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Synopsis

Methods of Racah algebra are applied to describe quantitatively second-harmonic light scat-
tering for arbitrary polarization of incident and scattered photons and arbitrary conditions of
observation. The general formula derived for the intensity tensor of second-harmonic scattering
is applied to calculate the angular dependence of depolarization ratios and reversal ratios. The
measurement of these quantities will help to determine numerically the tensor elements of second-
order nonlinear polarizability for non-centrosymmetric molecules in the ground state.

1. Introduction. Hitherto, in nonlinear light-scattering work?':2), experimenters
measured the vertical and horizontal components at observation perpendicular
to the incident beam. It would appear that there is an urgent need for nonlinear
scattering-intensity measurements vs. the angle of observation and for measure-
ments of the reversal ratio®) in addition to the depolarization ratio.

The angular dependence of elastic harmonic scattering has previously been
analyzed theoretically by simple classical methods* ). In this paper, it is our aim
to describe the problem by the method of Racah algebra®7). This permits us to
express advantageously the intensity tensor of scattered light in a form valid for
arbitrary states of polarization (e.g. linear, circular, elliptic) of the incident and
scattered photons and thus permits the calculation of measurable quantities, like
active cross sections, depolarization ratios, reversal ratios, and so forth. The me-
thods of Racah algebra, moreover, permit the quantitative description of in-
elastic higher-harmonic scattering and the study of its spectral fine structure (in
particular rotational)®~1°), For obvious reasons of simplicity, we shall consider
here only second-harmonic scattering by the individual non-centrosymmetric
molecules of an optically transparent gas.
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2. Theory. It is our aim to find the intensity of nonlinearly scattered light for
arbitrary angles of observation and diverse states of polarization of the incident
beam. Three systems of reference will be used: (i) the system of laboratory co-
ordinates XYZ, related to the incident beam in such a manner that the Z axis
points in the direction of its propagation; (ii) the system of laboratory coordi-
nates X¥Z, in which the Z axis points in the direction of observation of the scat-
tered light; and (iii) the molecular coordinate system xyz rigidly attached to the
scattering molecule.

The mutual orientation of these reference systems will be described in terms of
Euler angles, after ref. 6; that of the system X¥Z with respect to XYZ will be
given by angles 2 = «, §, y, and that of the molecular system xyz with respect to
XYZ by angles 2, = &, By V-

The properties of the elastically scattered light are inherent in the scattering
tensor?):

I;; = (N[4nc®) {iy(D) myft))q_ e, (1

where the symbol < > _. stands for the appropriate time and statistical-orienta-
tional averaging, m; is the ith component of the electric-dipole moment induced
in the molecule by a field of strength E(f) = E, cos wt and N is the number of
molecules of the sample. At high light intensity the induced moment is nonlinear
in the field strength and can be expanded in a series of harmonic contributions'?):

my#) = af}Eo; cos wt + 3biEo,Eqy cos 2t

+ Elz ciaj(l,:lonEOkEOI COS 360t + AR (2)

where aj) is the tensor of linear molecular polarizability at the fundamental vibra-
tion frequency w; b}j; is the tensor of nonlinear polarizability of the second order
at the second-harmonic frequency 2w; and c;’ﬁ, is the tensor of third-order non-
linear polarizability at the third-harmonic frequency 3ew.

Second-harmonic scattering is related to the second term of the expansion (2)
and depends on the third-rank tensor b7z with nonzero elements for molecules
without a centre of symmetry only when in the ground state'®). We shall not
consider third-harmonic scattering®), given by the tensor c?j}", with nonvanishing
elements in all molecular symmetries!?-13),

Our method of calculating the intensity (1) will rely on Racah algebra and we
have to express all tensorial quantities by spherical tensors. For the dipole-
moment vector m (m,, m,, m,) we have:

1 _ i . 1 _ i . . 1 .
1= = "'"'(mx + 1my), M—l = (mx - 1m.v)9 My = im;. (3)
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The inverse transformation is found easily; we write it as follows:

my =3 CI'My,. 4)

For the scattering tensor 7;;, calculated with respect to the system of reference
XYZ, we have:

N

Ii . =
! 4xc’

y c:"q"*@zﬁ%*) ; )
mn

Qe

this, upon transformation, becomes:

I; = (N/4nc?) < > Y CrCP* Mo My Dy (2) D:,,,(Q)*> , (6)
Qe t

mn m'n’

where the Dp,.,(£2) are Wigner functions.
In our study of second-harmonic scattering, we shall consider only that part of
the dipole moment (2):

m?m(t) = %bizjo;:onEOk COS 2wt,

which, expressed in spherical tensors, takes the form?):

ML Qw) =3 (_l)r+q< p 1 1)le.p)E,.' cos 2wt(-—/‘.'l'o<m ) @)

ipar —q —rm'

Above, BS"? is the spherical tensor of nonlinear polarizability and E the spheri-
cal tensor arising from the second-rank cartesian tensor E;; = Ey;Ey;.

On assuming that the nonlinear polarizability tensor is totally symmetric and
on denoting it by B}, we obtain the relation:

B{"” = A,B, ®)
where the 4. are coefficients of fractional parentage amounting to: AS = 3,

A3 = (5/9)*, A3 = 1. Averaging over all possible orientations of the molecules in
space is performed in accordance with the formula:

(BiB*>q, = [1/2p + 1)]8pudy Y 1712 ©®)

The tilde denotes that the quantity is defined in the molecular reference system
xyz. For brevity, we write the molecular parameter ) ,. |B2.|2 as Bf‘". Next, using
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the equality®):

DhuDin =Y @+ 0 T (P pi (10)
J mn —k mn—k

and carrying out the summation over m’, n’, g and time-averaging, we finally ob-
tain from eq. (6) for second-harmonic scattering:

4
I:ﬂw — cN 20 2 (__l)w+n+k+k'+j+p EzwlAIl,lz C;nC;"
128% c mr‘l;;w
pilt

><(2j+1)< 11y )( Lt >{“”}Di.k(Q)E,‘E;*. an

m—n—k)\r—w-%k 1¢tj

Above, parentheses and braces denote, respectively, 3j and 6j symbols®:7).

3. Depolarization ratio and reversal ratio. The general scattered-light intensity
formula (11) derived above will now be written out in explicit form for three
particular cases: 1) for that of incident light linearly polarized along X; 2) along Y;

and 3) for right-circularly polarized incident light.
For linearly polarized light, the scattering-tensor elements take the values:

20 X\ _ N (20 4
*\y) 189%0c\ ¢

x I2[77B2 + 42B2° + (28B3° + 3B3") (¢_o F 3¢-2)], (12a)

20 X TEN 26{) 4
IYY = —
Y 1890¢ \ ¢

x IQ[T1B;° + 42B3° + (28B3° + 3B3°) (¢+0 F 304:2)], (12b)

where I, = (c/8x) EZ is the incident-light intensity. The upper sign refers to the
experimental situation when light of intensity /, is polarized parallel to X. The
lower sign refers to polarization parallel to Y.

The angular distribution functions are of the form:

¢_o=1+ 3cos?a(cos?f — 1),
P10

¢z, = 1 (1 — cos® B) cos 2«

1 + 3sin2x(cos?f — 1), (13)

F 1 [(1 + cos? B) cos 2x cos 2y — 2 cos f sin 2« sin 2y).
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In particular, if « = y = 0, they simplify to:
Pro=¢42=1, ¢-0o=(3cos?’B —2), ¢_, = —cos? B, (14)
leading to the following values of the tensor elements 7 ,2,“’:

Iz3(X) = (=N/630c) (2w/c)*
x I¢ [TB3® + 12B3® + (56B1° + 6B3°) cos? ],

IZ(X) = IZ2(Y) = (=N/630c) Quw/c)* I (1B2® + 12B3°),
IF(Y) = (=N/70¢) Qujc)* IZ (1B1® + 2B3°). (15)

For incident right-circularly polarized light (+) of the intensity I, = (¢/8x) E 2,
we have:

4
122 (4) = =N <2a)

=) I2[14B** (1 + 2cos B + cos?
=0 c) 2 [14B2° ( B + cos? f)

+ 3B3° (13 F 14 cos B + 3 cos? B)l. (16)

Knowledge of the tensor elements of second-harmonic light scattering permits
the calculation of two experimentally highly significant parameters, namely the
depolarization ratio D*® and reversal ratio R*®, defined as follows®):

