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Since nonlinear light scattering requires the use of an intense laser beam, optical
reorientation of the molecules affecting the intensity and depolarisation of the scattered light
can occur. The paper contains a detailed analysis of the variations in second harmonic light
scattering, calculated by classical statistics for weak molecular reorientation as well as for
complete optical alignment. The experimental study of these variations is for the first time
proposed as a method for direct determinations of the anisotropy of second-order nonlinear
polarizability of noncentrosymmetric molecules.

1. Introduction

Molecules in the electric field of a light wave of appropriately high intensity scatter
light with the fundamental frequency @ and multiple frequencies 2w, 3w, ... Elastic scat-
tering at the fundamental frequency, referred to as linear Rayleigh scattering, has of late
gained in importance owing to developments in laser technique [1]. It will be remembered
that an intense electric field acting on a substance composed of molecules gives rise, at
the least, to two processes: a Voigt process, consisting in nonlinear polarisation of the
atoms, or molecules, and a Langevin process, consisting in reorientation of anisotropic
molecules by the field vector [2]. Equivalent molecular processes take place in the electric
field of a light wave [3, 4] leading, among others, to variations in intensity of the scattered
light [5-8].

In this paper, we shall be dealing with variations in Second Harmonic Light Scatter-
ing (SHS) [6] due to optical reorientation of molecules [3, 4]. Previous measurements of
SHS by Maker and Terhune [9] and Kielich, Lalanne and Martin [10] failed to make
apparent a considerable effect of molecular reorientation, though such attempts have
been made in molecular liquids by having resort to strong ruby lasers [11].

It has nevertheless been shown that the collimated beam of a giant laser can cause an
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observable reorientation of the molecules [12] and even their complete ordering (align-
ment) i. e. optical saturation [13]. Saturation of optical alignment of macromolecules
in solution can lead to considerable variations in anisotropic Rayleigh scattering [14].
SHS can also be expected to undergo measurable changes by optical reorientation of
molecules and macromolecules [15].

Since our primary concern here will lie with the assessment of the order of magnitude
of the effect of optical molecular reorientation on SHS, the present theory will not cover
intermolecular correlations. This will largely simplify the results. We shall moreover
assume the molecular scattering substance as optically transparent and homogeneous.
In a first step, we shall perform calculations for weak optical reorientation leading to
results generally valid for molecules of arbitrary symmetry not having a centre of symmetry.
In a second step, we shall make calculations for arbitrarily strong optical reorientation,
however restricting ourselves to certain simpler and at the same time more important
molecular symmetries. In thé limit, the results comprise the case of complete molecular
alignment 1. e. optical saturation, for which the final formulae assume a simple form well
adapted to numerical evaluations.

2. Fundamentals of the theory

We consider a system consisting of N like anisotropic microsystems (molecules,
macromolecules) in a sphere of volume V. To the centre of V is attached the origin of
laboratory co-ordinates {X;}, i = x, y, z. To each microsystem is attached a molecular
co-ordinate system {X,}, « = 1, 2, 3, in a manner to make the 3-axis coincide with the
symmetry axis of the microsystem. Transitions from molecular to laboratory co-ordinates
are performed by way of the transformation matrix:

cos 9 cos @ cos y—sin @ sin g, —cos § cos @ sin y—sin ¢ cos ¥, sin 9 cos ¢
(Cip) = | cos 3 sin @ cos p+cos @ sin , —cos I sin ¢ sin y+cos @ cos , sin Isin ¢ |,
—sin 3 cos y , sin 9 sin p , cosd

)
where .9 @, y are Euler angles deﬁmng the orientation of the molecular system of co-
ordinates with respect to that of laboratory co-ordinates. '

" We assume for simplicity the positions and orientations of the molecules as mutually
uncorrelated. As a model fulfilling this condition, we can consider a rarefied gas or a
dilute solution of anisotropic molecules in a solvent the molecules of which are isotropic.

