ m( - wabc)b(wa s Wy 5 wc)lgl(wabg)]
+ 4?( - CUarbc > wa)?(wb s wc)R2(wbc)} (64)
Similarly, in the second approximation, we have by (59)

- TSN (29~ @ape s 0, )m(e0,)m(@0,)R  (0)Ra(p.)

. +m(— a()éll)Jt‘)m(wa)y(wb s w)[S K 1(@gpc)—3 K 3(@ae)1}
(Cam>'™ = (Came>

xpxy ﬁZN N .
5 /(= @ape» wa)m(wb)m(wc‘)Rl(wb)RZ(wbc)

+ ’n( - wabc)m(wa)y(wb s wC)KS(wabc)] (593')

yielding, on insertion into (62),

<Cwabc>(2) —

Xxyy

%SN (= @ape s wa)’n(wb)m(wc)ﬁl(wb)ﬁl(wbc)

+ m( - wabc)m(wa)‘y(wb s wc)k(wabc)] (65)
where we have introduced the relaxation function

K (Wape) = %[91? 3(wabc) -5K (@)
= z[3R(w,)~ Ro(@) IR (@anc) (66)

Finally, the third and last contribution (60) leads, for the various compo-
nents, to

<Cwabc (2) _

XXXX

3
<C§’;;JL’ >(3) -7 _ISLV m( - wabC)m(wa)m(wb)m(wc)[5§1 (wabv) - §3(w“b")]
(Co» ™ = (Capen®
3
= ’ﬁjv' m( - wabc)m(wa)m(wb)nl(wc)§3 (wabC) (Ooa)

15
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their sum yielding
_2p°N

(Comy® =
15

(= gse)m(02,)m()m(02)S(@aoc) (67)

with the relaxation function:
g(wabc) = %[Sgl(wabc) _3§3(wabc)] = Rl(wa)ﬁl(wab)ﬁl(wabc) (68)

The above expressions can also be written in a form completely symmetric
in w,, wy, w,. Strictly, each of the polarizability tensors a,s, b,g,, Cag,s i t0 be
multiplied by an appropriate factor K (—ag,, @, ®,), K (—@ape, 0,4, 0, @),
whose numerical value depends on the appropriate power of 4 and the frequency
degeneracy factors [90] D resulting from the relationship between the field fre-
quencies w,, @, ®, and their methods of combination (whether they are different,
equal to one another, or zero). The factor should enter the Fourier field representa-
tion (8). However, in order not to complicate our formulae excessively, we refrain
from adding these numerical factors. They can be added eventually by the well-
known method [81, 83]; as yet there is no convention on the matter.

VII. NONLINEAR EFFECTS OF ELECTRON RELAXATION; NONLINEAR ELECTRON-RELAXA-
TION PHENOMENA

The third-order nonlinear polarization (22), using eqns. (23) and (25a),
becomes for an isotropic body in the shape of a spherical sample

Pgs)(t) = bZ [X;‘c,;;;(wa’ Wy, wc)Ei(wa)Ej(wb)Ej(wc)

L0450y, ©)E (@) E0)E(02)
+ Xioya(@a» @, 0 )E{@,)E (@) Ei(@,)] exp (— i 1) (69)

We shall now use this polarization for the description of nonlinear relaxation in a
variety of phenomena.

A. Vibration frequency tripling

We begin by considering the case when a single, intense electromagnetic
wave is incident on the medium. The real part of (69) now is
Pt) = 2[3)Rexx(@, @, — ) cos
+ Yroe(@, @, ) cos 3wt]E(w)E (w)E (o) (70)

involving, by (23) and (63)-(68), the following nonlinear susceptibilities at the
frequencies w and 3w, respectively:
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" P 4
el @5 @0, —@) = —— (L°){9¢,pp5( — 0, ©, @, —@®
= ) = S () 9g( )

+548[b( — w, w, w)m(—w)R,(w)

