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Abstract. The spectral fine shape of hyper-Raman light scattering in liquids is calculated by the
; method of irreducible spherical tensors and the theory of rotational Brownian motion. The line
broadening due 1o rotational molecular motion in the liquid is expressed by way of relaxation times
; r;, and is found to depend on nonlinear molecular parameters 'l}_",". which are quadratic functions
" of the derivatives with respect to appropriate normal coordinates of the hyperpolarizability tensor
* clements hf;: Tables of :’B;, * arc adduced for all vibration symmetries of spherical-top and sym-
metric-top molecules. The tensor clements of scattered light intensity are calculated for lincarly
. and circularly polarized incident light. Investigation of hyper-Raman spectral line broadening is
! seen as a source of new data on the dynamics of molecules in the liquid state and on their nonlincar
optical properties. '

i ‘ 1. ‘Introduction

The advent of laser techniques permitted the extension of theory of Raman light scat-
“tering, as proposed by Placzek [1], to nonlincar scattering 2], referred to as hyper-
%Raman scattering [3, 4]. Let @ denote the circular vibration frequency of the laser
"beam, and @, a vibrational cigen-frequency of the molecule. Then light scattering at
: frequencices ot = 2w+ w, is the hyper-Raman effect of order 1; scattering at frequen-
teies ol =3w+w, is the hyper-Raman effect of order 2; and, quite gencrally,
'scattering at frequencics @\ =(n+1) w+w, is what can be termed an nth order
‘hyper-Raman effect. If the scattered light observed is not modulated by molecular
‘vibrations, we simply write w, =0 and refer to the phenomenon as a hyper-Rayleigh
‘effect of the nth order, since now w,” =(n+ 1) w. The present paper is restricted to the
{hyper-Raman cffect of order 1, to which we shall refer simply as hyper-Raman scatter- .
ing. :
' The phenomena of hyper-Raman and hyper-Rayleigh light scattering are sources of
. highly relevant information concerning the motions and mutual interactions of mole-
cules in liquids [2-5]. Studies of their linc shapes permit the determination of molec-
ular relaxation times of higher orders. The problem is accessible to a general descrip-
tion by angular momentum and irreducible spherical tensor methods [6-8] in con-
‘junction with the theory of rotational Brownian motions [9]. With respect to hyper-
Rayleigh light scattering, the problem was studied closely by Maker {7], whose calcu-
lations for symmetric-top molecules have recently been extended to the case of asym-
metric-top oncs [10].
Hyper-Raman speciroscopy extends our range of investigation by permitting us to
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analyze a far richer set of spectral lines; moreover, it provides the key to the study of
liquids composed of centro-symmetric molecules where first-order hyper-Rayleigh
scattering is"intrinsically absent [2]. The coherent part of hyper-Raman scattered
light related to scattering by statistically correlated molecules is, contrary to hyper-
Rayleigh scattering [11], vanishingly small owing to the circumstance that the phases
of normal vibrations of the individual molccules in the liquid are statistically inde-
pendent. As a result, hyper-Raman line shape studies will permit a more accurate
- description of the motion of the individual molecules of the liquid.

The hyper-Raman spectral line shape is predominantly defined by orientational
motions of the molecules and their internal vibrations. The contribution from molec-
ular vibrational motion cannot be separated from that of orientational motion by
first-order hyper-Raman spectral analysis alone. This is because it is impossible to
separate the isotropic component, which is independent of molecular orientational
motion and yields directly the intrinsic line shape. This contribution can be determined
from absorption studies in IR or Raman scattering covering many of the normal
vibrations active in one of these two effects. ¢

The present paper is aimed at the investigation of the hyper-Raman line shape for
~ the cases of incident linearly polarized light as we!l as incident circularly polarized

light. Derivatives of hyperpolarizability tensor elements accounting for all types of
vibrations of symmetric-top and spherical-top molecules are calculated and tabulated
in the form of molecular parameters |B{]* well-adapted for the direct analysis of
hyper-Raman light scattering by liquids. |

2. Theory of Hyper-Raman Line Shape Broadening in Liquids

In dealing with hyper-Raman light scattering, we shall proceed similarly to Placzek’s
[1] treatment of linear polarizability theory. The conditions for its applicability to
nonlinear Raman scattering are analyzed in Refs [2—4]. In the case of small vibrations
of the nuclei, the appropriate tensor bf,'.‘ of the clectric molecular hyperpolarizability
can be expanded in a Taylor series:

bl (1) = bu (1) + Y b5 (1) @, (1) ++--. n

The tensor by, (1) accounts for hyper-Rayleigh scattering, whereas the tensor:

by (1)
" (,)_(» LAY )
o qu "/ 4em0

describes light scattering at the hyper-Raman frequency w, = 2w + w,, where w, is an
cigen-frequency of the normal vibration q,.