An intense beam of laser light, linearly polarized with electric vector E vibrating at
the frequency w:

E = Eye; cos ot, 2)

(¢ — unit vector in the polarisation direction; E, — vibration amplitude), incident on the
medium, causes two effects of interest here: (i) harmonic light scattering, and (if) optlcal
reorientation. :
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2.1. Nonlinear polarizability and SHS

Strong electric fields cause a distortion of the electron shell of the molecule inducing
in the latter an electric dipole moment m, which is a nonlinear function of the field intensity
(1) and can be expressed, with an accuracy sufficient for our aims, in the form of the
expansion [5, 8]:

m; = ajje;E, cos wt+3} (biye e, Es+ bie e E cos 200) + ..., 3)
where a;; is the tensor of linear polarizability and b, that of nonlinear polarizability.

We note that in addition to the first, linear term, varying in pace with the variations
of the electric field (2), there appear two nonlinear terms: a second term, constant in
time, and a third term vibrating with the frequency 2w. The last term is responsible for
the emergence of radiation with the doubled frequency in the spectrum of light scattered
by the microsystem [6, 8].

Observation of SHS is carried out through an apalyzer which transmits only radia-
tion with an electric vector vibrating along the direction of the unit vector 7. Hence, in the
wave zone beyond the analyzer, the intensity of SHS from unit volume is given by the
expression:

I2° = Ifj“’n,nj, )]

where 17 is the tensor of SHS intensity, of the following form (in Gauss units) [8]:

—
29— 1 N /d*m?® dzmjz-“’ 5)
T and v\ dit df? Io (

The symbol (..., stands for statistical averaging in the presence of the light beam of
intensity I;, and _..* denotes the average over one period of vibration. :
Eqs (5) and (3) yield [6]:
o _ @ T20)* 020
Iizj = 5 7—— 1(2)<bi2kmb12'ln>loekelemem (6)
where ¢ = N/V is the number density of molecules, and I, = I;; = Tr I;; the incident
light intensity, with:

Loc ' c

ym Eﬁeie ;= Ioee;. @)

2.2. Optical reorientation

A molecule in the electric field E@ possesses the potential energy U(R, E) in general
‘dependent on the orientation . In a sufficient approximation, U(£2, E®) can be expressed
in the form [3, 4]: '

UQ, E°) = —~iEy —4% aijE?E? —% bijkE;DE? Ey —‘2‘174‘ cijklE?E?El? Ef—.... ®
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Above, g is the permanent electric dipole of the molecule, and ¢;;,;, the fourth-rank tensor
of its nonlinear polarizability.

If the vibration period w™! of the electric field Eo strongly exceeds the relaxation time
¢ of the molecules i. e. if w=! > 7, a state of equilibrium sets in. On omitting intermolecular
interactions, this state of equilibrium conforms in a good approximation to a Boltzmann
distribution function with potential energy (8) averaged over the period of vibrations of
the molecule [14]:

exp (—pU))
Q1) = ——— ©
f exp (—BU )2
where B = 1/kT; dQ = sin 3d% dp dy is the element of body angle; and [3]:
P 2n 7 \? 2
UI = U(g, E ) = - —;‘ aijeiejlo_ ;“ cijk,e;ejekello—... . (10)

A microsystem in the intense electric field of a light wave tends to assume an orienta-
tion minimalizing its average potential energy (10). This process is obviously perturbated
by thermal motion of the molecules. As a result, a state with some degree of ordering is
established. This state has been predicted theoretically as the “optical Kerr effect” [3, 4]
and subsequently observed in experiment [12]. To Kielich [5, 14] is moreover due the
investigation of the influence of optical molecular ordering on Rayleigh light scattering.

3. SHS at weak optical reorientation of the microsystems

The chief problem in determining the intensity of SHS taking into account molecular
reorientation by laser light resides in statistical averaging with the distribution function (9).

On the assumption of relatively weak reorientation, U < kT, Eq. (9) can be satisfac-
torily expanded applying statistical perturbation calculus [15]:

@, Io) = fo+fitfot.... (11

fo is a distribution function specifying the molecular distribution in the absence of the
laser field of intensity I,, whereas

fi= _ﬂfO(UI—<UI>O) (12)

and
f2=1% ﬁzfo[U%“‘<U%>o"2(U1-<U1>o) <UI>0]’ (13)

are I,-dependent terms of the distribution function. The symbol {...), denotes the
isotropic average over all molecular orientations with the unperturbed distribution func-
tion fy.

