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A method for finding nonzero and linearly independent higher-rank tensor elements by recourse to irreducible spherical
tensors, is proposed. A transformation matrix from third-rank tensors, defined in circular-cylindrical coordinates, to
irreducible spherical tensors, is derived. Nonzero elements of polar third- and fourth-rank tensors, symmetric in all indices,
are determined for all crystallographical classes. The results are applied to the analysis of free as well as electric field-

induced second- and third-harmonic generation of laser light.

1. Introduction

Various physical problems are better dealt with in
circular-cylindrical coordinates. This is in particular the
case of studies involving circularly polarized waves.
Physical quantities are represented by tensors, the
elements of which depend on the choice of reference
system. According to the type of the physical quan-
tity, the tensor representing it is of some well-defined
rank and possesses a given permutational symmetry
of its indices. It is of practical importance to deter-
mine which of the tensor elements are nonzero and
how many of them are linearly independent for
physical systems with symmetry of a given point
group G (translational symmetry imposes no con-
ditions on the tensor elements). The literature con-
cerned with the analysis of the properties of tensors
defined in a cartesian reference frame is very exten-
sive [1-4].

In this paper, we shall consider the problem with
regard to circular-cylindrical coordinates. With this in
mind, we shall derive irreducible spherical tensors in
the form of functions of tensor elements, defined in
circular-cylindrical coordinates, which will serve for
the determination of basis vectors of irreducible
representations of point groups and hence nonzero
tensor elements. The knowledge of the transformation
matrix from tensors to irreducible spherical tensors

is in itself a matter of high relevance since it permits
one to solve many physical problems with ease and
elegance. A matrix of this kind is given in table I for
tensors of rank 3. Tables I and III contain the non-
zero elements of tensors of ranks 3 and 4 with total
permutational symmetry of indices, for all point
groups.

Originally, experimental work on the generation of
(difference and summation) harmonics had recourse
essentially to linearly polarized light beams. In recent
years, circularly polarized beams are being applied
increasingly. The possibilities of generation are then
more strongly dependent on the symmetry of the
medium and the propagation direction of the beam
than if the latter is polarized linearly. This has been
applied on various occasions in research on liquid
crystals, coherent-light generation in the far infrared,
and measurements of picosecond light-pulse duration.
A detailed discussion of selection rules for nonlinear
interactions with a circularly polarized beam is to be
found in the paper of Tang and Rabin [5], where
references to the experimental and theoretical
literature are also listed (see, moreover, the review
articles [6]). ‘

The nonzero elements of tensors of ranks 3 and 4
calculated here in a circular-cylindrical basis permit
one to calculate the nonlinear electric polarisation of
crystals and hence the relative intensity of light



152 Z. Ozgo and S, Kielich/Harmonic generation of circularly polarized light

generated with a given frequency. The selection rules
then result naturally from the vanishing, or not
vanishing, of the appropriate electric polarisations.

2. The method of irreducible spherical tensors
If x, y, z are versors of cartesian coordinates, the

circular-cylindrical reference system is defined by the
unit vectors ey, €y, e_; as follows:

= (i/2)

X (x —ip). (1)

e; =(-i/NV2) (x +iy), eg=iz

In this system of reference, one can define tensors
@y - - - of an arbitrary rank n, each of the n indices
i, j, k, ...taking one of the values 1,0, —1.

For symmetric systems (molecules, crystals) of a
point group G, the number of mutually independent
tensor elements can undergo a reduction. Tensor
invariance with respect to spatial symmetry operations
causes some of the elements to vanish, and linear
relations can also exist between some.

Tensors are characterized by permutational
symmetry of their indices. The symmetry of an nth
rank tensor is defined by a group 7" = G X P, , the
direct product of a given point group G and the
corresponding subgroup P,, of the symmetric group
S,,» where P, describes the intrinsic symmetry of the
tensor [3]. Any tensor can be written as a sum of
tensors (of the same rank), each having a different
property with regard to the permutation symmetry of
its indices. This separation is essential in that the ten-
sor describing a given physical quantity possesses a
well defined permutational symmetry.