We consider an isotropic liquid. composed of a large number N of generally aniso-
tropic molecules on which a linearly polarized light wave, of frequency w and electric
field E,(1)=E, e,cos wt, is incident (e is the unit vector of light polarisation). The
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hyper-Raman spectral line shape is given by the tensor /;;(dw). The latter is the Fou-
nier transform of the tensor /(1) of scattered light intensity:

L

1,,(Aw).,"n J' de 1, (1) exp (idwr). (2)

-
-

dw is a measure of the distance, in units of frequency from the centre w!!’ of the spec-

tral line. On neglecting coupling between the orientational motion of the, molecule and
its vibiations ¢,, the tensot /;,(7) can be written in the following form (2]:

(1) = s (o £ @) 13T T <8I 0) 57 (1)) x
x 4,7 (0) 47" () evele,el S ®

where { ) denotes statistical averaging, and /, is the mcndenl hght intensity; the indi-

“ces m, n label the molecules of the liquid.
On the assumption of mutually independent phases of the normal vibrations of any

two molecuies, we can write:
4-)(0) q(n'(‘» 0, m#n,

and Equation (2) becomes (omitting the molecular indices m, n):

L) =4.(1) [ dCy0) @ d (D eplidar). @

where : )
Ciy(1) = (b5, (0) by, (1)Dq eiele,e; . . (4a)

is the oricntational autocorrelation tensor, and
- NI§ R
A (T)= 4 Qw+w,) f:(T) . (4b)

with f, (T) a function of temperature similar to that for linear scattering [1].

 From Equation (4), the hyper-Raman line shape depends on the orientational as
well as the vibrational motions of the molecules. It is thus essential to resolve these
two contributions. The vibrational autocorrelation functions {q,(0) 4. (¢)) arc acces-
sible to determination from absorption in IR or from Raman scattering, which yicld
the intrinsic line shape, defined by the function (5]):

ks

1(dw) = f 41 ¢4, (0) 42 (1)) exp (idwr). ®)

-x
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The preceding procedure is justified since, in general, some normal vibrations g, are
active in at least one of the two effects. Accordingly, we shall henceforth restrict our
discussion to the orientational autocorrelation matrix Cy;(r) which, from experi-
mental results, can be obtained in the following form:

. } d(dw) I, (4w) exp (- idwt)
Cy(n=_"*« . (6)

A (T) j' d(dw) 1, (dw) exp (- idwt)

On neglecting translational motion of the molecules, one can assume the tensor
clements bj;, (1) to be time-dependent only by way of mn.mons in molecular orien-

tation Q(1):
bin (1) = biy [Q(n].

The mean value of the time-dependent tensor product (b, (0) blu (1)) is given by
the expression: :

GO b=, [ [ 8O0 @200, O
n .

2(0) XN

In ® 2e
fdn=fdzfdpsinﬂfdy=8n*.
(1] o [1]

" the Euler angles a, f8, y being defined as in Reference 6, and (49, 1) denoting the
conditional singlet probability function, defining the probability of a change in molec- -

where

- ular orientation by the angle 4Q=Q(r)~Q2(0) in the interval of time 1.

The function £(49Q, 1) can be expanded in a powes series in Wigner functions
Dy (49) [6):

(401 = % ot .,(Amfm) | @)

The expansion cocmcicms (1), with l.\!! <J, are functions of the time; their shape
depends on the nature of the rotational motion of the molecules in'the liquid.

Applying the particularly simple model of Debye's rotational diffusion, the func-
tion [ (49, 1) can be found by solving the following equation [9]:

WACE)

dt

=Y Lips(an,1), 9

where the L,'s are components of the angular momentum operator L and the D,’s are
diagonal elements of the molecular rotational diffusion tensot (i=x, y, z). In the case
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of axially-symmetric molecules D, = D, # D,, ard the solution of Equation (9) is ob-
tained in the form:

a0 1 exp| - ! ‘ 10
N 81’!1 xp "{v . ( )
with the molecular relaxation time t3, equal to:

wy=[J(J+1)D, + MD,-D,)]". )

In the case of spherical molecules D, = D = D, = D, and the relaxation times are found
not to depend on the number M:

v =[J(J+1)D])". (12)

We now proceed to write out explicitly the autocorrelation matrix (4a) and its
Fourier transform determining the hyper-Raman spectral line shape, for selcclcd
evperimental geometries and states of incident light polarization.

