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In terms of spherical tensors and Wigner 3-j coefficients, calculations are performed
of the intensities of rotational lines in hyper-Raman scattering spectra. Using available values
of hyperpolarizability tensor elements, numerical calculations are made of intensities related
with rotational transitions for the molecules NO, CO, HF and NH,.

The shape of the spectrum depends strongly on the sign and value of hyperpolarizability
tensor elements and thus can serve for checking the ab initio calculated values of the tensor
elements. The intensity distribution in the spectrum depends on molecular parameters |B%,|?
tabulated in the paper as functions of the Cartesian hyperpolarizability tensor elements for
linear and symmetric top molecules.

1. Introduction

Interaction between a molecule and light of high intensity leads to processes of many-
-photon light scattering [1]. Since the scattering molecules perform rotational and vibrational
motions, lines disposed in the neighbourhood of the successive harmonics emerge in the
scattered spectrum. The earliest observations of nonlinear light scattering were performed
by Terhune et al [2] on molecules without a centre of symmetry in conformity with theo-
retical predictions [3, 4]. The phenomenon in which the second-harmonic frequency of
scattered radiation is modulated by frequencies of eigen-vibrations of the scattering mole-
cule is currently referred to as vibrational hyper-Raman light scattering [5-7]. In the partic-
ular case when contributions from molecular motions are not apparent in the spectrum
and the scattered frequency is exactly the double of the incident frequency, the process
is termed hyper-Rayleigh scattering [5-8}. Rotational molecular motions give rise to a fine
structure of the spectral line in both these types of scattering usually observed in the form
of rotational broadening of the line [9]. The rotational fine structure of a hyper-Rayleigh
line is sometimes referred to as the rotational hyper-Raman spectrum. The first observations
of a spectrum of this type in compressed gaseous methane are due to Maker [10], who
moreover proposed a theory of the effect for spherical top molecules. The problem is
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solved for the case of linear and symmetric top molecules by the authors of Refs [11-14].

In this paper, by having recourse to spherical tensors and 3-j Wigner coefficients,
the intensities of rotational lines are calculated for axial molecules. Numerical calculations
for NO, CO, HF and NH; point to more advantageous observation conditions of rotational
hyper-Rayleigh structure for these molecules than for methane.

From the formulas derived by us for the intensities, the line strengths of the transitions
JK — J'K’ and J'K’ — JK are found to be equal to each other, as in linear scattering.
Also, the depolarization ratios for the lines corresponding to the two transitions are
mutually equal.

Relations between the molecular parameters |B|? introduced in this paper and the
hyperpolarizability tensor elements 5, in Cartesian co-ordinates for the various symme-
tries, as well as the analytic forms of the 3-j Wigner coefficients for numerical calculations
obtained from the formulas of Jucis [15], are given in Appendices A and B.

The problem has been recently discussed by similar methods for the case of linear
scattering by Altman and Strey [16] in the electric dipole approximation, and by Ying-Nan
Chiu [17] taking into consideration magnetic dipole and electric quadrupolar terms.

2. Theory

In a molecular system, acted on by the intense electric field E(f) = E° cos w? of a light
wave vibrating at the circular frequency , the electric moment induced is quite generally
a nonlinear function of E(¢). In this paper, we restrict our considerations to the nonlinear
dipole moment induced at doubled incident frequency 2w [3]:

mZ®(t) = } bIREJE, cos 20,

where b7j; is the tensor of second-order nonlinear molecular polarizablity often referred
to as the molecular hyperpolarizability tensor. This induced moment of order 2 defines
Rayleigh scattering at the frequency 2w, referred to as hyper-Rayleigh scattering.

At scattered light observation performed at right angles (90°) to the propagation
direction of the incident beam, the total scattered intensity can be divided into two com-
ponents: a vertical component V, and a horizontal one H, defined in relation to the plane
of observation. We restrict our calculations to V, and H, for the case of vertically polarized
incident light, since in the electric dipole approximation no additional information is
gained from horizontal polarization because the Krishnan relation H, = V,, = H; holds
(lower indices v, h describe the state of polarization of the incident wave).

