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A semi-macroscopic theory of optical circular birefringence (OCB) in arbitrary dense optically active bodies is proposed,
comprising in a concise tensorial formalism the electro-magnetic multipolar polarizabilities of all orders. Besides spatial
dispersion of arbitrary order, frequency dispersion and absorption in OCB and the role of time and space fluctuations of
the fields of electric and magnetic molecular multipoles in regions of short range ordering in liquids and solutions are dis-
cussed.

1. Introduction

Terwiel and Mazur {1], and Maaskant and Oosterhoff [2], independently formulated the molecular-statistical
theory of optical activity in isotropic bodies with an accuracy to the electric quadrupole and magnetic dipole mo-
ments. Viewed generally, optical activity theory is based on Maxwell’s equations, modified by de Groot and oth-
ers [3] to include electric and magnetic multipoles. On this basis, Kielich introduced multipolar electric and mag-
netic tensorial molecular polarizabilities [4] and susceptibilities [5] of all orders for arbitrary dense media in lin-
ear as well as nonlinear approximations in the electric and magnetic fields.

Recently, various authors [6—10] performed anew analyses of multipolarity in optical activity by phenomeno-
logical as well as microscopic methods for various materials specifying widely ranging assumptions and restrictions.
In this communication, we shall consider systematically, in addition to the electric and the magnetic multipolar
polarizabilities, also cross electro-magnetic and magneto-electric multipolar polarizabilities. For simplicity, we
shall omit retardation and relativistic effects [3,4]. To derive results applicable to the widest range of materials
exhibiting spatial dispersion [11], we have recourse to the semi-macroscopic treatment proposed by Kirkwood
[12] in his theory of dielectrics. Also, in order to formulate our rather complicated results concisely, we apply
the general formalism of cartesian tensors of electric and magnetic multipole moments in a way to make them
automatically translatable into that of spherical tensors. The results for OCB thus obtained are so highly general
as to be applicable to molecular, macromolecular and biomolecular liquids and their mixtures, as well as molecular
crystals.

2. Multipole expansion of electric and magnetic permittivity tensor

We consider generally an anisotropic medium with electric permittivity tensor €and magnetic permittivity ten-
sor pin a volume V, immersed in an isotropic medium with the scalar permittivities €; and ug. The electric field
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of the light wave in the surrounding medium being o (r, 1), the mean macroscopic (maxwellian) field E(r, ¢) exist-
ing in V will differ from E(r, ). The two fields are related by the tensor R as follows [12]:

Ey(r,t)=R, E(r,1), )

R, = 661 [eg Ut L-(e—¢€yu)], for the ellipsoid ;

= (3eg)~1 (e +2¢64U), for the sphere .

U =xx +ypy + 2z is the rank 2 unit tensor in cartesian space XYZ with unit basis vectors x,,z and L the depolar-
izing tensor. By analogy to (1) we define the relation between the magnetic vectors Hy(r, f) and H(r, ) of the
wave.

The equations for the electric and magnetic permittivity tensors taking into account all multipolar contributions
are [5]:

(e—U)-E(,0)=4n E - )’11)_” vl [n—l]Pe(”)(r, b, )
= (_1yn-1
(n— V) H(r,0) = 4n ;,2 EZ’QI)” vi-1 [(n—11PP(r, 1), 3)

where the brackets [n—1] between the spatial derivation operators v~ and polarisation #-vectors denote n—1
fold contraction.

The operator of 2"-pole electric polarisation P(")(r t) induced in the medium by the electric field at the space—
time point (r, #) is generally a function of the vectors E(r, ) and Hy(r, t). On restricting ourself here to a linear
approximation we have, in the semi-macroscopic treatment:

PO, n=V- IE

{gn)Ags) [s] ys-1 EO("’ 0+ ((in)Ag) [s]V s—lH0 .0}, @)

(2s n"

where the tensor (")A 9 of rank n+s defines the electro-electric multipolar polarizability induced in the médium
by the (s—1)th order spat1al inhomogeneity of the linear electric field E (7, £); similarly, the tensor (”)A © defines
the respective electro-magnetic multipole polarizability of the medium.