Assume the incident beam to propagate in the direction of the Y-axis with electric
vector lincarly polarized along the Z-axis. For observation in the direction of the X-axis,
the polarized component /,(dw) and unpolarized component I,(Aw) of scattered
hight are described by the autocorrelation functions:

Cuer.r (1) = {bi22(0) 12z (1)q- Wy

In the case of right-circular polarization (e,,=— (i/\/ZF) (x+iy)) of the incident
light wave, at observation along the propagation direction of the latter, the co-rotating
( +) and contra-rotating ( —) scattered spectra are given by [8]:

Comon, =1 () =¢bio 1 (0) By (1)g. ‘ (14)

" To calculate the autocorrelation functions (13) and (14), the tensor clements b},
have to be expressed in the form of spherical tensors By, by means of the transforma-
tion matrices of References 7 and 8. ' '

A tensor b, if symmetric in all its indices, involves no invariant part of zeto-th
rank in its spherical representation.® Hence, no isotropic term independent of orienta-
tional molecular motion can be picked out in Equation (4). As a consequence of this,
contrary to the case of normal Raman scattering, observations of hyper-Raman scat--
tering do - not permit the determination of /7, (dw), the function describing the vibra-
tional contribution to line broadening. The assumption of time-independence, made
in Reference 5 with respect to the expression b, (0) b5, (¢), led to the conclusion that
it was possible to resolve an isotropic part in the spectrum of scattered hyper-Raman
radiation. Now from what has been said above, that assumption appears to be un-
justified.

* Which involves only parts of ranks 1 and 3 (7).
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TABLE 1
" Nonzero molecular parameters ;B:,:’ as quadratic functions of b,’,,
Notation :
a blu. [ hln, i hyyh
bbby, S bay, J= by
C"-‘bun £ b:w.
d = brry, he by,
Point Symmetry of The form of the non-zero parameters 8},
groups ~_A“Vlb‘ral‘10nﬁ o . o ‘ B , .
C, A 1B =3 (c +2e), 1B =i(c—3e),
B’ l = "(a + b’)
1 |B 2? —"(" +9)
1BL 12 = % [(4a + 30)* + (4b + 3j)’],
IB .I =5 ;[(ﬂ - 3")’ + (b 31)’]
. E — — e e e e
2 ]l} 2!:'===3(e +g%),
[BY 12 =% [(4a + 3m)F + (4b + 3j)1],.
in .l = dslla - 30)F + (b= 3))")
D,, Dy, Ay Ay, |B 3| =24’
Az As, By = 1 (e + 200 1B e (e Je)’
IB JI1 = -’bz
1 1B, = 3g . 1BL 1 = (da + 3h)
ll}. :lz =3 ,(a - 3ny
E,E, e o e
2 IB ,I’ =3¢, |By,'= ,3;(41, + 31)x
Il} ol = (b~ 31)2
Cs. A, |B° = 4 (c—‘c)’, 1B} |J - i(c+3e)’
'BJ 3'1 - ‘\ 2
A, IB’ le
1 |B o =32, |B "k -3‘6(4a +3h)?,
“}-ll = ¥ (a - 3”)
E P e o+ ot 1

2 |B 2P =3¢%, B .l’-u(4b+31)’
iaxﬂ "|ls’(b 3]):
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Tatie 1 ( Continued)
Pount S)mmﬂfY °f The form of the non-z¢ro parameters 8, °
groups vibration R
Ci.CuSs A ALB 18 |’ =} (c + 2.») |B = 3(c—3¢)?
B.B.A IB:P-3R +y)
1 11}.,. -”[(a +f+h)’ +(b+d+1) ]
B = s [(a+ f- 4’l)z+(b+d'—3j)].
IB: )l = [(a -3/ )z + (b 3y}
E. E.' E i -
2 |B, I|‘-==:1°[(a +f+h)’ +(b+d+1)]
“}:Il ’=’40[(“+f ‘“‘)2"'([)""[—31)]'
il ==.{[(a—3f)2 (b 3¢1)]
Cave Das Au Az- Az.- Bz }B |2 = 3 (t‘ + 22)2 IB |2 = % (c - 3¢')2
D“' D:‘ e s B A ST