+b(—w, 0, —0)m(w)R,(w)]

+4B12y(— o, oy(w, —0)+7(- o, —o)(o, ®)R,(20)]
+85%y(~ o, 0)lm(w)*[R}(w)+ K (w)]

+4p%y(~w, —w)m(w)’[R,(®)R,(20)
+K'(0)]-6f%Im(0)|*S (@)} (71)

Lo, 0, ) = ﬁ) LLY (B3 pp( 30, 0, 0, @)

+9B[356(—3w, , w)m(w)R,(w)

+m(—3w)b(w, », ®)R,(3w)]

+4p8y(—3w, w)y(w, ©)R,(2w)

+4B [y(— 3w, w)m(w)*R, ()R, (2w)

+m(—3w)m(w)y(w, w)K(Bw)]

—283m(—3w)m(w)*S(3w)} (72)
Eqns. (71) and (72) contain the real parts of the relaxation functions (54)

R(w) =(+awt)™

Ry(wn) = [1+(0,+0)*13]7*

Ry(@u) = [1+(0,+ 0y + 0, )*73]7*

Ry(@ape) = [1+{(0,+ 0+ ) *ef] 7 (542)
With the preceding functions and eqns. (66) and (68), we determine the functions
K(3w) and S(3w), for w, = w, = w, = w, obtaining moreover

K(w) = 1[3R,(0)~1]R\(w),  K'(w) = 4[3R,(»)—R,(2w)]R,(w) (66a)
S(w) = $R}(@)[2+R,(2w)] (68a)

Eqn. (70) shows that, in the case of a single intense electric field vibrating
with the frequency w, the nonlinear polarization of order three consists of a part
which vibrates with the frequency w of the incident electric field and a part which
vibrates with the tripled frequency 3w. If the vibration frequency of the field is
very high, as it is in laser light, then (at wt — o) all relaxation functions (54a)
tend to 0, and the nonlinear susceptibilities (71) and (72) are related to electron
dispersion only thus

w P o4
Kxxxex\WO> @, —W) = — L gcaa —W, W, W, —W
(0,0, =0) = L (1) )

+88)(— 0, (o, o)} (71a)
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Xz;)xx(w’ w, (,0) = % st(Lm)3caaﬂﬂ(_3w’ w, C(), (1)) (723)

Third-harmonic generation (THG) of laser light has been studied in gases
[117], liquids [90, 116], liquid crystals [118] and solutions of large macromolecules
[119]. Hitherto, no reports are available on low-frequency THG by the rotational
relaxation mechanisms of eqn. (72). However, Sussmann [120] showed the feasi-
bility of the observation of low-frequency THG by nonlocalized electric dipoles
in paraelectric media.

B. Frequency doubling in a d.c. electric field

On assuming w, = 0, i.e. that one of the fields is constant in time, we obtain,
by (69)

PE(t) = 2{[Xaxxs(0, @, —®)=272,,(0, @, —@)]E;(0)E{—w)E;(0)
+ 2xfyxy(0, o, —0)E(w)E;(—w)E;0)}
+2{[x 20, », @)= 2122 (0, », ®)]E{w)E (w)E(0)
+2x2,(0, @, 0)E(w)E (w)E;(0)} cos 2wt (73)

Xyxy

where, using (23) and (63)-(68), we have for the nonlinear susceptibilities at 2w

22240, 0, 0) = 2_’716 P2L(L°){3[C,agp( — 200, 0, 0, )

+2¢,p,5(— 2w, 0, ©, ©)]+27B[ b(—2w, w, w)m(0)
+2b(—2w, 0, @)m(w)R {(w) + m(—2w)b(0, ©, w)R,(2w)]
+4B[2y(— 2w, w)y(0, ®)R,(w)+7y(—2w, 0)y(w, w)R,(2w)]
+4B%y(—20, »)m(0)m(w)[1+ R (w)]R,(w)

