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By a semi-macroscopic method, general expressions are derived for the symmetric
and antisymmetric parts of the intensity tensor of second-harmonic elastic light scattering
by statistically inhomogeneous media. In the relevant expressions, a separation is achieved,
on the one hand, of the factors accounting for the state of polarisation (linear, circular,
elliptical) of the incident light wave and the experimental configuration of scattered light
observation and, on the other, of those factors which describe the molecular-statistical prop-
erties of the scattering medium. Formulas are derived for the depolarisation ratio and
reversal ratio of second-harmonic scattering, and their angular dependences and mutual
relationships are discussed. The theory is particularized for media consisting of molecules
without a centre of symmetry where, in regions of short-range order, angular correlations,
spatial redistribution of molecules and fluctuations of the electric ficlds of molecular multi-
poles intervene. The theoretical results are compared with recent measurements of second-
-harmonic scattering in molecular liquids.

1. Introduction

Second-harmonic (or hyper-Rayleigh) light scattering (SHLS) denotes a process
wherein two photons with the same frequency are incident upon a non-centrosymmetric
molecule, or assemblage of molecules, which then scatters elastically a third photon, of
doubled frequency 2w. The theory of this novel nonlinear scattering process was first
formulated by Kielich [1 } for molecular gases and then extended to dense media by Bersohn
et al. [2], Kielich [3,4] and Strizhevsky and Klimenko [5].

The earliest experimental observations of nonlinear light scattering were performed
by Terhune et al. [6] by laser technique in liquids composed of molecules without a centre
of symmetry. Weinberg [7] and Maker [8] studied respectively the temperature-depen-
dence of second-harmonic scattering in liquids and the spectral broadening of SHLS.
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Lalanne et al. [9] studied co-operative SHLS by regions of short-range order of centro-
symmetric non-centrally distributed molecules. Second-harmonic scattering by angular
fluctuations near the critical point was observed by Freund [10]. Of late, Dolino et al. [11]
investigated second-harmonic scattering of laser light by domains in ferroelectric crystals.

Elastic SHLS is a particular case of inelastic SHLS (hyper-Raman scattering), where
molecular own-frequeﬁcies w,, superimpose themselves on the doubled frequency 2w
leading to inelastic scattering at frequencies 2w+ w,. The quantum-mechanical theory
of inelastic three-photon scattering was developed independently by Li [12] and by
Kielich [1, 13]. Cyvin et al. [14] determined the vibrational selection rules for hyper-
-Raman scattering and showed that lines inactive in infra-red and usual Raman can become
active in hyper-Raman; this was confirmed by the spectral work of Verdieck et al. [15]
on gases with centrosymmetric and non-centrosymmetric molecules. Long and Stanton
[16], in the density matrix treatment, have given a discussion of the conditions for hyper-
-Raman intensity amplification by resonance processes.

Maker [17] suggested the feasibility of observing fine structure in three-photon
scattering due to rotational motions of spherical top molecules [18], and performed
spectral observations in methane, pressurized to 100 atmospheres. The study of hyper-
-Rayleigh rotational fine structure has recently been extended by Bancewicz ef al. [19] to
the case of symmetric top molecules (of symmetry C;,) nad linear molecules (symmetry
C..,), and by Ozgo and Kielich [20] to other molecules not having a centre of symmetry.

The preceding brief review shows that the investigation of hyper-Rayleigh and hyper-
-Raman scattering has developed into a new nonlinear molecular spectroscopy, which has
by now become a powerful method of investigating the finer details of the structure of
molecules [21,22] as well as the statistical inhomogeneities of scattering media [23-25]
and their correlations with the statistics of photons [26]. Obviously, it is also worth while
to study scattering processes involving more than three photons, especially in media
consisting of atoms [24, 27].