Similarly as for usual Raman scattering [18, 19], the intensities of the spectral lines
of either component of scattered radiation with the frequencies 2w+ w,,, are given by
the formulas [11]:

pRetonn - (2w+w,, D Iogu( E ](bfv“j :lk , (1)

, 2n
H?(D"’Wnn — ? (2CO+CO,, ,.)412gIK Z l(bhvv m | > (lb)
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where w,,, is the frequency of the vibrational-rotational transition n — »’ of the molecule;
I, — the laser radiation intensity; g, x — the nuclear statistical weighting factor; N, — the
number of molecules in the initial state; d, — the degeneracy multiplicity for the initial
state; 7 and k label the degenerate states of the initial level # and flnal level #’, and sum-
mation extends over all possible combinations of states between the initial and final levels.

In order to express the scattered intensity in terms of molecular parameters, we
perform a transformation of the hyperpolarizability tensors bEe i;x» defined in laboratory
co-ordinates, to molecular co-ordinates according to the law:

blzf;: = Cio€ jﬂckygazq?y’ 2

where the transformation coefficients ¢;, have the meaning of cosines of the angles between
the laboratory axes “i” and molecular axes “a’.

By (2), the matrix elements occurring in Egs (1a) and (1b) can be written in the form
of products of two integrals:

(bf](;: = j Py baﬁywde j w;{k’ciacjﬁckvwkd’t' (3)

The first integral describes hyper-Rayleigh and vibrational hyper-Raman scattering,
whereas the second integral accounts for the rotational structure. The hyperpolarizability
tensor bal,y depends parametrically on the normal vibrational co-ordinates Q, of the
molecule. Since deviations of the nuclei from their equilibrium positions are small, each

of the tensor elements bm can be expanded in a series in those co-ordinates [3]:

2(0) = b2(0)+ Z(ab“"’) Q,+ Z Obaiy 0,0+
aﬂ')’ aﬂy 6Qn n aQn Qm 0 n m

n nm

In this paper, we restrict our considerations to the rotational structure of the hyper-
-Rayleigh line and thus shall take the first term, independent of the Q,, only.

The calculation of a matrix element between two rotational states from the product
of three directional cosines is simplified by having recourse to a spherical representation
of the hyperpolarizability tensor, since now the rotational wave functions for symmetric
top molecules as well as the transformation coefficients of spherical tensors are expressed
in terms of Wigner functions D} (x, B, y) [20]:

2J+1

WJKM(as ﬁs y) = i’k D;&Il\)&(‘x’ ﬂa '}’), (4)
Z D(l) (d, ﬁ’ ’Y)Efn’ , (5)

The Euler angles a, f, y define the mutual position of the molecular and laboratory co-
-ordinate systems.

The Cartesian elements of the hyperpolarizability tensor can be expressed as the
following linear combinations of spherical tensors:

kimplk
aﬁv = Z caﬂmvBm 4 (6)
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where I, m define, respectively, the rank and element of the spherical tensor, whereas the
index k is introduced by us to distinguish different tensors of the same rank occurring in

the sum (6). The coefficients c;g) are available in tabulated form in Maker’s paper [9].

The intensity of hyper-Raman scattering from the rotational transition JK — J'K’
is given by the line strength of the transition:

Sk=v,h(JK94J,K’) = M§' 1(bkvv)§lg(MM : (7)

With regard-to the transformation (6), the formula:

do Ji J2 J Ji J2 J
J‘JJ‘ 11() 22() 33()87T2 my my my) \my m, m; ’ ®

and the orthogonality conditions for Wigner 3-j coefficients:

(j1 J2 js) J1 J2 Js =5j3j'35r1_~_,in_'3 %)
my my, my)\m; m, mj 2js+1

mpmy

we obtain the following expressions for the line strengths of the 1nten51ty components (la)
and (1b), respectively:

1/ 0 1 J\ _ 2/ J 3 J\?
S(JK, J'K)=QJ+1) (2 +1)4= B+ = ) B2,
( )=( ) ( ){5<_K, g K> (B, 35<_K, r K IB;| (10a)

1/ J 1 J\ . 4 (J 3J
S,(JK, J'K) = QI+1) (2J' +1){— B4+ —
K K = eren e gl Tt e (0 Y ime].