+4p%( =20, 0)m(w)’R,(0)R,(2w)
+4B%m(—20)[2m(w)y(0, 0)K(2w)+m(0)y(w, w)K'(2w)]
—68°m(—2w)m(0)m(w)*S(2w)} (74)

xfy";y(O, 0, 0) = xi;"yx(O, w, )

= é) L LAL)V {3 05— 20, 0, @, ) = Coapp( — 2, 0, 0, @)

+6B[b(—2w, w, w)m(0)+2b(—2w, 0, w)m(w)R(w)
+m(—2w)b(0, w, w)R,(2w)]

+2B[29(~20, )0, )Ro(0) +(~20, O)y(, )Ry (20)]
282520, )m(O)m(@)[1 +R,(@)]R(0)

+25%9(—20, Om(w)R ()R (20)

+2B%m( —20)[ 2m(@)y(0, ®)K;3(20) + m(0)y(w, »)K3(20)]
—2B°m(—20)m(0)m(w)>S5(20)} (75)
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Above, we have the following relaxation functions:

K(Q2w) = 3[3Ry(@)—Ry(w)]R,(2w)

K'(20) = 33— R,(20)]R,(20) (66b)
SQ2w) = 3R (@)R,(w)+ R,(w)+ R (w)R,(2w)]R,(2w) (68b)

The other functions are defined similarly on the basis of (55), (56) and (54a).
One notes that the third-order polarization (73) in the presence of a d.c.

electric field contains a part that varies in time at the doubled frequency 2w. At

laser light frequencies, the nonlinear susceptibilities (74) and (75) at 2w reduce to

1220, w, w) = —9% LIV Coupp( — 2, 0, @, )

+2€4pap(— 20, 0, 0, ®)+9pb(—2w, ©, w)m(0)] (74a)

Kool0: 0, 0) = L LI [y~ 20,0, 0, 0)
— Coupp(—20, 0, @, w)+68b(—2w, ®, @)m(0)] (75a)

A d.c. electric field-induced SHG of laser light has been observed in nondipolar and
dipolar gases [122]. It would be of interest to investigate SHG for low frequencies,
at which the electric dipoles still keep pace with the field variation, in accordance
with eqns. (74) and (75). Besides, as shown earlier [123], this effect is subject to
considerable enhancement in the case of complete electric reorientation of mole-
cules and macromolecules.

C. Induced optical birefringence

In a strong electric field, isotropic media become anisotropic, with a tensor
of electric permittivity

(8;—8;)E(t) = 4n[P(0)+ P+ .. ] (76)

Since, in the absence of the intense electric field, the electric permittivity of
the isotropic medium is scalar

[e(0)—1]E(r) = 4nP{"(r) (77)
the anisotropic variation in permittivity tensor induced by the intense field is,
using (76),

Aej;E(t) = 4nPP(t)+ . . . (78)

We now assume that the isotropic medium is acted on by two electromagnetic
fields: the one, of frequency w,, serves to analyze the variations induced in the
electric permittivity tensor by the other, strong field of frequency w;. Eqns. (69)
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and (78) yield

Agij(w,) = 4n Z [xots(wa , oy, 0.)0:; Ex(@,)Efw,)
;’y'}byc(wm @y, 0 )E{0,)Ef(0,)

?);;l;tc(wA > Wy, c)EJ(wb)E (wc)] cXp ( lwAbc t) (79)

If the analyzing electromagnetic wave propagates in the direction of the Z-axis,
the optical birefringence induced in the medium at w; is defined as the difference
between the diagonal and orthogonal elements of the tensor (79) (we omit the
part dependent on 2ay).

de, () —Ag, (0,) = 8] yomp(@a, wr, —ay)
+X?}$x(wA > Dy, _wl)]
X [E(@p)E,(—y) — E,(w)E,(— )] (80)

In the case now under consideration, we obtain by eqns. (23) and (58a)-(60a)