Existing hyper-Rayleigh and hyper-Raman intensity calculations take into account
only totally symmetric scattering. This is correct only with respect to gaseous media in
the absence of electronic dispersion and absorption. In the general case, asymmetric
and antisymmetric scattering, due essentially to the lack of total symmetricity of the
hyperpolarizability tensors, have also to be considered. In the absence of molecular corre-
lations, asymmetricity of the hyperpolarizability tensors is a result of their dependence
on the light vibration frequency [1, 28] and can moreover be due to the properties of the
molecules, if the latter are optically active [29]. In dense media, as we shall show in the
course of the present considerations, asymmetricity of hyperpolarizability tensors stems
from statistical inhomogeneities of scattering regions (e.g. molecular redistribution, effects
of molecular fields).

Asymmetric nonlinear light scattering is moreover obtained on taking into account,
besides frequency dispersion, also spatial dispersion as well as electric and magnetic
multipolar scattering processes [30]. The symmetricity or asymmetricity of the tensor
of scattered light intensity [13] depends, too, on the state of polarisation of the incident
light wave. Thus, circularly or elliptically polarized light always leads to antisymmetric
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light scattering [31, 32]. In the description of the state of polarisation of scattering processes
use can be made of Stokes parameters [33], as was done recently by Stanton [34] for
hyper-Raman and by Long [35] for stimulated Raman scattering.

In the present paper, we shall calculate the SHLS intensity tensor with regard to both
its symmetric and antisymmetric part. We deal with the tensor of second-order nonlinear
polarizability as, in general, non-symmetric. We shall discuss the effect, on the scattering
tensor, of the state of polarisation of the incident light wave (which can be unpolarized,
or polarized linearly, circularly and elliptically) as well as of the experimental configura-
tion at which the scattered light is observed. We shall moreover give with regard to SHLS
-an analysis of the role of molecular angular correlations, molecular redistribution, and
fluctuations of molecular fields.

2. The tensor of hyper-Rayleigh scattered iﬁtensity

The intensity of light (incident as well as scattered) is described by a tensor of rank 2
resulting from Poynting’s vector [33]:

cn ’ *
Ly = 87: KEE;>, ¢y
where E; is an electric field component of the electromagnetic wave, of propagation velocity ¢
and refractive index n. The symbol { ) stands for appropriate time-averaging or statis-
tical averaging. The tensor [;; is by definition Hermitian, [;; = IJ*,
We introduce the following symmetric and antisymmetric intensity tensors:

Ly = Igy = T+ 1y, @)
IiAj = I[ij] = %(Iij—lji)a (3)

where indices ij in round brackets, (if), denote total symmetricity whereas indices ij in
square brackets, [if], denote antisymmetricity.

We are concerned with hyper-Rayleigh scattering, at the doubled frequency 2w,
for which the intensity tensor in the electric dipole approximation is of the following

form [13, 36]:
I = P°(Bi(Bi*YEE[E,Ey, “

Jjin

where, for brevity, we have used the notation:

e (20\* (13, +2\? (n2+2\*
LZw — 2 - 2 (5)
128 \ ¢ 3 3
with refractive indices n, and n,, at the frequencies w and 2w, respectively.

The tensor Bizjﬁ‘,’ = Bij (—20, o, w) of rank 3 denotes at 2o the second-order non-
linear polarizability (i.e. the hyperpolarizability) of the scattering sample [4, 36]. The
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tensor Bjj; is not, in general, symmetric, and can be represented in the form [25]:
Biji = Bajo+Bujn+ § Bujw+ By + 5 Bujw—Bip), (6

where the totally symmetric and antisymmetric parts are, respectively:

By = & (BijitBjui+ Bij+ Bjuc+ By + Bij),

B[ijk] = 'tli_ (Bijk+Bjki+Bkij-Bjik—Bikj_Bkji)’
and the partially symmetric and antisymmetric parts are:

B(ij)k = % (Bijk+Bjik)’ B[ij]k = % (Bijk_Bjik)'
The tensor (6) can equivalently be written as follows [281]:

where the symmetric and antisymmetric tensors are:

Bisjk = 4 (Biju+ Bjii+ By,

Bl = 4 2By~ Bju—Bu):

In the tensor (6), the symmetric part consists of cyclical as well as anticyclical permuta-
tions of the indices i, j, k, whereas in the tensor (6a) only cyclical permutations occur.