When determining the independent and nonzero
tensor elements, we shall have recourse to the follow-
ing theorem: Only those elements of a polar (axial)
tensor are nonzero which belong to the symmetric
(antisymmetric) representation of the point group G.
The number of nonzero elements is equal to the
number of possible combinations of tensor elements

yielding basis vectors of the symmetric (antisymmetric)

representation. The relation between the linearly inde-
pendent and remaining elements is given by equating
to zero the basis vectors of irreducible representations

of the group other than the symmetric (antisymmetric)

representation.

With regard to the circumstance that all point
groups G are subgroups of the rotation group K, the
bases of irreducible representations of these groups
can be determined from irreducible spherical tensors
T (a™), which transform as irreducible representations
Dl of the group Kj,. Spherical tensors composed of
elements of a polar tensor of even rank transform as
representations Dé, and odd ones, as Dlll. Inversely,
for axial tensors, odd ones belong to representations
of the type g and even ones to the type u. This
manner of proceeding has two advantages. 1) It is in
itself important to have available the tensors 77 (a™)
since they make many a calculation simpler by per-
mitting one to have recourse to the well developed
formalism of angular-momentum theory; and 2) one
obtains a separation of the tensor into parts with
strictly defined permutational properties of their
indices i, j, k .

Irreducible spherical tensors T7(a") can be con-
structed step by step-beginning by tensors of rank 1
which, by eq. (1), have the elements:

=(FiV2) (@} £id}),

a} =ia} (2)

Tha)=ai al,

and having recourse to the formula [7]:

ety 3 [0 2 e

m gy ml mzm‘
l n
X T2 (™). (3)

Above, the symbols in square brackets are Clebsch—
Gordan coefficients, and [ takes the values I; + /5,
L+, —1,...,{; =)l In this way, by multiplying
two tensors of rank 1 we get three tensors T2 (a2),

T1 (a2), T0(a2). By using formula (3) we obtain
tensors of a special kind only, being products of two
tensors of the form a’ }c a"}s .; this restriction,
however, does not afl]ect the generallty of our con-
siderations as the transformation laws of an arbitrary
tensor are the same as for this special tensor, and
this is the only property we shall be needing, The
tensors of rank 2, a ;7> have the property that the
tensors T2 (¢2) and T9 (¢ 2) are symmetric with
regard to an interchange of the indices i and j, where-
as T (¢2) is antisymmetric.
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Multiplying the tensors 7" (22) by T! (a!)in
accordance with formula (3), we obtain the spherical
representation of the tensor ”:’3'k' However, in this
case, not all the tensors T" (a3f will possess a permu-
tational symmetry so uniquely defined as was the
case for the tensor of rank 2. Nevertheless it is possible
to perform a symmetrization by forming appropriate
linear combinations with elements of different spheri-
cal tensors of the same rank using genealogical coef-
ficients [8, 9] . The coefficients of these combinations
do not depend on the index m of T,ln.

From two tensors T1(a3) = 70(a?) X T1(al) and
T1(a3) = T2(a?) X T1(a!), one can form one tensor,
symmetric in all three indices, 3711 and one tensor
symmetric in two only, @ T, They have the form:

OT}, @) =3T} @) + @) TL@),
DT} @) = @) Th @) +3 7T} @). @

We shall be denoting symmetry in & indices by
writing & in parentheses, and antisymmetry by using
square brackets.

The remaining tensors have well defined symmetry
and require no further symmetrization. If a tensor is
symmetric or antisymmetric in two indices, this
bears on the first two indices of the tensor al.3.k.

The results are given in table I in the form of
transformation coefficients A l.’.',’c“’, relating elements
of the spherical tensors with those of the tensors a?jk:

vl (@3) =% Almv a3, (5)
y

Since the coefficients A t”,’;" are elements of a unitary
transformation matrix, ti1e transformation inverse to
(5) is easy to perform.

By a similar procedure, spherical tensors, repre-
senting the tensor ag'kl of rank 4 are readily derived.
For a tensor symmetric in all its indices, the results are
to be found in ref. 10; we shall use this in order to
derive its nonzero elements.