By analogy to (4), we write the multipole expansion for the linear magnetic polarisation:

1)” lEO(rat)}’ (5)

where the (n+s)th rank tensors g)Ag) and g)A S) define linear multipolar magneto-magnetic and magneto-electric
polarizabilities of the medium.

The electric and magnetic vectors of a monochromatic light wave vibrating with the frequency w and propa-
gating in the direction § are, in Fourier representation:

E(r,t0)=E(w,k)exp{itk-r~wt)}, H(r,t)=H(w,k)exp{i(k:r—wi)}, ©)

where, for a medium with refractive index n, we have k = n(w/c)S. By (6), the Maxwell equations for a non-
conducting medium are:

kXE(r,t)=(w/c)B(r,D), kXHE,)=—(w/c)DE,1). O]

Applying these equations to wave propagation in the isotropic external medium of index ny = (eouo)l/ 2, we can
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eliminate the magnetic vector from the expansion (4) and the electric vector from (5), thus finally obtaining with
regard to (2) and (3) the following multipole expansions for the tensors of electric and magnetic permittivities:

£(co,k) - =47":L:) z Q—n%;i()zs—l)”{kn—l[n-l] O (@) [s-11K51 } R (0, k), ®)
n(w,k)—U =47"nZ=) z En—iflg—;%s—-lw{kn—l [n-1] 119 (@) [s-1] k13-R_ (. k). ©)

Above, we have introduced the following tensors of multipolar total electro-magnetic and magneto-elecric polar-
izabilities:

N8 (w) = PAY (W) + (eolugl 2 {TPAD (w) X ST, (10)
DI (w) = DAY (@) - (ug/egH{TPAS (w) X S} (11)

Egs. (8)—(11) hold for arbitrary, isotropic as well as anisotropic bodies exhibiting spatial dispersion and fre-
quency dispersion.

3. Multipole expansion of OCB

Assuming the wave to propagate along Z, the Maxwell equations (7) yield in a satisfactory approximation for
the difference in refractive indices between right and left circular light polarisation:

— i(exyhyy = Epxby) = iy €xx — yy€yy) + 1.
(12)

In particular, for isotropic bodies €,, = €,,, = € and u, = My = M (on neglecting the dependence of the diagonal

components on spatial dispersion), and OCB is defined only by the non-diagonal components of the tensors (8)

and (9). In this case, and if moreover the sample is spherical, we can assume that the tensor R is isotropic: ap-

proximately R = {(€ + 2¢4)/3€( }U and, similarly, R, = {(u + 2u4)/3uq }U. Taking this into account in conjunc-

tion with egs. (8), (9)and (12), we obtain for OCB:

=1 -1/2
ny—n_=3 (6#) / {exxl“lyy - l“lxxeyy * exy Mxy - yxuy_x

ny (w, k) — n_(w,k)

had e n+l (s
72 Z eyt € 1S G @1k ()

where we have introduced the multipolar gyration tensor of the medium

1/2 /et 260
Me () =(4) (T) e IR @)y} - 0 I ) xp

e\l/2 [ut2u n+
(&) (550) e EOnE D @) ph - -GN @)D, a9

{ ) standing for statistical averaging.

Eqs. (13) and (14) define OCB of a dense isotropic medium including contributions of all orders from the
multipolar electro-magnetic polarizabilities. If spatial dispersion is not excessively strong, we have by (13) with
accuracy to octupolar polarizabilities:
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ny (w.k) —n_(w,k) = —Qu31){ k* V6 0 () - V6 Q) (w) K]
+ i [3kk: D6 QD (w) — 5k DG (w)- k +3 D62 (w): kk]

— iz [3kkk: PGQ (w) — Thik: PG () k + Tk VG B (w): kk — 3 DGE) (w)ikkk) +... 3, (14a)

since for the'isotropic body (O)Gg?,)l (w)=0.

