Vol. A48 (1975) ACTA PHYSICA POLONICA No 2

SPECTRAL THEORY OF THIRD-HARMONIC LIGHT
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The spectral distribution of incoherent third-harmonic light scattering by liquids
is calculated taking into account rotational self-diffusion of the molecules. In the theoretical
analysis, the method of irreducible spherical tensors is applied. The spectral line broadening
about the frequency 3o due to self-diffusion is shown to be described by molecular relaxation
times Tyar, J = 2 and 4, |M| < J, and respective molecular parameters of third-harmonic
scattering Cyar. The Cyar are calculated as quadratic functions of Cartesian tensor elements
of third-order nonlinear polarizability c?f;c)w for all molecular symmetry groups. Spectral
studies of third-harmonic light scattering are seen as sources of new information on the tensor
elements cfj?c’, and higher relaxation times ty3 of molecules, and in particular on the relax-
ation times 74ps hitherto not studied by other methods. :

1. Introduction

The theoretical foundations of multi-harmonic light scattering were proposed by
Kielich [1], whereas the first experimental observations are due to Terhune and co-workers
[2]. The coming of laser technique made it possible to perform exact studies of the spectral
line shape of Rayleigh light scattering [3] and thus to disclose the rotational motion. of
molecules in liquids [4]. The spectral shape of second-harmonic light scattering by liquids
was investigated by Maker [5], who showed rotational diffusion to cause a broadening
of the spectral line. Half-linewidth measurements of Rayleigh scattering yield information
regarding molecular relaxation times related with a spherical tensor of rank 2, and second-
-harmonic scattering studies — regarding relaxation times related with ones of ranks 1
and 3. ‘

" The theory of third-harmonic light scattering by gases and liquids was proposed by
Kielich and Kozierowski [6], who calculated the intensities, depolarisation ratios and
angular dependences of the scattered light. The influence of rotational molecular motion
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on the spectrum of third-harmonic scattering by gases is discussed in Ref. [7]. Free rota-
tion leads to a discrete spectrum, whereas rotational diffusion in viscous media leads to
a spectrum continuous about the harmonic frequency. ‘

This paper is concerned with quantitative calculations of the broadening of the spec-
trum of third-harmonic light scattering by liquids. We calculate the spectral distribution
of scattered light, for incident light both linearly and circularly polarized, on the assump-
tion of Debye’s model of rotational self-diffusion [8, 9]. Neither translational self-diffu-
sion nor statistical effects of radial and angular correlations are taken into account; their
contribution to the intensity of third-harmonic light scattering is discussed in Refs. [6].
Although the isotropic part of the tensor of second-order molecular electric hyperpolar-
izability (to which, in spherical representation, corresponds a tensor of zeroth rank C°)
significantly affects the intensity of scattered light, it contributes nothing to the half-
-width of the spectral line. Line broadening is dependent only on spherical tensors of
ranks 2 and 4, if the hyperpolarizability tensor ¢} is assumed to be totally symmetric
“in all its indices. The approximation is justified if the frequencies of the incident and scat-
tered waves do not fall within regions of electron dispersion and absorption. Measure-
ments of half-line-widths can be a source of data on molecular relaxation times, related with
the tensors of rank 2 studied in linear Rayleigh scattering [4] and, moreover, on relaxa-
tion times inherent in the tensors of rank 4, occurring in the theory of nonlinear light scat-
tering [10].

2. The spectral theory of light scattering in liquids

Consider an isotropic liquid, composed of a large number N of quite generally aniso-
tropic molecules, on which is incident a light beam with electric field E(t) = E. cos ot
vibrating at the frequency w. If the beam is intense enough, a component with the fre-
quency 3@ can appear in the scattered light. The third-harmonically scattered line-shape
I 3""(Acu) symmetrically distributed on both sides of the third- har;nomc frequency 3w,
can be expressed by the Fourier transform of the scattered light intensity tensor I, 3“’(t)
- as follows [1, 10]:

I“’(Aa)) 1n j I3“’(t) exp (idwt)dt, )

the incoherent scattered component being given as:
Isw(t) (3w)4<ctkma(t0)cﬂnp(t0 + t)*>IklImnIop' (2)