B‘. Bz‘ Bz., Az ’ leIIZQJC

.Bz- BlvBI--Al IB:1|2=39

1 IB .I‘ .o(a+f+h)’
qul = g5 (a+ f = 4h)?,
,l =—(a 3Nt

E,E.E.E —— R -
2 IB |I2—‘°(b+d+j)z
IBL,1* =25 (b +d = 3j),
IB M=1(b- 3d)2
A A" A, B =g(c+2e)’ u;‘ ,»(c—3c)‘
B'A'v B- 'B _\Ix=2(a +bz)
! IB =35 [(4a + 3h)’ + (4b +31)’]
IE .|’=.g[(u—3h)’+(b-3/)1
E.E.E, - - R
2 IB =:o[(4a+3h)’+(4b+31)’]

lgn Bel(a =30 +(b-3)],

JUPR —
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Table | ( C ontinued)

Point Symmclry of ‘ Thc form of the non-zero parameters {B"l
groups ' vibration ~ -

- i b s e e o

1 |B 2|1"3(1’ +g)
E;,E' E,, - e
2 IB ,Iz—-3(e +g)

Do- Doh- Du.. A,, Az.. A~. A, lB (c + -e)’ lB | = { (c - 3@)2
Ceo SUB——— — e
B,, B,_. A,. B, |B sl =2a?

Bl'Blu’AZ' Bz 'B slz-2b:
1 |B g2 -36(4a+3h),

IBtII ;‘;(0—3/1)2
El' ElucE El s S
2 |B..17 '-116(4”'*'3!)

1B :Iz— .s(b 3})‘

1 |i} |—3g

EZ' Ehn E.- El o
2 |B 512 =36
Tu Th Av A- lB’ Iz = 392
F,F, | lB .l’=ro(a+f+h)’

1BLiI? = s (a + f = 4ah),
IB le ,(0-3[)2

2 IB ,|z==:~”,(b+d-+-‘l)2
1B = 35 (b +d - 4j),
IB W=l(b- 3!)2
3 IBUI =§(c+e+l)
B = s (20 + 3¢ + 30),
Iﬂle =3(e-i)

T, 0,0, Ay Ay Ay, |B’:2|2 - 3g°
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'm:eucu:md)
Pont S’mmm. ryof ~ " Theform of the non-zero parameters [BS°
goups i won 4
F,,F, F,, 1 IBL I = Js(a +2/),
IB’z ||’ = Js(a— 3f)2
IB 3|: = | (a -3/.)’
2 |B .|’-N(b+2d)’ )
1B = Qs (b= 3d)?,
1Bl = § (b= 34)
3 ll} 1? r==J’(c'«}-2e)z
|§o': = {(c— 3")z
Fl' FZ' FJ- 1 |Bi|l1“"."‘fz, IB lz f

2 lB’ =225, 1BLP =3

3 |B 3|2=3e

By taking the Fouricr transforms of the autocorrelation functions C,(t), we now
can obtain expressions for the hyper-Raman line broadening due only to orientational
molecular motion. For the \anous states of polarization of the incident light beam,
we thus obtain: ,

Cz(dw) = ‘}Zm i? yu(dw)ﬂleﬂ 1% g (dw),
Cy(dw) = ¢ Z IB.::I gy (dw) + 155 § IBMP 9:: (dw),

15
Cn(dw)-—stIB |=g.:.(Aw)+Ts—,§|§:.i'g:,<Aw>. ()
.(Aw)-+§m 0 (o).
where '
d,
g (dw)= 20

16) .
| + (Awr‘,)z ) ¢ ),
is a Lorentz function, ot'"hal'fwidlh cqualﬂ. to the reciprocal of the relaxation time
4. Cy and C, are functions analogous to oncs derived by Maker (7). ‘

Analytically, the shape of the molccular paramecters |By]? is determined by the
symmetry of the molecule as well as that of the normal vibration ¢,. Table I gives the
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parameters 18313 in explicit form for all vibration symmetries of symmetric-top and
spherical-top molecules as functions of derivatives bj,,. The index v, labelling the nor-
mal coordinate g, with respect to which the derivative is taken, is omitted, since the
latter can be easily and uniquely identified from the notations in Column 2. Our
calculations show that, for doubly degenerate normal vibrations, the values of the
parameters | B3 |? are always equal in spite of their different analytical form. For triply
degenerate vibrations, the values of the parimctcrs |B31? are mutually equal for two
of the coordinates whereas the value of |l} {? for the third coordinate is different.