4. Frequency dispersion and absorption of OCB

Considering a dielectric sphere of volume ¥ in which N microsystems are present, we assume in a first approx-
imation that neither statistical correlations nor molecular fields intervene. For this case, by having recourse to
standard quantum-mechanical first-order perturbation.calculus, we derive the electro-magnetic multipole polar-
izability tensor in the form [4, 5]:

(n) (s) (s) (n)
(n) @ N E CkIM I rlM |l)+ kM IrYriM ™ |1
A (W)= Pk . -
Wy —w—ilyy Wy twtily,

(15)

where py; is the statistical matrix for quantum transitions & -/ with Bohr frequency wy; and relaxation time Fk_ll.
Eq. (15) contains the electric and magnetic 2"-pole moments of the microsystems defined by [4]:

M =2 e Y0, (16)
Mg:)=(n T e Z)e Y(")(r,)Xr (17)

where e; is the ith electric charge of the microsystem with radius vector r;, and Yi(") the nth order spherical func-
tion operator.

By (15), we get expressions for the remaining multipolar polarizabilities by interchanging the subscripts e and m.
E.g., on replacing m by e, we get the tensor( )Ags), and so forth. On putting k¥ =/ in (15), we can write the sym-
metric and antisymmetric parts:

MWAG) (w)g = Z}pkkw,k(<kaM(")|r><r|M(s)|k>+<k|M(S)|r><rlM‘"’|k>) (@), (18)
NI N =%%}pkk(w+l ) MMk — KM 1M KY) Fy (), (19)

where we have introduced the complex function of frequency Fyy (w) = Fyy (w) +i Fy (w), with:

2 2 2
, wp — ™ + Ty
Fp(w) = - (20a2)
’ (cop ~ w2 +2(cop + W) T + Tk
F" — 2(‘)Frk
,k(w) = . (20b)

2 2 2
(wrk - w2)2 t 2((’*’rk + w2) 1-‘rk + Fr"’c

Egs. (18)—(20) define generally the frequency dispersion and absorption of OCB in a form separable into a real
part and an imaginary part, i.e., circular dichroism.
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5. Applications and discussion
For specified molecular models and approximations, our formulae go over into OCB results known from the

literature. In particular, to take into account statistical correlations and molecular fields, one has to start from the
following equation (the electric part only is adduced):

& (2s1_1)!_! f»,")Aés)(rp)[S] (VLE (r,0) + Fe(s)(r ,D}. @1

N
VPP 0= 2
p=1
Here, the molecular electric field Fés) (r,,, 1) of order s at the centre r,, of the molecule p and time ¢ due to all the
other N-1 molecules of the medium in the presence of E(r, ) is [13, 14]:

N oo
_ (m
FCp0= 21 21 iyt o 1M g0, @)

where the tensor of rank stm:

T30 =V IV (VY — KU1 expikeryg) (23)

describes the 2%-pole — 2" -pole interactions between electric multipoles of molecules p and’g separated by a
distance r q:

By (2 13, (22) and applying the method of successive substitutions we can express the multipole polarizability
tensor YA ® of the medium as a whole in terms of the molecular polarizability tensors Wp® (r,) and multipole
interaction tensors (23). Likewise, we obtain expansions for the other multipole polarizability tensors, taking in-
to account the Yvon—Kirkwood [12] statistical-translational fluctuations caused in short-range regions by time
and space fluctuations of the electric and magnetic fields of molecular multipoles. Obviously, with the aim of ob-
taining results for isotropic bodies, one has to perform the indicated averaging in the gyration tensor (14).In a
first approximation, one can perform an unweighted averaging of cartesian tensors of various ranks by applying
the general formulae derived earlier for even and odd ranks [15, 16] (see also refs. [8,9]). In particular, this leads
to the results of Terwiel and Mazur [1] and Maaskant and Oosterhoff [2]. Other, new temperature-dependent
expressions result for liquids and liquid mixtures from our formulae if multipole-interaction, dispersional, electro-
static and inductional energies [12, 13, 17—20) are taken into account when averaging the gyration tensor (14).
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