Above, the ¢}y are elements, in laboratory coordinates, of the tensor of rank 4 of the
nonlinear electric third-order polarizability of the molecule, and ¢ the light propagation
velocity in the liquid. Ikl is the intensity tensor of incident light: I; = ¢/87 E,E;*. We assume
the tensor elements ¢}y to depend on time not explicitly but only by way of changes in
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orientation of the molecule ©(z), as follows: ¢}(¢) = el [0 Descrlblng the mole-
cular orientation in terms of Euler angles, {a, f, y} = @ defined as in Ref. [11], the mean
value of any function of the molecular orientation F[Q(¢)] is given by the formula:

SFl(ODD = Q{t) FIQ(O]A(Q, HdQ(y), )

where dQ = sin f du df dy. The auto-correlation function of the quantity F[Q(¢)] is of
the form:

CFLQUTFL At + D]
= L] PO IFLOU, +015(@, DAt 1o+ 1) @

872 elto) awo+n

and is independent of the choice of initial moment of time #,. By f(€, ¢) we have denoted
the statistical distribution function, describing the probability that the molecule shall °
have the orientation Q at the moment of time #. The function (%, ¢) is to be found by con-
sidering a well-defined model of the molecular dynamics. To this aim, we shall make the
- assumption that the orientational motion of molecules in the liquid consists in statistical
changes of orientation by small angles AQ only. This, in fact, is the model of molecular
motion proposed by Debye for phenomena of dielectric relaxation in liquids [8]. We now
“expand the distribution function in a series in Wigner functions D},(Q) [11]:

Q9= % gum®DrulQte)]Diae[Qto+1)]*, &)
JKMM’

where, by giaAt) we have denoted dynamic coefficients, dependent on time only, which
we derive from the equation of Debye rotational diffusion [9]:

A2 1) == Z L.D,L;f(€, 1). ©

ot
In Eq. [6], the L; are components (in molecular coordinates, i = x, », z) of the angular
momentum operator L, and the D; are diagonal elements of the tensor of rotational dif-
fusion of the molecule. The solutlon of Eq. (6) for symmetric top molecules (D,=D,#D,)
is of the form:

2J+1
B = gz G ©xp {~[J0+ DD+ MYD,~D)]1; ©

for spherical top molecules (D, = D, = D, = D), it reduces to:

) 2J + 1
(D) =

©)

where 0y, is Kronecker’s delta.
When we proceed to calculate the auto-correlation function, it is convenient to re-
present the tensor ¢jjp(?) in terms of spherical tensors CJ,(¢). For a Cartesian tensor of
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rank 4 symmetric in all its indices, the required transformation is:
l]kl = Z aljkl : (9)

This is a unitary transformation; its coefficients a,,k, are calculated in Ref. [7]. Here,
M denotes the M-th element of the spherical tensor of rank J. If the incident light beam
propagates in the direction of the Y-axis and is linearly polarized with vibrations along
the Z-axis, and assuming that observation is performed in the direction of the X-axis,
then the two components: the polarized component I3®(4w), and the depolarized one
I3°(Aw), are described by the auto-correlation functions {c39,4(f0) c3725(to+1)*> and
{c32,,(t0) €32,,(to+1)*>, respectively. In this particular case, we have:
C%}zz = _4’1:— Cg : C = CO’

NG G

CYgaz = \/- (C4+C4 D= 2 ://14 (CI+CLy). (10)
If the incident light wave is right-circularly polarized, the spectrum of scattered light

polarized in the same sense as the incident wave 13%(4w) is described by the auto-correla-
" tion function <¢3®,_;_1(fo) €} 111 (to+1)*), whereas for scattered light circularly polar-
ized in the opposite sense 729(4w)it is described by the auto-correlation function G-
(to) ¢ _1_1-1 (to+1)*>. Here, the tenso relements of nonlinear second-order molecular
polarizability are calculated with respect to a circular-cylindrical system of reference.
They can be expressed in the form of spherical tensors CJ, by having recourse to the trans-
formation matrix given in Ref. [7]. The Cartesian tensor elements of relevance to us are
given by the following formulas:

cSw v — ____il_: \/__
1-1-1-1 % 5 \/7 \/
The sbh’erical tensor elements Cj; in laboratory coordinates are related with the elements

CJ, in molecular coordinates (the mutual orientation of the two systems of reference being
given by the Euler angles Q) by:

3 Moo= Ct, (11

Cl = 3. Dl (@Cr- | (12y

With regard to Egs. (2); (5) and (10) and to the orthogonality property of Wigner func-
tions [11]:

1 1
@ le{cM(Q)D KM (Q)*dQ = 57‘—1 5JJ 5KK 5MM ) (13)

we obtain the following formulas for the spectral distribution of third-harmonic light
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scattering: _
1
ISSY,Z(AQ)) =4 z m lar{éuzzIZCJMGJM(Aw),
‘ M
1
13(——0“,—1(40’) =A Z 27 +1 [ai¥1-1—1|2CJMGJM(Aw)~ (14)
- M

Above,

o N
Cop = |CLI? and A= l—éfg Gw)*P.
[

The functions G,p(4w) defining the line-shape are of the form:

Giy(dw) = 215 [1+(do 750)*]7"; (15)
their halfwidths (4w),,, are related with the relaxation times 1,,, as follows:
(Aw)yj2 = (tpp) ™" = J(J +1)D,+M?*(D,~D,). : (16)

In the case of the spherical top (D, = D, = D, = D) the line-shape is given by the func-
tion: /
Gy(dw) = 21,[1+(dw 7,)*] | (17)
and the half-width is: :
JJ+1)

o) = (@)™ = JU+DD = 22, (18)
D

where t;, = 7, is the Debye relaxation time.

From Eqgs. (14) and (15), the spectrum is found to be a superposition of lines of the
Lorentz type corresponding to the values J = 2 and J = 4, (—=J < M < J). The com-
ponent with J = 0, corresponding to the isotropic part of third-harmonic scattering [5],
contributes nothing to the line-width. Thus the linewidth depends on the anisotropic part
of light scattering only, likewise to usual Rayleigh scattering [3, 4]. Investigation of the
spectral distribution of third-harmonic light scattering can provide information regarding
the relaxation times 7,,, identical with the relaxation times of Rayleigh scattering; more-
over, such investigations can yield data on the hitherto unstudied relaxation times 7,,,
of rank 4. The assumption of Debye’s model involves for them the interrelationship ex-
pressed by Egs. (16) and (17); the experimental confirmation of the latter will provide
a criterion of the correctness of the model assumed.

3. Spectral distributions of third-harmonic light scattering for some symmetry groups '

We shall now give formulas for the spectral broadening of third-harmonic light *
scattering for some molecular symmetry groupskon the basis of the preceding theory.
In Table I, we give the molecular parameters C,,, as quadratic functions of Cartesian tensor
elements ¢}, of the nonlinear third-order molecular electric polarizability.



TABLE 1

Molecular parameters Cyy = IC’IJWF, as functions of Cartesian elements of the tensor c%‘,?,, for all
' molecular symmetry groups. The relation Cjp = Cy,—p holds generally

Symmetry groups

Nonzero parameters Cypr

K, Ki, Y, Y,

T, T, Td9 0, Oy

Cs, Csn, Cohs D,
Cevs D3ns Den
Coos Coovs Ceoh
Deois Css Csp

D4: C41h DZd) D4h

D,, Ca, Dy

C4’ S49 C4h

Cay, D3, D, C5,Cs

CZ: CS) C2h

I

25(c3% )2 .
5 1¢.30 _q,30 \2

i4 Cao = r (cxx:m 3cxxyy)

9 (30 30 y2

T (Cozza™ 2c:¢xyy)

8 3w 30 _ga30 2
35 (Cxxxx+czzzz 6czxzz

= & 4cde, —3c32-3c32 )2

TXITX zzzz TXZZ
1 30 3w 3w \2
45 (SCxxm +3 czzzz+ 12 Cornez

— 130 _3.30 2
= ;¢ 3¢

xxTT zTYY

A5 B3 +4c30,4+3c30 —24c32 )2

TTTH 2222 zxyy yyzz

— 4 (30 __ 3o 30 __ .30 y2
= g5 (¢ +¢ [4

TETT 2nae zxYY yyz

%—(chw +c3w+zc3w _|_4c3m 2

axwx | Vzzez TTYY zxer

T1€ ( 2;;9:'1' c:;)yy‘ 662211/ :

'21_8 ("Z;)yy_ C:::;:w—'" 60:;)%" 6"'3;;: *

Ao 1332, + 38 V+acde el ~ 12l g )P
L (= o Comt Copnd)”

(320 438, ~ 2502030, —eln — )’
1(32 —c30 +c304-2¢30 230+ 230 )
113, ~3e30 )P Heam,))

e (3¢32,,+4c30 338 —24c30 )7

rXTT 2222 TTYY yyzz
4 (230 _ 30 30 _ 302
7 (cxa;zx czz:z+ c:ta:yy cyy

%_(2.6319 +c3m+zc3w -}-46‘3“’ )2

xrXTX p2474 XYY 2TRT

- 2635,
_3785 (c:z:x - cgztzz— 602;::7. ?
a5 @cr,—3eam—cin)’
'4—-1'5— (8022;:3:_ 3"3;:{" ]203:;2 ?