When dealing with an isotropic medium, an averaging has to be performed in the
right hand term of Eq. (4) over all possible orientations of the electric fields with respect
to the axes of laboratory co-ordinates. To this aim, we carry out a transformation of the
tensor B;; from laboratory co-ordinates (Latin indices i/, k, [, ...) to a system of co-
-ordinates B,;, (Greek indices a, B, y, ...) rigidly attached to the scattering element:

B;jx = €i4CipCiyBagys )

where the transformation coefficients ¢, in the case of Cartesian co-ordinate systems,
have the meaning of cosines of the angles between the axes i, ... and the axes «, ... of the
two sets of co-ordinates.

In a first approximation, we can operate a separation of the unweighted averaging
with respect to external variables (i.e. the ¢;,) and the statistical averaging with respect
to internal variables (the molecular configuration of the scattering region).

Consequently, by (4) and (7), we write:

Iizjm = L2m<ciazcjﬁckyclbcmacnn>n<B:;;(B;§;)*>EkE;k EmE: . ®

The unweighted averaging of the products of directional cosines over all possible
orientations Q has been performed in invariant form by Kielich {25, 37]:

15
1
<ciacjﬂckycl(§cm£cm]>.0 =310 Z ng?v&znéijaklémm (9)

s=1

where in the right hand term we have 15 components, resulting from the permutation
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of the 6 indices i, /, ..., n; the tensors Xa,,yam are expressed in terms of appropriate combina-
tions of products 5«55v65w with d;j, 8,p, ... denoting Kronecker unit tensors.

From (9) and on resorting to Eqgs (2), (3) and (8), we obtain the following expressions
for the intensity tensors of symmetric and antisymmetric second-harmonic scattering:

IG5 = {0 AT BELBE + A3 BB EE]) +
3°(EE} + E;E))E,Ey; + A;°(E;E{ E,E; + E.EEE})}, (10)
IFS) = I?°A3°(E,E; — E;E})E,E;. (11)

Above, we have introduced the following quantities characterizing the molecular-
-statistical properties of the scattering medium:

A} = 515 <B:;;(Bﬂ6n)*> {70,5(0,50 0+ 0,405 — 20,,05,) +
+4Yp05e0— 3Z upysen >
A3° = 3iv (Baa(Bisn)*> {216,40,.05—~ 5 Yapyson+ 2Zagysen}
A3 = s <Bava Iirin)*> {280,50,:05, — 12 Yo py50n + 9Z py5en}>
AZ° = 715 (Ba(Bisn)*> {T84(8uyOpe+ 0,y —20458,0) + 4Y,pysen— 3Zapysen}s
A3 = 5 (BaiBas)*> {01600 py— 0uqOpe) + Sen0yOps—8as0) +
+ 85:(8450 51— OuyOy) + 01y(000ps — 8150 5:) (12)
using, for brevity, the following notations:
Yopysen = Oap(130uy+ 0yedsn + 03y050) + 05y(0ay0 s + 0060 ,) + 05860y + OO )
Z opyoen = O35(00s0 5yt OayOps) + 0,4(0,,055+ 8,505,) +
+05:(04,0 8y + 0,00) + 030050 e+ 8. 055)-

The quantities (12) are of a quite general nature. On certain assumptions regarding
the symmetricity of the hyperpolarizability tensor B,,,, they undergo a considerable simpli-
fication. On assuming the decomposition of B,;, in the form (6), the following totally
symmetric component can be extracted from the quantities (12):

sAfm = 1—3“? F%an
25437 = 543" = 555 (63B3,—203,),
s43” = 135 21B3°+T3,),
545" = 75 (9B3,—T3,), (13)

where we have introduced the following nonlinear parameters of an isotropic, and respec-
tively, anisotropic nature:

B;a) =9 <B(aﬁﬁ)(B(aw)) >a (14)
I3, =+ <5BL,\ (Bl ) — 3BLas(B2o,)*>. (15)
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Keeping in mind that the totally antisymmetric tensor By,s,, vanishes on contraction in
any pair of indices and that B, = — By, efc., one is readily convinced that the
purely antisymmetric part of the quantities (12) vanishes. There still remain the mixed
symmetric-antisymmetric components, which in general differ from zero. If in particular
we assume the tensor B,,, as symmetric in the pair of indices f, y, the non-symmetric
parts of the quantities (12) take the following form:

wsA3? = — 3 nsAT” = = 35 BBy — Bioy* + Bajy(Br— Bop)* +
+ 3(Bozﬂ[3 ﬂﬁa) (Bﬁ;*;)*%
nsAi® = — 3 nsA3® = S5 C2BL(BL,— Bia)* +3BLy(Br— B +
+2(Bozﬂﬂ ﬂﬁa) (Byzﬂ)*%
nsA3® = 15 (BBl — Bia)* — Biiy(Bo)* + By Bia)*). (16)

3. The polarisational properties of SHLS

Let us assume a set-up in which the incident laser light propagates along the z-axis
of laboratory co-ordinates xyz. The scattered light is observed in a distinct set of laboratory
co-ordinates x'y’z’. As the plane of observation, we chose the y'z’-plane. Let the y'z’-plane
coincide with the yz-plane, and let the z’-axis subtend the angle & with the z-axis. Thus,

9 is our scattering angle.
Generally, we can express the electric vector E of the incident beam as follows:

E = Ey(x sin p+y cos y e'), (17)

where v is the angle between E and the yz-plane, and A4 is the phase shift of the y-com-
ponent of the field.

Less general, but more convenient in our further considerations, is the following
form:

E = Ey(xsin p+iy cos y). (17a)

The sign + denotes that the y-component of the field is shifted in phase by 4 = +7/2
with respect to the x-component. The last formula still covers all possible states of polarisa-
tion of the incident wave.

Linear polarisation is obtained if y = 0 (horizontal to the observation plane) or
y = 72 (vertical). At y = /4 we have circular polarisation, right circular if the sign is +
and left circular if it is — for an observer viewing in the direction opposite to propaga-
tion. At intermediate values of the angle v the incident light beam is elliptically polarized
and the axes of the ellipse always coincide with x and y. At this polarisation description
of the incident light, the principal axes of the scattered intensity tensor will in all cases
have the same directions, thus permitting the univocal description of scattered light depo-
larisation.
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The unit vector n defining the polarisation of scattered light in co-ordinates x'y'z’
can in general be written in a form similar to (17):

n = x'sin gp+y’ cos ¢ . (18)

@ is the angle between n and the y'z"-plane. 6 is the phase shift of the y’-component of
the electric field of scattered light.

On transformation of the basis vectors x’, y’ to co-ordinates x, y, z the expression (18)
transforms to:

n = xsin ¢ +(y cos ¢ cos §—z cos ¢ sin 9) . (19)
By definition, the scattered intensity component with polarisation given by (19) is:
12 = I}’n}n;. (20)
With regard to (20), on insertion of (17a) and (19) into Egs (10) and (11) we get:
Ity = I?°E§{A3° + A3® cos® 29+ 242%(cos® y cos? @ cos® 9+

(nn
+sin’ y sin® ¢)+243%(cos” y cos® @ cos” Y —sin® y sin® @) cos 29}, @n
IR, = +I2° *E3A2° sin 29 sin 2¢ cos 9 sin 8. (22)

On inspection of (22) one readily notices that the antisymmetric intensity component
vanishes in the scattering of linearly polarized as well as natural (unpolarized) light. Ob-
viously, this results already from the more general form (11) of the antisymmetric tensor.
In fact, in these cases the electric field amplitude can be represented as a real quantity.

In the processes of scattering of, respectively, right and left circularly and elliptically
polarized incident light, the antisymmetric component is positive or negative, as the case
may be. This is consistently indicated by the left upper signs + at *I[Z,,“,j] and *E, in Eq. (22).

Furthermore, we see from (21) that the first term of the symmetric part is altogether
independent of the state of polarisation of the incident and scattered light waves. The
second term is dependent only on the state of polarisation of the incident wave. The re-
maining two terms are functions of the states of polarisation of the two waves. With
regard to the fact that the value of the symmetric component does not depend on the
choice of the phase sign in (17a), we have omitted the signs + at E, and I(f,,‘:’).