(10b)

The values of the squared 3-j coefficients remain unaffected by an interchange of two
columns or a change in signs of the elements in the lower row. Since, moreover, one has
the relation |BL|* = [B.,|? for the molecular parameters, it results from Eqs (10) that
the strengths of the transitions S(JK, J'’K’) and S, (/'K’, JK) are equal to each other.

The vertical and horizontal scattered components (1) have the intensities:

2n Nk
yrotopm = x (2w+wR,R)4](2)gIK2J 1 S,(JK, J'K"), (11a)
B2 or = 27 ot og) e, « K S, (K, J'K 11b
. = pE W+ Wyg) OgIKZJ 1 n( ), (11b)

where

1 1 ’
orn = {EU, K)=E(', KD} (12)
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At linear scattering, the intensity of the line for the transition JK — J'K’ depends
(for any 4J and well-defined 4K) only on one element, BZ, of the molecule’s polarizability
tensor [16, 21]. In the present case, we deal with a dependence on two elements: E’; and B}.
This is due to the circumstance that the anisotropic part of two-photon scattering is
described by a spherical tensor of a single (the second) rank, whereas in three-photon
scattering we have tensors of two (the first and third) ranks.

" The molecular symmetry decides which of the parameters |B., {2 will differ from zero.
For molecules having a centre of symmetry all parameters vanish. For noncentrosym-
metric linear as well as symmetric top molecules, we give in Appendix A the relation
between |B.|?> and the hyperpolarizability tensor elements in a Cartesian co-ordinate
system the 3-axis of which is the symmetry axis of the molecule. The properties of the
Wigner coefficients occurring in Eqs (9) and (10) lead to the selection rules 4J = 0, +1,
+2, +3; however, if K =0 and K’ = 0 simultaneously, then only transitions with
AJ = +1, +3, are permitted [11]. The selection rules for the quantum numbers K depend
on which of the elements |B! |? are. non-zero for a given symmetry, because the relation
AK = m has to be fulfilled.

It is noteworthy that in three-photon scattering no isotropic component, independent
of molecular orientation in space, related with a spherical tensor of rank zero, occurs.
A Q-branch appears only if the selection rules 4J = 0, AK = 0 are permitted, in the
part described by spherical tensors of ranks 1 and 3.

Defining the depolarization ratio of the spectral line of scattered light as:

20+t own'n
v

Dot = | (13)

20+ 0n'y
Vv n n

and using Eq. (11), we obtain:

1(.1’ 1J>2 - 4(.!’ 3J>2~2

— , [By1"+ — ) B,

45\ -K' ¢ K 105\—-K' r K

1/ 1 IV L, 2(J 3JV o, (14
§<—K’ q K) Bl §§<—K’ r K) 1B

The depolarization ratio of each of the rotational lines of linear scattering is equal to 3/4 [21].
In our case, owing to the presence of two parameters, the ratio (14) is in general a function
of Jand K. For all lines of the branches O, S, N, T as well as for those with AK = +2, +3
in the branches P and R, the Wigner coefficients at the parameter |}§,§|2 vanish and their
depolarization ratio (14) amounts to 2/3. From the form of the non-vanishing parameters
IB! |2 listed in Appendix A, the spectrum of molecules having the symmetries Dj,, Dj
and C,, contain only lines with AK = +3 whereas, for the symmetries S,, Ty, T and D4 —
lines with AK = +2 only. Hence, for the above symmetries the depolarization ratio (14)
of each of the rotational lines, present in the spectrum, amounts to 2/3. Moreover, the
equality of transition strengths for JK — J'K’ and J'’K’ — JK leads to the conclusion that
Stokes and anti-Stokes lines, disposed symmetrically about the centre of the spectrum,
have the same depolarization ratio.