Xeres(@a 5 @, —@y) = X?):;x(wA5 @y, — )
= ~ 1s0 (LwALwI) {3caﬂaﬁ( Wps Wp s O, —0)
—Coupp(— 04, 0y, 0, —y) +12B[b(—w,, 04, @)
x m(—ay)R (o)
+m(—wp)b(wa, 05, —o)R (w4)]
+2B[v(— w4, @a)9(0, — )
+9(—oa, o)y(@a, —0)Ry (04— )
+Y(—@n, —0)p(@s, +O)R (0 + )
+2B%y(— wy , wa)m(wy)*Ri(w;)
+ B2 m(w)m(—o)y(—wa, o)
x [Ry(@a)+Ry(— o) Ry (wa— )
+ B2 m(wp)m(@y(—oa, — o)
x [R(wa)+ Ry(o)]R (w5 +ax)
+28°m(—w)[m(o)p(@, —o)Ks(ws)
(s, —o)m(w)K;(ws—wr)
+9(w4, o)m(—ay)Ks(wa + o)
+2B%[m(w,)|*m(wy)1*S3 (@ + 0a— o))} (81)

where, by eqns. (55) and (56)

K3(wa) = 3[1+2R (0a)]R3(@a)
Ki(osto) = 3[2R(F o)+ Ry(wat 0)]R3(wa) (55a)
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Sy(o+ws—oy) = HR (@A) [Ra(@a+0))+Ryp(@a— )]
+ Ry (0)[1+Ry(wp+ )]
+ R (—wp[1+Ry(ws—wy)]}Rs(wa) (56a)

If the analyzing wave is a light beam (w,, T, — oc), the nonlinear suscep-
tibilities (81) define the a.c. electric field-induced Kerr effect:

Yon(@a, 0, —y) = ig—o (L“’AL“")2{3caﬁaﬁ(—wA, Wy, O, — )

_caaﬂﬂ(_wA’ Wp 5 O, — )
+12Bb(—wa, 4, )m(— )Ry ()
+2By(—wa, 0p)[(0r, —op)+ [m(eon)|*Ri(n)]} (812)

But for the terms in nonlinear molecular polarizabilities, the preceding expression
coincides with the result (6), derived by Peterlin and Stuart [9]. On putting
oy = 0 in eqns. (80) and (81a), we obtain the case of the d.c. Kerr effect.

If the field inducing optical birefringence in the medium is that of an intense
laser beam, eqn. (81a) reduces to

xoa(wa, 0, —y) = P (L"’AL“")Z[3cal,a,,(—wA, Wy, O —O)

180
- caaﬁﬁ(—wA s WA y, "‘w[)
+2By(—wa, wa)¥(0r, —or)] (81b)

This formula describes the optical birefringence [13, 29] induced in an isotropic
medium by intense laser light of frequency wy.

Eqns. (69) and (78) allow us to write the second part of the dynamical optical
birefringence, induced by intense laser light and modulated at the frequency 2oy,
as follows:

A'sxx(wA) - As,vy(wA) = 87‘[%?;&; Zwl(wA > Wy, (D[)
+ xomd 2wy , 0, 0) JLE(o)Ex(er)
—E (wp)E, ()] cos 20 ¢ (82)

The nonlinear susceptibilities occurring above are easily derived in explicit form
from eqns. (58a)—(60a).

Along similar lines, by using eqns. (69) and (78), one calculates the difference
between nondiagonal permittivity tensor elements, i.e. circular birefringence. On
applying a single, intense elliptically polarized laser beam, one obtains the well-
studied intensity-dependent rotation of the light polarization plane [90, 124].