On restricting ourselves to the first two terms of (11) and taking the first term of (10),
we obtain:

2n
fi= 7 Bfolo(aiieie;—ay), (12a)
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where we have written the trace of the tensor af} as:
ay = 3a,,

-and use has been made of the relationf ‘<eiej>o =1%6;;.
' With regard to Egs (6), (11) and (12a), Eq. (4) becomes:

¢ = Lo+ R+ L5+, (14)
where the expansion terms of the zero-th and first orders are of the form:

n0 = Szw<blkm ﬂn>0n n; ekele em (lsa)

I = Szw"—/ﬂoKbka Jln >o < om Jln)Oaw]” iNj€4€1€en. (15b)

In the preceding two expressions, we have introduced the notation:

20 _ 0 TR0,
S,2 = 5 C—s I 0 ) (16)
The isotropic averages of tensor products occurring in Eqs (15a) and (15b) can be
replaced by the isotropic averages of the respective products of unit vectors n and e by
applying the well known formula [16]:

minsee; ... e {2k +1][1=(n - ©)*16,04..,+

T 2Q2k+ )
2k R
+[3(n - e)* - 1]6441...0 (17)
where: : ~ '
Oijia = 0150+ 05l jy + 810y

Gijktmn = 01j0kimn + 0T jtmn + 6410 jimn + Oim@ juin+ Oin0 jrims €LC.
On assuming complete permutational symmetry of the tensors aj} and b7, we have:
= 8145 [(4bljebln — bisbia) + (1 - ©)*(2b5bl5 + 10b75672)], (182)

o 2n ﬁI 4 0520
12 = SZ 2 {[(Zbijk ijl = bizlk bjjl)akl+(btfj ;kk 2bi2jkbizjk)aa)]+

+(n - 9)2[(21’:11: ;,t+4b|2,?bikz+3b;ik jjl)akl (Zbiﬂc Uk+7bijj bida,1}- (18b)

‘I,f(;” is the SHS intensity in the absence of molecular reorientation. I2?is the contribution
'to 'SHS due to some degree of reorientation of the molecules.
We now introduce “‘relative variations in scattered light”, defined as follows [14, 17]:
IZa)__ 20

SR =-."_.I_ﬂ)_”°_, - (19)
n0
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Since we restrict our considerations here to the first approximation in the expansion (14),
we are justified in writing:
spip = ok (192)
I
Let us specify the observation set-up. Assume observation of SHS to be performed
perpendicularly to the propagation direction of incident light. The plane defined by these
two directions will be termed the plane of observation. The scattered intensity will be
denoted by ¥ or H according to whether the vector n is vertical (V) or horizontal (H)
to the plane of observation. Lower indices v and h will denote, respectively, that the in-
cident light wave is polarized: perpendicularly, or parallel, to the plane of observation.
The expressions (182) and (18b) derived by us above are quite general. However,
with regard to the high complexity of such generally valid results, we prefer to perform
our further calculations for molecules of the higher symmetries only. We consider only
molecules for which the tensor a;; has two mutually independent elements: a7, =
= a3, # a3, and the tensor b,,,, at the most two independent elements. These conditions
are met, among others, by molecules belonging to the groups: D,y Dj,, D3, C;,, C,,
Cais Cs, Csys C6:Cous Coor Cooo- In all these cases, the tensor afj is of the form:

ag = aw[(l - I{a)‘sij + SKaCiBCJB]’ (20)
where:

1
a, = %47 +a3y), K, = 32 (a33—a?y).

3.1. Molecules having the synimetries Dj, Dy, and C,,
For D,, the tensor b} is of the form [6]:

bgi = bi?l(cilcjlckl - CilCJZCkZ - CiZleckZ - CIZCJZCkl)‘ (21)
For D, it is [6]):
biji = b%;)Z(Cilelckl - CiZleckl - CilCJZCkl - CilcjlckZ)' ) (22)

For the symmetry C,,, the tensor b,zf,: can be expressed as the sum:
b = b+ b (23)

On insertion of 1), (22) or (23) into Eqs (18a), (18b) and having resort to Eq. (19a),
we get:

114+ e)?
O = — - ——5 , 24
E =gy 24)
where
2nla%, —al
()= + —'3—3——*ilzo (25)

ckT
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is a dimensionless reorientation parameter [14]. The sign “+” refers to positive optical
anisotropy, a2, —a?; > 0, as is the case for prolate (rodlike) molecules. The sign “—”
refers to negative optical anisotropy, a3; —af; < 0, exhibited by oblate (disklike) ones.
Thus,

36V = SHIY = SViy* = SHuY = —§(£9). (26)
For these three types of symmetry, the relative variations in SHS intensity (in a first

approximation) have a sign opposite to the sign of the anisotropy of first-order polariz-
ability.