D2 — (X) D2® — Ixx(Y) R2® — 2 (+)

Y = = a7
(X) IYYm(Y) I++(+)

From egs. (15) it can be seen that D3® does not depend on the angle # and amounts
t0®):
P20 2o
po- L M : (18)
9 7Bi® + 2B3”

whereas D3” is the following function of 8:

7BI° + 12B3°
(ﬂ) B20 3 20 . (19)
® 4 12B3° + (56B3° + 6B3°) cos* B

The reversal ratio R*® in general always depends only on 8, and according to (16)
amounts to:

14B3° (1 — cos B)* + 3B3° (13 + 14 cos § + 3 cos? f)

= ~ . 20)
14B2° (1 + cos f)*> + 3B (13 — 14 cos B + 3 cos? f) (

R(6) =



196 Z.0ZGO AND S§. KIELICH

For B = 1=, one has the equality Dz (4n) = R**(4x) = 1. For § = 0, the
reversal ratio R*“(0) takes the value3-5):

20 45.§2w 20 20
R**(0) = m, whereas D3”(0) = DyY". (21)
3

From eqs. (18) and (19), we derive the following relation:

D2a) — sz(O) + 1

YR+ 9 @)

4. Applications and conclusions. According to eqs. (18)-(21), the measurement
of the depolarization ratio and reversal ratio of second-harmonic light scattering
permits us to determine the two molecular parameters 52 and B2® which, in the
case of symmetric scattering, are expressed as follows by the nonlinear polari-
zability tensor 525>

E]Z-m = %‘x%a)’ Egm = %ﬂgw, (23)

where the quantities'4)
0‘2(0 = zxﬂﬂb:;;a (24)
ﬂzm =z (5bapy «By T bapﬂb:;; > (25)
define, respectively, isotropic and anisotropic second-harmonic light scattering.
For linear molecules (point group C,,), we get by (24) and (25) the para-
meters:
= b3%5; + 2b1%s, : (24a)
Bro = b353 — 3b1Ts, (25a)
defining, respectively, isotropic and anisotropic nonlinear electric polarizability of
axially symmetric molecules.

It is of interest to consider separately the case of tetrahedral molecules (point
groups T and Ty), for which:

820 = 0, (24b)

Bro = 15(b155), (25b)
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so that the reversal ratio reduces to the form:

13 + 14 cosf + 3cos?f

RHZ:)S ) = )
(P 13 — 14 cosf + 3cos*

(26)

defining anisotropic light scattering only. In particular, if observation is per-
formed at the scattering angle § = 0°, eq. (26) yields the maximal value of the
reversal ratio, namely

R2540) = 15. (26a)

If anisotropic scattering is absent, B3° = 0, eq. (20) yields for isotropic second-
harmonic scattering:

20000 1-—cos132= B
RE (ﬁ)—(—l - ﬂ) el | (200)

This result coincides with the one for usual scattering at the fundamental fre-
quency w®),

Similarly, for purely isotropic scattering (B3° = 0) the depolarization ratios of
second-harmonic scattering (18) and (19) become:

D} =%, (18a)
DY’(B) = 1/(1 + 8 cos? B), (19a)

whereas for purely anisotropic scattering (B2° = 0):
D¥ =3, (18b)
DE(B) = 2/(2 + cos? f). (19b)

One is hence easily convinced that complete measurements of the angular
dependence of second-harmonic scattering will provide supplementary informa-
tion concerning the elements of the nonlinear polarizability tensor bi;’y of non-
centrosymmetric molecules.

In addition to the intensity scattered into an arbitrarily chosen direction of ob-
servation, the method based on angular-momentum theory and spherical tensors
discloses naturally the rotational structure of the spectrum®:1°). For linear as well
as symmetric top molecules, we can thus find the intensity of a rotational line.
This is related to a transition of the molecule from the state JX to the state J'K’
in the act of light scattering at frequency 2w + w,, by replacing the parameter
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B2® by the expression B,, which amounts to'3):

- J/ p-] 2 -
B =@l+1 B2, 27
= ( )(_K,q,K> 1B2) 1)

and on replacing N by Nk (the number of molecules in the initial state JK). The
parameters |BJ|?, which are functions of the cartesian elements of the nonlinear
polarizability tensor bff;}, are to be found in refs. 9 and 10.
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