When determining the depolarisation of scattered light, we are interested solely in the
intensity components along the principal axes of the intensity tensor. At the above-stated
laboratory geometry of the experimental configuration and polarisation description (17a)
of the incident light, the relevant intensity components are those with vibrations of the
electric vector parallel (¢ = 0) and perpendicular (¢ = 7/2) to the plane of observation.
We denote them respectively as H >® (horizontal component) and ¥ ¢ (vertical component).
Eq. (21) now yields:

H*® = I32,) = I2°E§{A}® + A3® cos® 29+ 2(A2° + A2° cos 2y) cos® y cos® 8},

V3 = 12,y = D°E§{A3°+ A3° cos?® 29+ 2(A42° — A2° cos 2y) sin® ). (23)
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The principal values of the antisymmetric tensor obviously vanish.
(i) We begin by an analysis of the scattering of incident linearly polarized light.

Eq. (17a) shows that it can be horizontally (¢ = 0) or vertically (¢ = =/2) polarized with
respect to the plane of observation. We shall denote this, respectively, by a lower index

h or v.
Eqgs (23) now lead to the following results:
HE(9) = DPPEG{AT"+ A3 +2(A3° + A5”) cos” 8},

Vi = H = DUES{AT°+ 457,
V7® = Hi°(0) = D°EG{A7°+ A3° +2(A3° + A1)} 24

Here, Krishnan’s relation originally established for classical linear scattering by small

molecules:
Hy® = V® = Hy*(n2) (25)
is fulfilled.
The depolarisation of scattered light is, by definition:
D% = E'i.w = - AP+ 45
TV AT A 2AA AL
2w A2w+A2w
1 2 (26)

Va

D2m 9 — — ’
W) = feg) T 42 s AT 250+ A2 cos? 9

leading to the following simple relation between the two depolarisation ratios:
D2w
D(9) = - 27
w®) D**+(1—D2*) cos® 9 N

which is fulfilled also for n-harmonic elastic scattering of arbitrary order [27].
In the case of natural incident light the scattered components H,2°(8) and ¥,2® can

be derived directly from (25) by way of the formulas HZ*(9) = H2*(9)+H?2® and V2°

= V224 V2 However, we shall refrain from further considering this situation.
(i) In dealing with the scattering of circularly polarized light, we have to put y = n/4

in Eqs (23). We then obtain:
H?2(9) = I?“E${ A1+ A3° cos® 9},

V2 = H2*(0) = [*“E§{A]" + A3}, (28)
where the lower index c¢ denotes circularly polarized incident light.
The depolarisation of scattered light amounts to:
H*(9)  Al°+43°cos® 9 29)

’

D9 = =
( ) VCZO) A§m+A§m
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whence in particular we get D2°(0) = 1 irrespective of the characteristics of the scattering

medium.
For 3 = =n/2, Eq. (29) yields:

A2w

DZ(m)2 .
(=/2) = AZoy 420

(30)

In the case of circularly polarized incident light, it is of interest to represent the scat-
tered light in the form of the sum of two incoherent waves circularly polarized in mutually
inverse senses. In defining the ratio of their intensities, the “reversal ratio” [31] is con-
veniently resorted to. Presently, an essential role belongs to the sense of polarisation of
the circular incident light. The reversal ratio is by definition the ratio of that part of the
scattered intensity whose sense of circular polarisation is contrary to that of the incident
wave and the part whose sense of circular polarisation coincides with the latter. We thus
have, quite generally:

R*(9) = - :
£ 120 n
Iml 0= + - = —
( 2" ? )
where it should be kept in mind that, as previously, the upper left signs + and — refer
to incident right and left circularly polarized light. Obviously, the choice of the sign of the

phase affects the antisymmetric component only.
From Eqgs (21) and (22), we obtain:

5= T T 5 _TC B
(nn) = 2: @ = 4 (nn) —2 (p—-4 =

= 2T P°E§{243° + A2°(1 4 cos? 9)},

® _T 4 T it
:tI[Z”H]<5=+_?:’ go:Z) il[nn](6=i5 (p=z>=

— 2 *E§A42° cos 9. (32)