Once the form of the spherical tensors as functions
of the tensor elements ai’]'.k ...is known, it is easy to
determine the basis vectors of irreducible representa-
tions of the point groups G. Denoting by ¢§ (1) an a
vector of the irreducible representation 4 of the

group G formed with elements of a tensor of rank n,
we have:

vdm)= 2, BIm TL @am). ©6)

The coefficients BZZ are tabulated [11]. Our choice
of phase for spherical tensors, following Leushin [11]
is such that the relation

T, =(-1y-m7l% (7

holds. This choice of phase is a guarantee that, on
carrying out multiplication of spherical tensors by
formula (3), the property (7) is unchanged. By having
recourse to this method, we calculated the mutually
independent and nonzero elements for tensors up to
rank 4 inclusive, for all point groups. In tables II and
I11 we list the results for polar tensors of ranks 3 and
4 symmetric in all indices. If an orientation of the
reference system is required that is different from
that assumed hereafter ref. 11, it can be obtained by
performing a rotation given by the Euler angles a, 8,
v and invoking the transformation law for spherical
tensors:

T! = 2, Dl (o 8, ) T 8)
k

The prime denotes spherical tensor elements in the
new system of reference. The Dlnk (o, B, 7v) are Wigner
functions.

3. Light-harmonics generation

A medium immersed in the field of light waves
exhibits a polarisation P(¢), which contains in its
spectrum besides the fundamental frequencies also
sum, difference and harmonic frequencies. Each of
the components of the spectrum of nonlinear polaris-
ations can be expressed in terms of the intensities of
the electric fields of the light waves as follows [6, 12]:

Pi(w3) = Xi([zj)] (%] (—w3, Wy» w2) E}le](c‘J2, &)

=3
Pi(wy)= XI(IJ)'] (K110 (—wy, Wy, Wy, w3)EJ.‘*’1E,‘€"2(11;(I‘)~;3’
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Nonzero elements of the polar tensor a;ix, symmetric in all its indices. For symmetry groups having a centre of symmetry, as well
as for the groups K and O, all elements vanish

Symmetry group

Tensor elements

Polarisation state of
the second harmonic

LTy 4310= ~d-1-10 none
Cayps Csus Cops - -+ Coop
C4, Cs, C6’ e Cw aooo, ay—-10 none
D3, D3y 4111 =8-1 -1 -1 opp
Cin a111,8-1-1-1 opp
C3p 4111 = ~%~1-1-1,900091 -1 0 opp
C3 411,91 -1-149000091 -1 0 opp
Dy, Dyq 4110= ~0-1-10 none
S4 allo,a_l -10 none
Cov 2000:9110~9-1-1 091 -1 0 none
G 4000,9110:9-1-10-21-10 none
Cg a111,8~1 -1 =1,9100:9~1 0 0,91 =1 =141 1 ~1 ellipt
& 200052111>9-1 -1 -1:2100s2-1 0 0: 2110+ 4—1 —1 0>

a1 -1 -1,911-1,41-10 ellipt
Table III

Nonzero elements of the polar tensor ikl» symmetric in all its indices

Symmetry group

Tensor elements

Polarisation state of
the third harmonic

K, Kp
0,0, T, Ty Ty

Cs...Co
Csp -+ Comy

C5h coe Cooh
Ds...D.,

Dsh e th

Csn D3

C3y, D3, D3q

C3, Cyi

C4,S4, Cap

Dgq, Dgp, Dyg, Cay
Dy, Dap, Coy

Cz, Cs, C2h

Cl’Ci

a1-100411-1-1=10ay -1 0 090000 = 2121 100
4110091111 58-1 -1 -1-1b%11-1-1=102; _1 00
—Tay111,90000=— 211 —1 9o + 1441111

20000091 1-1-1-91-100

20000091110~ 9%-1-1-1 09 1-1-1>91-100
20000:91110:9-1-1-10911-1-191-100
20000:9111159-1-1-1-1911-1-1>91-100
20000-41111 T4-1~1-1~1>911-1-1-91-100
40000:91111 “4-1-1-1-14%111-1%1~-1-1-1>
41 1-1-1,91100"%%-1-10091-100
20000:91111:9-1 -1 -1-191 11 ~-1,%1 -1 -1 —1»
4110009-1-100:911-1 -191-100

20000:91 11 1-9-1-1-1-1-491000-9-1 00 0»
21110911 1-191 -1 ~1—-1>8-1 -1 -1 0> 41100
4-1-100911-1-1911-1091-10091-1-10

none

opp

none

none
none

opp
opp
ellipt
ellipt

ellipt
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where the tensors® of ranks 3 and 4, x,‘? and xl] I
are tensors of nonlinear susceptibility of the second
and third order respectively, and the tensor indices
take the values 1, 0, —1. The square brackets denote
that the tensor elements are taken in the basis contra-
standard to the basis (1). The transition from the
standard to the contrastandard basis is the following:

e =(=Di-7e_,. (11)

Egs. (10) together with tables 1T and III yield
directly expressions for the various symmetry groups
for the case of light propagating along the z axis cor-
responding to the standard basis.