Nn2e+opp
Dv R’R



650

Summation of the intensities of all the permitted rotational lines yields an expression
for the total intensity of the hyper-Rayleigh line:

- 3 N
y2e = W(Zw)4I§N{7 E 1By +2 E |Bflz}- (15)
q r

HZ is obtained by multiplying the first term of the sum by 1/9 and the second term by 2/3.
These formulas are in agreement with the results of Kielich [3], derived by classical averaging
over all possible orientations of the molecule.

3. Numerical calculations for selected axially-symmetric molecules

In order that our numerical calculations shall not involve the intensity and frequency
of incident light, we introduce the following factor of rotational structure:

E(J, K)} 81k

= Q2J+1) @S
kT 352( @I+

J 1 IV i J 3N s
X {7<—K’ q K> [Bg|“ 42 K rK |B;{“%, » (16)
where Z is the rotational partition function. Since for linear molecules K = 0, the factor
F(J, J') assumes the form (with AB < kT):

7 2
FJ,J) = — h—Bexp[— %*'—1)] @I+1) (2J'+1){7 (" ! J) B2

F(J,K,J',K') = exp {—

35 kT kT 000/
AT AC N
+2<0 0 0) IBSV}, , )
whereas for C;, symmetry:
B*An® BJ(J+1)+(A-B)K*?
F(J, K, J, K) = 2% \/ rexp | - LIHDHA- DI
35(41° +41+1) N n(kT) kT

, J 1INV a0 J 3TV a5
x(2J+1) (2J +1){7<_K, 0 K) Bol"+2| _ g o k) |Bol

’ 2 ' 2
+2<_JK, g IJ<> IB31>+2 <_JK, _33 IJ<> u§3_3i2}, (18)
A and B denoting rotational constants of the molecules, and 7 — the value of the nuclear
spin of the molecule. With available values of hyperpolarizability tensor elements Ef,?; and
rotational constants, we calculated the functions F,(J, K, J’, K’} for the linear molecules
CO, NO, HF (C_,,) and the molecule NH; (C,;,). The numerical values assumed in our
calculations are given in Table 1.
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Since the spectra under consideration present several branches, we refrain from
adducing graphs of the factor F,(J, K, J', K') for each branch separately. Instead, we plot
the resultant spectral distribution F,(4vg), involving sums of factors F(J, K, J', K')

TABLE 1
Values of hyperpolarizability tensor elements and rotational constants assumed in the present calculations
: . No of the
Molecule b3e, bre, b3®, A [18] B [18] graph of
x 10%2cm’/esu| % 1032cm’/esu| x 1032cm®fesu cm! cm™! function
F V(A VR)
co —98.28 —15.16 [22] , 1.931 1
CO 19.73 —17.10 - [23] ’ 1.931 2
NO 2239 —-3.232[23] } 1.705 3
HF —-23.30 5.199 [23] 20.939 4
NH; —13.18 —2.646 —-1.323 [23] 6.30 9.94 5
NH; —2.690 —5.469 7.624 [24] 6.30 9.94 6

from branches with the same frequency displacement Av; as compared with the pure
hyper-Rayleigh line with frequency exactly equal to 2v.