The individual terms of (81) are able to be resolved by pulsed technique,
down to picosecond laser pulses inclusively [38], or by a judicious choice of the
substance, e.g. a polymer solution [60] or liquid crystal [125].
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D. Dielectric saturation

Assume now that the analyzing electric field E(w,) and inducing field
E(w;) act in the same direction, e.g. along the X-axis. Eqns. (69) and (78) now
yield for the time-independent part at w,

Aaxx(u)A) = San:&x(wA > Wy, — wI)Ex(wl)Ex( - wl) (83)

where, using {63)-(68), we have

X;lc).:xx(wA s, —@y) =

i% (EAL™Y{3[ cupp( — 04, 0o 0f, — )

+2,p04(— 04, Wp s 0, —y)]
+54B[b(~ w4, wa, o)m{w)RY ()
+m(—wp)b(w,, 0, —opR(w,)]
+4B(— w4, 0wy, — )
+y(—ox, —o)p(@4, + )R (ws+ay)
+Y(—oa, opy(wa, —@)Ry (04— )]
+4B*y(— w4, @a)Im(w)*Ri(w)
+2B7m(w)m(— w)y(—w, , o)

X [Ry(wa)+ Ri(— ) ]Ry (s — o))
+2B%m(wa)m(@)y(— s, — )

X [R(wa)+ Ri(w)) IR (ws+ )

+ 452’"( —wa)[m(wa)y(@r, —w)K(w,)
+9(wa, —o)m(o)K(ws— o)
+y(wa, o)m(—w)K(wa +oy)]

— 6% [m(w,)i*|m(w)|>S(w;+ ws — @)} (84)
and, using (66) and (68),
K(wa) = 3[3R (ws)—1]R (w,)
K(wat o) = 7[3R,(F o) = Ry (0 @) IR (w4) (66¢)
S(w+ws— ) = §{R (0x)[R;(0a+ 1)+ Ry(wa— )]
+ R ()[1+Ry(wa+ )]
+R (= o)1+ Ry(wa — ) ]}R (w,) (68¢)

Eqn. (83) describes the variations in electric permittivity of an isotropic
medium induced by the square of the strong electric field intensity.

In the case of a strong inducing field constant in time (w, = 0), we obtain
with respect to (83) and (84)
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ASxx((’oA) = 4nx;’.>3cx(wA’ O)Ei(o) (833)

where

(@4, 0) = 2‘37-0 (AL (3[Coupp(— @n» w4 0, 0)

+2C,p,5(—wa, @4, 0, 0)+ 54B[b(—w,s, ws, 0)m(0)

+m(—w,)b(wy , 0, 0)R (wa)] +4B[y(—wa, wa)(0,0)

+29(— w4, 0)’Ry ()] +4B%/(— wa , @,)m(0)?

+45%9(— oy, 0)m(wa)m(0)[ 1+ R (wa)]R2(wa)

+4p%m(— w,)[m(oa)(0, 0)K(wa)+2y(wa , 0)m(0)K'(wa)]

—68°|m(,)’m(0)*S(w4)} (842)

If, in particular, the analyzing field is constant or very slowly variable in

time, the relaxation functions R,(w,), R,(w,) and K(w,) tend to unity, and the

preceding expressions describe dielectric saturation, studied by Piekara [103] and
co-workers [18] in dipolar liquids,

1oe(0) = ;”0(L°>4{cm,m(0)+zca,,a,3<o>+36ﬂb(0)m(o>
+4B(0)[7(0)+2pm(0)*] —28°m(0)*} (84b)

If the vibration frequency w, of the analyzing field lies above the region of
dipole dispersion (w4 > w4), we obtain from eqn. (84a)

x;):xx(wA > Wy, 0) = 2%) (LwALO)2{3[caaﬂﬂ(—wA’ W, 0,0)

+2C,p0p(— @, @4, 0, 0)]+54Bb(— w4 , w4, 0)m(0)
+4By(—wa, 02)[1(0, 0)+ pm(0)*]} (84¢c)

corresponding to the dielectric saturation studied by Gregson et al. [62] in solu-
tions of polymers.