3. Discussion and Conclusidns

From Table I and Equations (15), the hyper-Raman line broadening due to orienta-
tional molecular motion alone is in general a sum of several Lorentz functions (16) and
can be of a non-Lorentz shape. Of especial interest are those normal vibrations to:
which there corresponds only one nonzero parameter 1B{|%; the corresponding line
broadening depends on a single relaxation time t4, the numerical value of which can
be obtained directly by measuring the halfwidth (dw), ;.

As an example, we adduce the line shape functions (15) for all hyper-Raman active
vibrations of molecules having the properties of the symmetry group D,,. Since they
possess a centre of symmetry, all their electric hyperpolarizability tensor elements
bin (1) vanish and they can cause no hyper-Rayleigh light scattering. Hence, one has
to have recourse to hyper-Raman scattering studics in order to obtain information as
to their molecular third-order relaxation times t3,.

For \1brzmons B,,. B;.. E,, the spectral shape is defined by a single line shape l'unc-
tion, g3 (4w), and the following, simple relation holds:

C;(4w) = }Cy (dw) = 6C,, (dw) = {C. (Aw):-,,|B| g3 (dw). (17)
For vnbrallons E,,. we have the relations:

Cz(dw)"ilB'l g1 (dw) + 51 B} Qu(dw)
Cy(dw) = 1B g (dw) + 35 1B11” g7 (4w),

Cor (40) = 1B g1 (40) + w33 1B g (dw), (9
€.y (4w) = § 1B 4 (dw).

' For vibrations A,_, the relations are:*

T Cp(dw) = 1B gb(dw) + B2 03 (dw), -
Cv(‘jw)"ffm $? 90("“’)"’10!'301 go(dw)- (19)

Coi(dw) = | o| go (do) + 183 IBol 9o (A‘”)
C.,(dw) = §1Bj)? g5 (dw).

The preceding formulae show that it is feasible to determine the values of the molec-
ular relaxation times rl, and nonlinear molecular parameters |5]? from vibrational



SPECTRAL THIORY OF KY PER-RAMAN LINES IN LIUIDS 539

" hyper-Raman spectra. Spectra 1_,(4) related to the vibration E,, yield directly ¢
whereas those related to vibrations of the type A,, permit the determination of 1.
Hyper-Raman scattering makes possible the direct study of vibrations of the types
8,.. B;, and E,, and the determination oﬂl};i’; however, diflicultics arise with regard
1o 1}, unce these vibrations are not active cither in IR absorption or Raman scattering.

By hasing recourse to Table I, a similar analysis can be performed for other symme-
try groups of sy mmetric-top and spherical-top molecules. In the case of liquids com-
posed of asymmetric-top molecules the spectra will be more complicated; as is
the case for hyper-Rayleigh sc;mcnng [10}, they will be dependent on a larger number
“of relanation times 17.

In" our considerations we assumed the hyperpolarizability tensor bf[{ as real, and -
ssmmetncin all ity indices. This is a good approximation as long as the frequencies of
incsdent and scattered light are remoté from regions of clectron absorption and
dispervion. Analogous calculations on b, without the assumption of total sym-
meiry dead to results involving a larger number of molecular parameters [12].
Duvergences from total symmetry of b,’,‘.’ require, for their description, two more
sphietcal tensors, of degrees 1 and 2, respectively.

Since the coherent part of hyper-Raman scattering, related to scattering by mutu-
ally currelated molecules is (contrary to hyper-Rayleigh scattering) negligible, investi-
gation of the relaxation times td, by hyper-Raman scattering is seen to present partic-
ularly important advantages. The study of completely symmetric vibrations by the
method of hyper-Raman light scattering provides information on molecular dynamics
wurmilar to that gleaned from hyper-Rayleigh scattering. With respect to molecular
sibrations of different symmetry, hyper-Raman spectroscopy permits the determina-
tiun of further relaxation times, reaching deeper into the molecular dynamics of
Ligunds.

Maker's {7]) measurements of hyper-Rayleigh scattering spectra, as well as those of
Verdieck ef al. [13] and Peterson [14] of hyper-Raman scattering spectra, are examples
of the high degree of perfection achieved in the technique of nonlincar moleculat
spectroscopy. 1t thus appears that, at present, experimental techniques are fully avail-
able for hyper-Raman line shape studies - a method more potent than others for
obtaining novel information regarding the structure of individual molecules and their
hog_@ons in liquids. » -
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