A comparison of the graphs (1-6) shows that the shape of the spectrum is strongly
influenced by the sign and value of the hyperpolarizability tensor elements. If one of the
parameters |B.,|> predominates, as it is the case of CO from the data of O’Hare [22] and

Ir STOKES ANTI = STOKES
3 W
Qo ' ‘ 1
i I
L [ [
=50 ‘ o 50

FREQUENCY DISPLACEMENT, o

Fig. 1. Graph of F(4wR) plotted with O’Hare’s [22] values of hyperpolarizability tensor elements, for the
molecule CO

of NH, from those of Hush [23], the branch associated with that parameter is decisive
in defining the shape (Figs 1 and 5). If several parameters |B|? are of the same order of
magnitude, the shape of the spectrum becomes complicated (Figs 2, 3, 4, 6). The feasibility
of comparisons between the experimentally recorded and theoretically predicted shape
will permit rapid assessments of the correctness of quantum-mechanically calculated
hyperpolarizability tensor elements [22-24].
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Fig. 2. Graph of F(dvp) plotted with Hush’s [23] values of hyperpolarizability tensor elements, for the
molecule CO
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Fig. 3. Graph of F(dwg) plotted with Hush’s [23] values of hyperpolarizability tensor elements, for the
molecule NO
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Fig. 4. Graph of F(dvg) plotted with Hush’s [23] values of hyperpolarizability tensor elements, for the

molecule HF
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Fig. 5. Graph of F (dvg) plotted with Hush’s [23] values of hyperpolarizability tensor elements, for the
molecule NH;
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F]g 6 Graph of F(AvR) plotted with Moccia’s [24] values of hyperpolarizability tensor elements, for the
molecule NH;

Our evaluations led to scattered intensities for CO, NO, HF and NH;, that are larger
than for methane, which was studied by Maker [10]. Hence, those molecules present more
advantageous conditions for rotation-structural observations of hyper-Rayleigh spectra.

The authors wish to thak the Physics Committee of the III Department of the
Polish Academy of Sciences for sponsoring this mvestlgatlon

APPENDIX A

Non-zero parameters |B,,| fpr various molecular symmetries

Point groups’ . 1B,
D; and D,, B3> = |B2 312 = 20639, ‘
Ca | B = B2 = 2535+ (b32)°]
C,, |Eéiz =3 (b333+2b113
[Bg ?= (b333 113 ?

|1§§|2 = [B3 3| = 2(17111

C, |Bo* = % (b333+2b113)2
B3I = % (b355—3b1%y)°
|B3| = |B2,4? = 2[(b111)2+(b222)2]
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Point groups |BL?

C4 Coo and C4u Coov ‘Eélz =7 (b§?3+2b113)
|§g]2 (b333 3bf(f3)2

S B2 = |B2,1% = 3[(b3%)" +(b155)]
D, T, T, B2 = 1B, = 3(b7%,)°
APPENDIX B

Expressions for the squared 3-j Wigner coefficients
The symbol a® has the following meaning:

a® = a(@a—-1) ... (a=b+1).

J 1J
-KO0K (2J+2)(3”
J+11J ) 2[( +1)? -K?]
-K 0K J+3)*
J 3J 16K2(3J2+3J 5K—-1)
-KO0K J+4)7 ’
J 34J 20(J+K+3)(3)(J K)®
-K-33K (2T +4)7 ’
J 3 U\ _120(K+1) 2J+K+2)PJ-K)@
~-K-22K QI+47 ’
(.I+1 37 ) R[J+1)* =K [(+K)P+(T - K)<2> 3 -K )]2
-K 0K (2J+35)7
[ J+1 3\ _10(/-3K- 2)2(J—-K)(J+K+3)®
\-k-22K QI +57 o
J+1 3 J 15(J+K+4)(4)(J K)®
—-K-33K 2J+5)7 ’
J+23 J 120K2(J+K+2)<2>(J K+2)@®
~-K 0K 2J+6) ’
J+2 3 Y _ 42— —3KY’(J+K+4H®
-K-22K QJ+6)" ’
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J+2 3 J\  6(J-K)(J+K+35)®
-K-33K/ QJ+1)7 ’

<J+3 3 J)Z _ 200 +K+3)F(J-K+3)®

-K 0K QJ+7)7 ’
J+3 37\  6J-K+1)(J+K+5®
-K-22K/ J+7" ’
J+3 3 U\ (J+K+6)®
-K-33K/ @I+77
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