3.2. For the symmetry D,,, the hyperpolarizability tensor is of the form
{6, 8]:

btsz = b223(C;1Cj2Ck3+ Ci1 Cj3Ci2+ CiaCyy Gz + Ci2C 3Gy +
+Ci3C;1Cy2 + Ci3C5,Cyy)- (27

On insertion into (18a), (18b) and with regard to Eq. (19a), we obtain in a first approxima-
tion:
SI2P = 0. (28)

3.3. Molecules having the symmetries Cg4, C4,, Cs, Cs,, Cs, Cgys Coos Coopr
The hyperpolarizability tensor now is [6, 15]:

btzﬁc’ = $ b,[(1-K,) (6ijck3+5ikcj3+5jkci3)+51{ Ci5C;3Cis], (29)
with:
1 20 20 1 20 20
by = 5 (2b1T3+D333), Ky = 3. (b333—3b173)-
20
By Egs (29), (18a), (18b) and (19a), we have:
o 2 (=T+24K,+8K})+(n - ©)°(133+84K,+8K})
6131 - b : Y 2 > > (iq)’ (30)
15 (T+8KY)+4(n - e)*(14+ K})
whence
4 63+54K,+8K?
VR =— — 2 P4y, 30
T A Twwy I G (302)
and
2 —7+424K,+8K?
SHP = 8VEe = 6Hp = = 2R (), (30b)

15 7+8K7
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The slope of the straight lines (30a) and (30b) is defined by the value and sign of the
anisotropy of hyperpolarizability K}, and the sign of the reorientation parameter ¢ (Figs la
and 1b).

For positive g, the steepness of § V2" attalns amaximum amountingtog~16V32 . = 0.488
for K, = 1.995 and a minimum of g~16¥ 2%, = —0.0434 for K, = —2.712; the slope of

OV [+
10

N

Fig. la. Slope of 6V,ff’ vs the anisotropy of hyperpolarizability K} (Eq. (30a)): 1 — for (-+¢); 2 — for
(—q), and graph of the asymptote of 6V * (+00) vs Ky (Eq. (46a)) (dashed line) for molecules having the
point group symmetries Cs, Cap, Cs, Csy, Cs, Cop, Coos Coop

O

St

¢

Fig. 1b. Slope of 6 H?® vs the anisotropy of hyperpolarizability K3 (Eq. (30b)): I — for (+¢); 2— for
(—9), and graph of the asymptote of d H*(— o) vs K} (Eq. (47b)) for molecules having the point group
symmetry Cq4, Cayp, Cs, Csys Cs, Copr Coos Coor

SHY attams a maximum of g~! §H2%,,. = 0.2520 for K, = 1.686, and a minimum equall-
ing ¢! SHX = —0.2520 at K, = —0.513. For negative values of the reorientation
parameter g the slope values assume opposite signs; thus, for those values of K, for which
they attained their maximal values, they now are minima, and vice versa.

Moreover, 6V* =0 for g # 0 at K, = —5.25 and K, = —1.5 whereas 6HZ’ = 0
for g # 0 at K, = —3.27 and K, = 0.27.

Numerical values of K, for some linear molecules are given in Table I.
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TABLE 1

Numerical values of the hyperpolarizability* and hyperpolarizability anisotropy elements for linear
molecules (Coor)

Molecule bsas bi1s = bazs b= %‘(an:ﬁ‘ K = b333—3b11a
+b333) b 3b

Co 0.0731 —0.0635 —0.0180 —4.8905

NO 0.0831 -0.0120 0.0197 2.0152

LiF 0.1980 0.262 0.2407 -0.8144

FCCH -0.199 0.157 0.0383 —5.8261

HF —0.0865 0.0193 —0.0160 3.0146

BF —0.0624 —0.2930 ~0.2161 —1.2594

* The absolute values of bss3 and by,3 are taken from Hush and Williams [20], who give them in
Si umits C*m3J-2 x 10~5°. Multiplication by 2.6944 x 10*° converts them to units of the Gauss system.
We have refrained from doing so as we were interested only in determining the numerical variability interval
of the dimensionless parameter K3 of hyperpolarizability anisotropy.