= .1 (p30 30 __ga30 2
= g (cii.te 6¢,

— L (30 30 _gs30 3w
= 2 (cmete 2e50.+2¢

TEXE yuyy zZYY
1 30 _ .30 30 _ga30 32 3w 2
28 [(C yyy cxzwz+6czxzz 6cyy +144(ca:yzz) ]
1 {3 3w 3o 30 30 _ 3o 30 Y12
"7—6(‘2\&03:::1::_}- cuyyy) + 4szzz+ 3 ca:zyy 12(cxxzz+ cyyz) ] .

3 30 _ 30 _ 30 3w

14 [(cyyyy Cromn c:ta:zz+cvyzz TYYYy
_ 30 _ c3w 2 '

zxYy Caxz YYez

30 3w 3w 3w y2
+ sz'l' zczwyy+ zcxxzz+ 2cml

xxxy

g yyuy

130 3w
E] (cxwxz+ "1/1/1/11

2-—-4(03“’ +c3‘° +c:3$z)2]
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TABLE 1 (continued)

Symmetry groups Nonzero parameters Cym
. — _1 3w 30 _ga30 2. 30 _. .30 2
Ci, G 44 = 716 [(cxxzx+cyyyy GCxxyy) +16(cm.ty cyyyz) I
- 1 30 _ ,30 )2 30 _ .30 32
Caz = 2 [(Snyyz cxxzz) +(30xxyz cyyyz) ]
— 1 30 _ 30 30 _g£a30 32 3o 30 __ 302
Car = 28 [(nyyy czmxz+6cxzzz Gnyz‘) +4(cxyyy+cxmxy 6cxyzz) ]

Car = _1l4_ ['363&2-{—362;’%—403’;’5)2—}* S(Cgﬁuz_l_:;_c:z;a?;z_4cggz)2]
Cio = A5 1330, 432 )+4c3e+3e38, —12(c30,+ s )1

XXX YYYY TTYY TxeE
Ci =+ [(cf,;’w—cg;;;m—c;gﬁ cgg‘;;z)2+4(c2;’w+ 2o+ 02;‘;)2]
Co = % [(C:&z+cggz+ c:z/z)z+(Ciya;/z+c:3$z+cgaccl)yz)2]
Cao = 717 (cgzm—F cz;)yy— ZCSzZJFch;Zy - cz:)zz— cz;fzz)z
Coo = L(30,,+30 +c30+2630 +2e30 +2c50)°

Generally, the spectral distribution of third-harmonic light scattering is described by
the formulas: ’

E4w) = ~A— CGap(A4 & C
‘ g( ) = amGan(dw) + 2mGam(40),
M

63 140
M
. 84 44
I;*(dw) = 315 CymGan(dw) + 35 ComGou(dw),
M ¢ M

B%4w) = A CanGan(4 34 CyGan(4
y1(dw) = amGan(dw)+ 2mGau(4dw),
252 70
, M

M
30 A )
- I(4dw) = 9 CsnGan(dw). (19)
M
In the case of molecules having the symmetries T, T, Ty, O and 0,, they reduce

to the form:

5 A
I;*(dw) = éléw(Aw) =6 (Ca0+2C44)G4(40),

1 A
I¥i(dw) = 5! (do) = ry (C40+2C44)G4(40), (20)

showing that the spectral distribution depends on a single relaxation time 74, which is
related with the Debye time 7, as follows: 7, = 1074, and on the molecular parameter
C40 +2C44 = ‘g (ci;’xx—?aci;’y;, 2.

