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LASER-BEAM INTENSITY DEPENDENT, OPTICAL CIRCULAR BIREFRINGENCE IN CRYSTALS *
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Using a phenomenological approach, the optical circular birefringence of crystals in the presence of intense laser light
is shown to be the sum of natural gyration, self-induced optical rotation (exhibited by optically inactive bodies), and a
self-induced nonlinear variation in the natural gyration. These effects are discussed for all crystallographic classes and the
conditions for the separate observation of each effect are specified.

1. Introduction

Intense laser light induces an optical Kerr effect, as observed by Mayer [1] in liquids and recently studied by
Paillette [2] in glasses, by Lalanne [3] and Wong [4] in liquid crystals. and by Bischofberger [5] in molecular
crystals. Maker et al. [6] showed that the light, if elliptically polarized, imdergoes a rotation of its polarization
plane when traversing the liquid. This self-induced rotation of the polarization ellipse has recently been observed
by Owyoung [7] in glasses and cubic crystals, and by Wong and Shen [4] in liquid crystals. As shown by
Kielich [8] and Atkins [9], besides these two effects a nonlinear change in the optical natural gyration can occur
in optically active isotropic bodies. Such variations have indeed been observed by Vlasov and Zaitsev [10] in tinted
quartz crystals and in optically active organic solutions.

In this communication, we give a complete analysis of the conditions for the self induction of optical circular
birefringence (OCB) by an intense laser beam in istotropic and crystalline bodies of all kinds exhibiting in general
spatial dispersion [11,12]. When calculating light refraction indices, we assume in accordance with an earlier
theory of Piekara and Kielich [13] that intense light causes nonlinear changes in the electric permittivity as well
as in the the magnetic permeability. We shall consider systematically, in addition to the electric and the magnetic
multipolar susceptibilities, also the cross electro—magnetic and magneto—electric multipolar susceptibilities [12].
For the relevant 5th rank tensors of the nonlinear susceptibilities, the non-zero and mutually independent tensor
elements have been found by methods of group theory [14].

2. Fundamentals of the phenomenological theory

The tensors of the dynamic electric and magnetic permittivity of a medium with natural or induced anisotropy
are given by the following, well-known equations:

(e — 8 ) Ef(r, t) = 4m {Pe(r, 1) + Poi(r, D)} , M
(uj— 8  Hy(r, 1) = 4n {P, (r, 6) + PR (r, D)}, @

* Supported by the Institute of Physics of the Polish Academy of Science.
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where E(r, t) and H(r, t) are the electric and magnetic vectors of the electromagnetic field at the moment of time
t in the space point r.

In an appropriately strong electromagnetic field, the ith component of the total electric polarization at the
fundamental frequency w is in Fourier representation:

Pof(w, k) = {x§f (@, k) + X5 (@, k) Ex(w, k) By (w0, K) + ..} E{w, k) , (3)

X;; being the tensor of the linear electric susceptibility and X§&; that of the nonlinear third-order electric suscepti-

bility.

The notation of the expansion (3) is such that the tensors x?] (w, k) and x?]-e,?f(w, k) comprise phenomenologi-
cally not only frequency dispersion but notably the spatial dispersion [11] resulting from electric multipole
transitions [12] . Hence we have for the linear susceptibility at not excessively strong spatial dispersion [11]:

X (@, k) = x57(w) + inf (@) Ky + N5nn(@) K + s 4)

where xf}-e(w) is the tensor of the linear electric dipole susceptibility. The third-rank tensor nﬁfm(w), in accordance
with quantum-mechanical theory, comprises the electric dipole susceptibility with electric quadrupole transition
and the electric quadrupole susceptibility with electric dipole transition. The fourth-rank tensor n?’fmn(w) results
from electric dipole, quadrupole and octupole transitions.