1t is worth noting that, if K} is defined as in Eq. (20), its value is not subject to restriction by any condi-
tion sirice b11s and bssa can be positive as well as negative, whereas the linear anisotropy K, is restricted
numerically to the interval —0.5 < K, < L.

4. Influence of strong molecular reorientation on SHS

Provided one refrains from considering intermolecular interactions, the problem of
nonlinear variations in SHS intensity due to strong optical reorientation of the micro-
systems can be solved strictly for the above considered point group symmetries by having
resort to the methods applied in the case of Rayleigh scattering [14].

In addition to our previous assumption concerning the observation set-up, we shall
assume that the incident light beam propagates in the direction of the y-axis of laboratory
co-ordinates, and shall choose the z-axis as parallel to the polarisation vector ¢ of the beam.

In those cases when the tensor ay; possesses two mutually independent elements,
a®, = a3, # a3, the time-averaged potential energy (10) can be written as follows:

2” @ [ 2
Up = U@, Ip)— “‘;‘Io(ass—au)czs, (€)))

where U(0,Io) = —2nfc afy I, is the orientation-independent part of U;. Besides, in
Eq. (31), we have invoked the initially made assumptions concerning the choice of labo-
ratory co-ordinates.

By Egs (31), (1) and (25), the distribution function (9) can be replaced by a function
of the following form [14]:

(@, Io) = £(8, Io) fo(9) fo(¥) (G2

where

exp (+¢ cos® 9)
f(g’ IO) = r .
§ exp (£ ¢ cos® 9) sin 949
(4]
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Above, fo(p) and fo(y) are distribution functions in the variables @ and y independent
of the intensity of laser light. Consequently, averaging over the angles ¢ and v is isotropic,
to be performed with the usual formulae [14]:

Qk-1n! £ 2%
2ol n sn . n —z or n =
sin® o = {cos” @Yo = (sin” p)y = <cos” )y = 2*
0 for n = 2k+1.
(33)

However, averaging over the angle $ is carried out with the distribution function (32) and
involves generalized Langevin functions of even order, defined as follows:

{ cos® 9 exp (% q cos? 9) sin 949
Ly(tq) = °

(34)

T

f exp (+q cos? 9) sin 349
(4]

08

Qa6

04

Qaz

i I
) 5 10 % 0 ~g2

Fig. 2. Graphs of the generalized Langevin functions (Eq. (34)) for positive and negative reorientation
parameter g

Methods for their calculation are due to Kielich [14]. For their shape, see Fig. 2. Langevin
functions can be applied as well to cases of weak reorientation (g < 1) in the form of the
following power series expansion [14]:

Ly(tq) = Y Ci(+9) (35)
k=0

where the expansion coefficients are given by:

k

1 -
== — - _ —m
* T kI2k+2n+1) Z mi(2m+1)

m=1
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From the preceding formulae, we obtain:

L¢(xq =";‘i3%‘1+1éggs ‘121--” (36)

For the point group symmetries considered above, we obtain the following results
describing the influence of strong reorientation of the molecules on the intensity of SHS.

4.1. Symmetries D,, D;, and Cs,

On insertion into Eq. (6) of the hyperpolarizability tensors (21) for Dj;, (22) for
D;,, and (23) for Cs,, and on averaging over the angles ¢ and y in accordance with
formula (33) and over 8 in accordance with (34), we obtain:

V2 = I = 8B}, $ [1-3L(2 )+ 3L+ )~ Le(£ )], (372)
H}® = Hi® = Iy = Vi = I3 = §%°B3, $ [1-Lo(1 @) - Li(2 @)+ Le(2 D)),

(37b)
10+ 16
ast
0 ST 0 5 0 ——g
-asy 4a
3b
3a
7-_a>\ 22

-10

Fig. 3. Relative variations of SHS light intensity vs the degree of reorientation. The graphs I and 2 are for
molecules having the symmetries Dy, D3, Cap (Eds (39a, b)). The graphs 3 and 4 are for molecules having

the symmetry D.4 (Eqs (42a, b)). The graphs I and 3 represent the components dVﬁm; the graphs 2 and 4

represent the components 6sz = 6V:w = JH; ® a and b denote the sign of the reorientation parameter,
“4* and “—”, respectively. (The function 4b is plotted in 10-fold magnification)
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with
ﬂ%w (17111)2 for D,
ﬁ%w (b222)2 for Dy,