Before laser technique was used, Piekara and Kielich [61, 79] proposed as a
subject for study the absolute variation in electric permittivity induced by intense
light as defined by eqn. (83) with nonlinear susceptibility of the form

X?;:;rx(wA > Wy, — wl) = 2—:[;_0 (LwALw[)2{3[caaﬂB( —Wp, WDp, W, — (,01)

+2C,p0p(— Wa, 04, 0, —0y)]

+54Bm(—wa)b(w, , 0, — )R (w,s)

+4B[Y(— w4, ©a)

+Bm(— o )m(wa)K(oa)p(or, —o)} (85)
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or for wy, = 0
ngxx(o’ wy, —601) = 2%6 (LOLmI)2{3[CMﬁﬁ(O’ 0’ Wy, _wl)

+26,5,5(0, 0, @y, —awp)]+54m(0)b(0, w;, —ay)
+4B[7(0, 0)+ fm(0)* Iy(w;, —a)} (85a)

Using the general equation (69) of third-order polarization and eqns. (63)-
(68) for nonlinear polarizations, we can extend the present discussion to other
processes of nonlinear relaxation, e.g. frequency mixing, especially at difference
frequencies w,—w,, w,—®,— w,; their investigation would require the application
of two, or three laser beams, with frequencies adjusted so that their differences lie
in the regions of the reciprocals of the relevant relaxation times (13). Also, besides
the relaxation dispersions already considered with regard to nonlinear effects,
processes of nonlinear relaxational absorption can profitably be considered.

1 ] L ! 1 i 1
Yoo Y32 VB V8 U 12 1 2 4 8 6 3
1,

Fig. 1. Graphs of‘the relaxation functions (54a) vs. wt,.

Kol KlZo)  Ki20)

 I— ! L 1 1 ! P ————— |

s V2 Y W U Y2 4 7 & 8 % 32 64
o

Fig. 2. Relaxation functions defined by (66a) and (66b) characteristic for the Kerr effect,
plotted vs. w7,.



301

. . \\ n

o Y2 Ve V8 U /4 1 2 4 8 6 32 64
o1

Fig. 3. Kerr-type relaxation functions, given by (55) and (66), plotted vs. @T,.
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Fig. 4. Relaxation functions characteristic for dielectric saturation phenomena defined in
general by (68) and in particular by (68a), (68b), plotted as functions of w7,.

The molecular rotational relaxation functions occurring in the various
temperature-dependent contributions to the nonlinear susceptibility of the medium
are plotted in Figs. 1-4.

VIII. GENERAL CONCLUSIONS AND OUTLOOK

We have shown that relaxational processes, related to the three (respectively
shorter and shorter) relaxation times v, = 37, = 673 are apparent in many non-
linear effects of order three, e.g. in SHG and THG, induced birefringences and
dielectric saturation. Hitherto, however, only a few cases have been studied in
experimental conditions chosen in a manner to render directly apparent the various
rotational relaxation mechanisms inherent in third-order nonlinear susceptibility.
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Because of the formulae derived in this paper, new and wider fields are open to the
experimenter in nonlinear rotational relaxation spectroscopy, including processes
of absorption [126].

The present results are, as yet, derived in the approximation of diffusional
rotation; doubtless, however, the treatment of nonlinear relaxation processes can
be developed by the methods of time correlation functions, extensively presented
by Berne [127] for linear responses, and by others [128] for nonlinear responses.
But obviously relaxation processes should be dealt with from a more general
standpoint, by the theory of stochastic processes in its modern form [129]. These
general stochastic methods let us describe relaxation processes involving statisti-
cally correlated molecules and take into account translational, translational-
reorientational, and molecular field fluctuations [130] in the regions of short-range
order.

The simple theory of nonlinear relaxation processes at low and high fre-
quencies presented above shows the wide variety of information that can be gained
concerning the higher molecular relaxation times and the dynamical structure of
statistically inhomogeneous isotropic media.
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