Similarly to the linear susceptibility (4), we write the following expansion for the nonlinear susceptibility:

Xgplgf(w’ k)= X%%fle(w) + in?]@klm(w) K * ngsclmn(w) kmknt ..., (%)

where the tensor xg%f}e(w) is taken in the electric dipole approximation, whereas nfﬁdm (w) and higher tensors arise
in the higher electric multipolar transitions [12].

The magnetic polarization of eq. (2) too comprises all electric and magnetic contributions [12]; in the present
approximation, it can be written as follows:

P, K) = 16" (w0, B) + Xl (w0, k) Ex(w, k) Ef(w, k) + .} Hiw, k), (6)

e

Xj " being the tensor of the linear magnetic dipole susceptibility, and xjjr * that of the nonlinear magneto-
electric susceptibility in the presence of spatial dispersion as given by expansions similar to (4) and (5).

In the general case of electrically and magnetically gyrotropic media one has to take into account, besides expan-
sions (3) and (6), the cross electro—magnetic polarization

Po(w, k) = (X" (@, B) + X5 (w, K) Eg(w, k) E{ (w0, K) + .} H{w, k) , (7
and the magneto—electric polarization
P Aw, k) = {xJ%(w, k) + XGT(w, k) Ex(w, k) By (w, k) + ..} Efw, k) . ®)

The tensors of the linear and nonlinear electro—magnetic and magneto—electric susceptibilities occurring in these
expansions depend in general on higher, and higher electric and magnetic multipole transitions [12].

Table 1 specifies the numbers of the non-zero and independent elements of the tensors occurring in egs. (3)—
(8) as found by methods of group theory [14].

3. Optical circular birefringence (OCB)
On transforming the polarizations (3) and (6)—(8) to a circular representation £, = (2)"V/2(E, t if,) and

having recourse to egs. (1) and (2) and Maxwell’s equations, we find for the difference in the refractive indices
of light propagating along the Z-axis for the two cases of circular polarization:

ne—n_ =Gy + R AE_()? = 1E ()2} + LG {1 E ()2 + 1E_(w)*} + ... ©)
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Eq. (9) describes the intensity-dependent OCB, consisting of
(i) natural optical gyration:

Gy = —2mi{(u/e)' " x5 (w, k) - 335w, B)] - x5 (w, k) - X5y (w. k)

XM (o, k) + X (w, K) + (efw)? XM (. 6) - XM (w, K]} (10)
(ii) self-induced optical rotation:
Ry=m{(ufe)"'? r&+rf™ —rP€+ (e/u)' /2 rM™ }, (11)
(iii) a self-induced nonlinear variation in natural optical gyration:
Gy=mi{(ufe)''® g + g™ — g + (e/w)' 2 g"™} . (12)

In (11), we have used the notation:

K = (w0, K) X0, K) X (w0, K) - X (. K)
+ Xien (@5 ) + X (00, k) + 3 (5w, k) + X5y (w, k) (13)

™ = 3 TS e, K) — X, K} + X0, K) xS, K)

The other quantities 7g"™ and 7" can be expressed similarly in terms of the appropriate tensor elements X'
and X -

Likewise, in (12) we use the notation:
&5 =3 I (@, ) — xSex (@, B)} — Xy (w0, k) + X550 (w0. k)

CEE (00, ) X (00, ) — xR (00, )+ X (0, ) (15)

2™ = — X (@, k) — x§er, k) — Xsieo, k) — X§gy (o, )

+ Xoxx (@, k) + X5, k) + 3 {xEm(w, k) + x5yee(w, k)} . (16)
The other quantities, g™ and g{"°, can be expressed similarly in terms of the appropriate tensor elements X -
and X7 -

The general formulae (9)—(16) hold for optically active as well as optically inactive bodies. both isotropic and
crystalline.