Bro = (b17)*+(33,)>  for  Csy
On taking the first terms of the expansion (36), we find:

VvO = 5 Szwﬁga» ) v (383.)
H%” = H;?{)D = Vhow = 105 Szmﬁzm (38b)

Hence, insertion of (37a), (37b) and (38a), (38b) into (19) yields: C
OV} = F5[19-105Ly(£ )+ 105Ly(£ )~ 3SLe(£a)], (%)

SH;® = 8H;® = SV7® = 44 [41—105L,(4q)—105L,(+q)+105Le(+q)].  (39b)
The functions (39a) and (39b) are plotted in Fig. 3.
4.2. Symmetry Dy,

We have to insert into Eq. (6) the hyperpolarizability tensor (27) and to perform
the averaging procedure indicated by formulae (33) and (34). This yields:

Ve = Szw(blzs 3 [Ly(+q)—2L,(+q)+Le(+ )], (40a)
H}® = H}® = = §29(b135)" 1 [1~3Ly(+q)+11L,(+q)—9Ls(+ )] (40b)
In the absence of reorientation, we obtain:
Vo' = 1o S2(bi5s)%, (412)
Hig = Hig = Vio® = 3% S*(b13,)". (41b)
Hence
8V® = § [—8+105L,(+q)—210L,(+q) +105L(+ )], (42a)
and

SHZ2® = SHE® = §VF° = 5% [3—105L,(+q)+385L,(+q)—315Ls(£q)]. (42b)
The functions (42a) and (42b) are shown graphically in Fig. 3.
4.3. Symmetries C,, C4,, Cs, Csp, Cé; Cops Cos Covo
Insertion of (29) into (6) and averaging yields:
Vi® = §%°b3, 25 {9Ly(+ @)~ 6K,[3Ly(+ q)— SL(£ )]+

+K3[9L,(£¢)—30Ly(+q)+25Ls(+ 9)]}, (43a)
and

H® = H® = Vi® = §2°b3, <% {1—Ly(+q)—2K,[1-6Ly(+ )+
- +5Ly(@)]+ K7 [1-11L,(+q)+35La(+ 9) —25Le(+ )]} - (43b)
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=19
K= Eoo
o5t b -
ot Hy 0.5
6.0 | Kb=_4
50F o ; . : .
9 \ 5 5 20 —g
40r
30
. K=
_05 -
20}
Ky=-27
0f ry=-15
0 5w 50 —3 1ok
a - : b

Fig. 4a, b. Graph of 6V2® vs the reorientation parameter +q for various values of the anisotropy Kp (Eq.
(452)). Figs 4a—4c are for molecules of the symmetries Ca, Cap, Cs, Csps Css Céps Coos Coov

05
Ky=17
K= Yoo
=1
i
0 ’ 0 0 20—
Kb= -1
Kb= Leo
_ash K=10
-057 ‘ K27
=0
b =35
K= 19
-10 -10 =
c d

Fig. 4c. Graph of 6H3 © vs the reorientation parameter - g for various values of the anisotropy K»(Eq. (45b))
Fig. 4d. Graph of 6V,2,w vs the reorientation parameter — g for various values of the anisotropy Ky(Eq. (45a))
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15
My =~1
. Hp= -15 -
10
K=t
o5k /
Kb=0
Kb=‘70
o ! /
10— 20—~
Kb—-ec
=9
-as -
Kpy=05
k=1
~-10

Fig. 4. Graph of 6H;® vs the reorientation parameter — g for various values of the anisotropy K}, (Eq. (45b))

In the absence of reorientation, we have:
Voo? = 87°b3, 3% 1+ K7), (44a)
and
B3P = HiS = Vip = Sb3, 2 (143 KD, (44b)
We consequently have: ‘

—21463L(+ q)— Ky[126L,(+ q)—210L,(+ 9)] -
—K3[4—63L,(+q)+210Ly(+q)— 175L6(iq)]

5V2m —
i 21 +4K?