In that of molecules with a threefold axis having the symmetries Cj, Cs,, Csiy D3



250

and Dj,, the line broadening of third-harmonic light scattering:

o 34
I3%(4w) = [2C43G43(Am) + C40G4o(dw)] +

140 C10G,0(4w),

' 44
I%“’(Aa)) = [2C43G43(Aw)+ é4oG40(Aw)]+ 35 C10G,0(4w),
30 A 34
I'i(dw) = 352 [2C43G43(dw)+ CyoGyo(dw)] + 70 C10G,0(4w),

4 v
P(do) = 9 [2C43G43(4w)+ C40Gao(4w)] (21)

. depends on two relaxation times 7,, and 743 of rank 4 and on one relaxation time 7,,
of rank 2.

For molecules of the symmetries D,, Dy, C4, and D,,, the broadening of the spectral
line is given by Eqs. (21) where Cy3 G435 (Aw) has to be replaced by C,, G44 (4w); instead
of 743, the relaxation time 7,4 appears. The difference in line broadening for third-har-
monic scattering by these molecules and by molecules having a threefold symmetry axis
is due solely, by Eq. (16), to the anisotropy 4 = D,— D, of the rotational diffusion tensor.

Finally, for molecules having a symmetry axis higher than fourfold, the spectral
distributions are:

34
14 )— 6 CyoGao(dw)+ OczoGzo(Aw)

84 44
I3°(dw) = 315 C0Gso(dw)+ 35 C10G;o(4w),

A 34
11“1(4 ) = 553 CyoGio(dw)+ — 70 C10G20(4w),

A .
I 3—"J1(Aw) = 9 C40Gao(dw) (22)

and depend on one relaxation time 74 of rank 4.and one, 7,4, of rank 2.
On having recourse to the approximate relationship, valid for axial molecules in the
absence of electron dispersion and absorption:

3o 30 __ 3o
cxxxx+czzzz - 6cxxzz5 (23)

we see from Table I that the parameter C,, vanishes, and the spectral distribution depends
on a single relaxation time 7,4, related with the molecular parameter:

C20 = —(c.vsc:gcx czs:;z)z' (24)
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In the 'present case Egs. (21) reduce to the relation:
30 3 30 3w
I (A(l)) “_I (A )“‘ (A )"‘__ 2222 xxxx) GZO(Aw}s

*“(4w) = 0. (25)

Thus, the intensities of the components depend directly on the anisotropy ede 3o

of the molecule’s nonlinear polarizability.

It is worth noting that circularly polarized light, scattered third-harmonically, yields
in general two components, the one polarized in the opposite sense / 3%(4w) depending on
relaxation times 7., of rank 4 only, and neither of them depending on the isotropic part
CJ of the hyperpolarizability tensor.

Neither atomic liquids nor ones composed of icosahedral molecules can exhibit a line
broadening related with rotational diffusion of their molecules, since here only the iso-
tropic part C9 differs from zero.

4. Discussion and conclusions

The dependence on temperature of the above derived intensity formulas is deter-
mined essentially by the temperature-dependent behaviour of the diffusion constants
of Egs. (15-18). Were we to take into account molecular-statistical fluctuations [12, 13],
a coherent component I3“(4w), dependent on temperature, would appear.

Tt is moreover worth stressing that most of the nonlinear invariants listed in Table I
intervene also in the theory of the cooperative second-harmonic scattering effect, recently
observed by Lalanne [13]in his experiments. This is a fact of great impact, since the two
kinds of light scattering — the third-harmonic incoherent scattering considered in the
present paper, and the effect of cooperative second-harmonic (coherent) scattering — are
approximately of the same order of magnitude, pointing to the feasibility of observing
spectra of third-harmonic light scattering in appropriately chosen experimental condi-
tions of laser technique.

In the absence of electron dispersion and absorption, we have the direct relationship:
e i = = 6 /. This permits to make comparisons between the values of tensor elements

¢ )kl’ determined by the measurements of cooperative second-harmonic scattering now
performed [13], and the values of ¢y measured in third-harmonic scattering. On the
other hand, we now have at our disposal a method for determining cjj* = ¢’y from
measurements of optical Kerr effect, induced in molecular liquids by intense laser light
of frequency w; [10, 14]. We thus can adopt the following procedure: knowing the non-
linear polarizability tensor ‘elements ¢;;; from measurements of optical Kerr effect and
of cooperative second-harmonic light scattering, we can apply spectral observations of
third-harmonic scattering to gain information on the higher molecular relaxation times
T4y, inaccessible to study by other methods.

The authors wish to thank the Physics Committee of the Polish Academy of Sciences
for sponsoring the present investigation.
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