4. Applications and discussion

We begin with optically inactive crystals. For the classes 4mm and 43m, we have by (11) and (13) in the absence
of spatial dispersion:

R =2m(u/e)'"? {xioex(@) + 3xmn (@) - Xy (@) - Xy (@)} (17)

In particular, for the classes 3m, 6mm, 6 and 6m?2 and an isotropic medium we have additionally the symmetry
relation:

Xocxxx = Xooxyy ¥ Xayxy + Xogyyx >
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Table 2
Crystatlographical classes in which optical rotations GN, R and G can occur in the presence of spatial linear (k, # 0), quadratic
(k; # 0) or cubic (k; # 0) dispersion and its absence (k; = 0) .

Tensor elements relevant to Crystallographical classes admitting
n, —n_ n.—n_+0 n,—n_%0
GN k, #0 n32(W) = 15z(w) 1,2,222,4,422,3,32,6,622,
Xk (@) + X33 (w) 1,2,222,4,422,3,32,6, 622, 23,432, Y, K,
k2 #0 Mep222(@) = Myzz(w) 1,2,222,4,422,3,32,6,622,23,432,
N3oezz(©) + M5 (w) 1,2,222,4,422,3,32.6,622, 23,432, Y, K,
Nz (@) = M2 (w) 1,2,222,4,422,3,32,6,622,
Rq k;=0 r :(%) all classes
ky #0 ) 1,2,mm2, 4, 4mm, 3, 3m, 6, 6mm,
750 1,2,mm2, 4,4mm, 3, 3m, 6, 6mm,
k2 #0 rf(ez) all classes
rse(lm) all classes
r;1(10r)n all classes
Gy k;=0 £50) 1,1,m,2,2/m,4,4.4/m, 3, 3,6, 6, 6/m,
k, %0 £5(0) 1,2,222,4,422,3,32,6,622, 23,432, Y, K,
£50) 1,2,222,4,422,3,32,6,622,23,432, Y, K,
k2 #0 £56) 1,1,m,2,2/m,4,34,4/m,3,3,6,8,6/m,
£5() 1,1,m,2,2/m,4,4,4/m,3,3,6,6, 6/m,
£50). 1,1,m,2,2/m,4,4,4/m,3,3,6,86, 6/m,

reducing eq. (17) to the following, simpler form:
R = 8m(u/e)*’? Xpn(w) , (17a)

which becomes identical with Maker’s result [6] for the isotropic medium.
Obviously, self-induced rotation (11) occurs also in optically active classes (see table 2). If spatial dispersion is
considered, further contributions (14) emerge.

We now apply eq. (12) to uniaxial crystals of the tetragonal system, obtaining in the absence of spatial disper-
sion [for brevity, we write only the electric part (15)]:

= 2i(ule)! " {35555 (0) + Xw) + XE2(e0) + Xy ()} a8)

In particular, for the classes 3, 3, 6 and 6/m we have moreover the relation: Xxyyy = Xooxxy ¥ Xxxyx * Xxyxx» reducing
(18) to the form:

G = —8mi(u/e)'’? () . (18a)

It is highly interesting that this result also holds for the class although this class is not optically active, but is
found to be susceptible to the induction of nonlinear optical activity under the influence of intense light.

If linear dispersion is present and the tensor nf?]?]e kim 18 assumed to be antisymmetric in the indices i,j we get
by egs. (12) and (15):
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= —dni(u/e)'* NS5 (W) + Mgz (@) k- (19)

This formula holds for the classes 222, 422, 32, 622 and 23. In particular, for the classes 432, Y and K we have
Tyxz = Mpyyz- corresponding to an earlier result [8], derived for isotropic optically active bodies by molecular-
statistical methods.

The presence, or absence, of the effects (9)—(16) in each crystallographic class is indicated in table 2.

Thus, for self-induced rotation and nonlinear optical gyration one has available a method for the direct deter-
mination of the value and the sign of the individual elements of the 3rd order susceptibility tensor
xijk1(~w, w, w, —w, k). This is surely important, as methods of harmonic generation are essentially restricted to
its modulus.
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