(45a)
and
SHZ® = 8H}® = V?° =
7—-21Ly(£q)— K,[42—252L,(+ q)+210L (£ q)] +
+K3[5-231L,(+q)+735L,(+q)— 525L6(+q)]
14+16K}

(45b)

The functions (45a) and (45b) are plotted in Figs 4a—4e for various values of the hyper-
polarizability anisotropy X.
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At optical saturation, ¢ = + oo, the variations in SHS intensity become:

V(4 0) = ‘%}%‘lﬁ , (46a)
and
SH2(+ ) = —1, (46b)
whereas at g = —oo they become:
V2(—©) = —1, (472)
and
SHY(— ) = T-42K,+ 5K} (47b)

14+16K72

It is found that in some cases the relative variations in SHS intensity tend to zero at
saturation; thus,

oV ——»0 for K,=-29 and K,=-06

g +w
and

HZ® —==20 for K,=017 and K, =823.

The way in which the asymptotes, to which V2“ and H2® = H}® = 6V} tend
at ¢ - +oo (Eqs (46a) and (47b)) depend on the value of the parameter K, is shown
in Figs 1a and 1b. The graphs of Figs ta and 1b show that in certain cases the sign of the
asymptote differs from that of the slope of 61> in the point ¢ = 0. This is apparent from
Figs 4a, 4c-4e as well.

5. Conclusions

The steadily progressing studies of nonlinear properties of molecules come up against
considerable experimental and theoretical difficulties even with regard to the numerical
determination of the tensor elements of second-order nonlinear polarizability b;,, [19, 20].
The difficulties increase considerably with regard to the determination of those of the
tensor ¢,z [21, 22). The method proposed here for the study of variations in SHS under
the effect of optical reorientation can be helpful, at least for their assessment. In principle,
this holds for molecules of the groups C,, Cy4,, Cs, Cs,s Co5 Ceus Coo and C,,. For mole-
cules of the groups Dj, Dj;, Dy4, and Cj,, the parameters of nonlinear polarizability
are not accessible to determination from variations in SHS. Nevertheless, in the latter 4
cases too, optical molecular reorientation can be decisively relevant e. g. in measure-
ments of the depolarisation ratio of SHS (as it obviously is with regard to the 8 previously
stated symmetries).
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The study of molecules having the symmetries C,, C,,, Cs, Cs,, Cg, Csy» Cy, and
Co» appear to be of especial interest since the determination of the sign of the parameter
K, is not possible in usual (i. e. reorientation- less) SHS. Now the study of the sign of
variations in SHS, even at weak reorientation, permits to determine the sign of K}, at
certain values of |K,| (Figs 1a and 1b) provided the sign of the reorientation parameter q
is known. Investigations of the behaviour of the SHS components up to complete optical
molecular alignment should yield still fuller data, permitting the assessment of the value
and sign of the hyperpolarizability anisotropy (Figs 4a—4c).

When comparing the shapes of Rayleigh and hyper-Rayleigh scattering versus the
degree of reorientation, we note in the first place that the variations SH2® = H2® = § V®
are functions of the anisotropy K, whereas in Rayleigh scattering they are mdependent
of the anisotropy in linear polarizability X, [14] and tend to —1 with ¢ - + oo More-
over, in SHS, at fixed sign of g, one of the components §¥V?® or 6H2® = 6H® = §V2°
always tends to —1 at saturation (complete alignment) for arbitrary K, while the other
component is a function of K}, and can attain the value —1 only in the following two
cases: 6V 2°(4+00) = 1 for K, = —1.5, or SH2*(—w) = —1 for K, = 1. The former case
occurs if b3%; = 0 at a3 > af,. The latter case occurs if 422, = 0 at a3; < af,. A com-
parison of the values of the asymptotes leads to the following conclusions:

SV2®(+oo) lies within the interval (~1, 9) and SH2?(—o0) within the interval (—1,
1.8), whereas [14] ¥V °(+0) belongs to the interval (0, 4) and 6V?(~o0) to the interval
(0, 0.875), whence we see that the maximal changes in scattered intensity are much larger
in SHS and can be negative also for the component 5V2°,

As to the feasibility of inducing optical reorientation, the matter has been dealt with
in previous papers [14, 15]. It is to be presumed that saturation (complete alignment)
is achievable in media involving macromolecules upwards of 100 A in size. By having
recourse to the focussed beam of a giant laser, it still may be possible [15] to attain the
threshold of strong reorientation (¢ = 1) in molecular media; the chief obstacle in the
way of complete saturation resides in the destructive effect of giant optical fields.