Generation by circularly polarized light presents a
number of highly interesting properties and is very
sensitive to the symmetry of the crystal and the
direction of propagation of the exciting light beams.
E.g., light propagating along a threefold or sixfold
inversion axis cannot generate a third harmonic, and
the second harmonic is then circularly polarized
oppositely to the incident wave. For the symmetry
groups D3, D3, Cy,, as well as Tand T, if the beam
propagates along a 3 or 6 axis, the generation effects
for right- and left-polarized light are equal to each
other owing to the relation:

=x@ | | EPEY, (12)

but will differ in the case of the groups C3 and Cy,,
for which in general X111 +* x(zf 1-1

For the situation under discussion, generation of
light with sum and difference frequencies will occur
only if the beams, with different frequencies, are
circularly polarized in the same sense; the light gener-
ated is then circularly polarized in the opposite sense.

A light beam, circularly polarized, propagating
along a fourfold axis (4, 4, 4/m) cannot cause second-
harmonic generation; the third harmonic is then
polarized oppositely. In the symmetry groups O, Oy,
T4, Dy, D4y, Dyy and Cy,,, the third harmonic
generated by right- and left-pola(r;)zed light will have

the same intensity (since here x 77}, = x(_:q 11 -1)

* We henceforth omit the frequency dependence of the
tensors x (1)

whereas in the groups Cy, C4 £’ and S4 these intensities
can differ, since in general x 11)“ #:x 3 1.1

In isotropic media with point group K h’ in the
absence of natural or magnetic gyration, no harmonic
can be generated when using circularly polarized light
[5]. This effect can be put to use for controlled
second-harmonic generation applying external
electric static or slowly variable fields [13] having
components in the plane perpendicular to the direc-
tion of propagation of the laser beam. The polarisa-
tion P(2w) amounts to:

PLQw)=x\Y) | JECPEREP =P_| (2w)

=+3)
X1 111 EVOES EY, (13)

where E“0 is the static (wq = 0) or slowly varying
(at frequency wq < w) electric field strength. From
eq. (13), the sense of polarisation of the second-
harmonic wave is always opposite to that of the
exciting wave., Whereas, if the field vector E“0 is
parallel to the direction of propagation of the light
wave, no second harmonic will be generated.

For laser light propagating along a fourfold axis
(4, 4, 4/m), the polarisation of the second harmonic
in the presence of a field £“0 will be elliptical, since
one has the nonzero components Py (2w) and P_; (2w);

Py (2w)=x () ESPEY B,

P Qw)=x) | | EROEY EY. (14)
By using an AC electric field, circularly polarized,

the second harmonic will be circularly polarized too,
in the sense opposite to £“0,

If a light wave propagates along a threefold or
sixfold axis, it can generate a second harmonic, with
sense of polarisation opposite to that of the incident
wave, if an electric field acts perpendicularly to the
direction of propagation of the exciting beam.

In the symmetry groups D3y, D34, D3, Cy,, Cy;
and C; generation is possible also, if the external
electric field is applied along the direction of propaga-
tion of the laser beam which is at the same time the
threefold axis of the crystal.

For crystals of lower symmetry or an arbitrary
direction of propagation of the exciting beam in the
crystal, the light generated will in general be ellipti-
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cally polarized. The state of polarisation of the second
and third harmonic waves, generated by circularly
polarized light, is given accordingly in tables II and
III, where “none” stands for no effect of harmonics
generation, “opp” denotes that the light generated is
circularly polarized in the sense opposite to that of
the incident wave, and “ellipt”, that the light
generated in the effect is polarized elliptically.

In the preceding considerations, in accordance with
egs. (9) and (10), we applied the electric-dipole
approximation in the absence of electron dispersion
and absorption, for reasons of simplicity. Generation
of optical harmonics in absorbing media was the
subject of a discussion by Bloembergen et al. [12].
Highly interesting results can be expected from
generation experiments in the presence of spatial
dispersion and magnetic gyration [14]. The problem
will be given consideration in a separate paper.
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