We consider that the experimental detection of the influence of optical reorientation
on SHS can be the most easily performed in measurements of variations in depolarisation
ratio, since here the quantity measured depends on the intensity of the incident beam only
by ‘way of the reorientation parameter [23].

REFERENCES

_[11 P. A. Fleury, J. P. Boon, Laser Light Scattering in Fluid Systems, in Advances in Chemical Physics,
J. Wiley, New York 1973, Vol. 24, Chapter 1.; W. M. Gelbart, ibid. 1974, Vol. 25, Chapter 1.
[2] M. Born, Optik, Dritte Auflage, Springer, Berlin 1972.
(31 A: D. Buckingham, Proc. Phys. Soc. B69, 344 (1956).
[41 A. Piekara, S. Kielich, J. Chem. Phys. 29, 1297 (1958); S. Kielich, A. Piekara, Acta Phys.
Pol. 18, 439 (1959).
[51 8. Kielich, Acta Phys. Pol. 23, 321 (1963); 25, 85 (1964).
[6] S. Kielich, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 12, 53 (1964); Acta Phys. Pol. 26 135
o (1964); 33, 89, 141 (1968).
[7] N. Bloembergen, Am. J. Phys. 35, 989 (1967).



383

[8] S. Kielich, J. Phys. (France) 28, 519 (1967); IEEE J. Quantum Electron. QE-4, T44 (1968).
{91 R. W. Terhune, P. D. Maker, C. M. Savage, Phys. Rev. Lett. 12, 507 (1964); P. D. Maker, Phys.
Rev. Al, 923 (1970).

[10] S. Kielich, J. R. Lalanne, F. B. Martin, Phys. Rev. Lett. 26, 1295 (1971); J. Raman Spectroscopy 1,
119 (1973).

[11]1 J. R. Lalanne, C. R. Hebd. Séances Acad. Sci. B265, 1181 (1967).

[12] G. Mayer, F. Gires, C. R. Hebd. Séances Acad. Sci. B258, 2039 (1964); M. Paillette, Ann. Phys.
(France) 4, 671 (1968); F. B. Martin, J. R. Lalanne, Phys. Rev. A4, 1275 (1971); Z. Blaszczak,
A. Dobek, A. Patkowski, 4cta Phys. Pol. Ad44, 151 (1973).

[13] R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, C. H. Townes, Phys. Rev. 166, 326 (1968).

[14] S. Kielich, J. Colloid and Interface Sci. 34, 288 (1970); Acta Phys. Pol. A37, 719 (1970).

[15] S. Kielich, Podstawy Optyki Nieliniowej, Czesé I, Wydawnictwo Uniwersytetu A. Mickiewicza,
Poznan 1973 (Foundations of Nonlinear Molecular Optics, Part 2, A. Mickiewicz University Press,
Poznat 1973).

[16] M. Kozierowski, Bull. Soc. Amis. Sci. Lett. (Poznan) B22, 5 (1970/71); S. Kielich, M. Kozie-
rowski, Opt. Commun. 4, 395 (1972).

[17] A.Scheludko,S. Stoylov, Kolloid. Z. Z. Polym. 199, 36(1964); S. Stoylov, Collection Czech. Chem.
Commun. 31, 2866, 3052 (1966).

{18] S. Kielich, in Dielectric and Related Molecular Processes, Ed. M. Davies, Chem. Soc. London 1972,
Vol. 1, Chapter 7.

[19] G. Hauchecorne, K. Kerhervé, G. Mayer, J. Phys. (France) 32, 47 (1971).

[20] N. S. Hush, M. L. Williams, Theor. Chim. Acta 25, 346 (1972).

[21] J. P. Hermann, D. Ricard, J. Ducuing, Appl. Phys. Lett. 23, 178 (1973).

[22] S. Kielich, J. R. Lalanne, F. B. Martin, IEEE J. Quantum Electron. QE-9, 601 (1973).

[23] L. Wotejko, Report presented at the V1 Polish Conference on Quantum Electronics and Non-
linear Optics (EKON-74) held at Poznah on April 22-24, 1974.