3D

Calculations resorting to Egs (31) and (32) yield:

243°+ A3°—242° cos 9+ A2° cos? 9

RZm 9 — 33
®) 243°+ A3 +242° cos 9+ A2° cos? 9 (33)
and, irrespective of the medium, R**(n/2) = 1.
For the scattering angle 3 = 0, we obtain from Eq. (33):
A2m+A2w_A2w
R*(0) = 32 (34

A%(o_'_Agw_*_Agm *
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Obviously, the expressions H2%(8)+ V2 (28) and *I2°(6 = Fn/2, ¢ = n4)+*[1°(6 =
= +7/2, ¢ = 7/4) (32) are equal to one another, as both represent the total intensity
scattered in a given direction at the angle 9. ‘

Further on it will be shown that when considering light scattering by rarefied media
(gases and vapours) i. e. when scattering on fluctuations of the molecular fields of per-
manent and induced dipoles can be neglected, simple relationships hold between the
depolarisation ratios D2, D?®(8) and the reversal ratio R**(9). Without entering into the
details at this moment, we wish to state that if the medium is transparent for the frequencies
o and 2w and consists of optically inactive molecules the hyperpolarizability tensor Bf,?;
can be dealt with as symmetric with regard to permutation of all three indices and the
scattering factors A%°— 42° (13) have exclusively symmetric non-vanishing parts.

(i) Here, we shall restrict ourselves to the case of vertically polarized incident light.
Eq. (24) now yields:

H?® = {1 P°E}{8I'2,+63B3,},
V29 = Ao P°E4{4I'3,+189B3,}. (35)

The depolarisation ratio D?® of second-harmonic scattered light is, consequently, given
by (26) and (35) in the following form:

20 | 803, +63B3, 36)
®  34r%,+189B3,’
showing that the value of the depolarisation ratio is comprised within the interval
D?® e [1/9, 2/3] and takes the limiting values if one of the molecular factors, I'z, or B3,
vanishes. :

(i) For the scattering of circularly polarized light, we have by Eq. (28):

H2(9) = 52+ 2°E4{5T3,+3(I'3,+21B3,) cos” 8},
V2o = H2(0) = s%5 D'°Eg{813,+63B3,), (37

and, by Egs (36) and (35):
V2o = H29(0) = 2H2" = 2V} = 2H}" (7-;) e

at equal intensities of linearly polarized and circularly polarized light. The experimental
values of V2®/H2® of Terhune ef al. [6] are assentially in accordance with this relation
amounting to 2.5+0.3 for water, 2.15+0.15 for fused quartz, and 2.2+0.3 for CH;CN.
Obviously some discrepancy is due to the fact that whereas Eq. (37) was derived for negli-
gible scattering on fluctuations of molecular fields, the above cited values were measured
in dense media.
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With regard to (37), the depolarisation of scattered light defined by (29) becomes:

5r3,+3(r3,+21B3,) cos® §
8I%,+63B2,

DZ*(8) = , (39)

whence D2%(n/2) € [0, 5/8]. Quite generally, D2°(9) € [0,1].
By (36) and (39), the following relation between the depolarisation ratios is fulfilled
for an arbitrary rarefied isotropic medium:

p2® (g) 1 {3(3+cos 9)— -1;—9}, (40)

whence in particular we obtain:
v 1 o
DZ® (5) 1257 O 1. (1)

Now with regard to (13) the expression (33) defining the reversal ratio takes the fol-
lowing form:

(13+14 cos 9+ 3 cos? 9)I'3,,+63(1 —cos 9)*B2,,

- R*™(9) = 42
) (13—14 cos 9+3 cos? 9)I'3,,+63(1 +cos 9)2B2,, “42)
whence for the scattering angle 9 = 0 we obtain:
) 1513,
R*(0) = —— 22 (43)
ri,+126B%, i

a result derived by us previously [20, 38].
Eqgs (36) and (42) lead to the following general relation between the reversal ratio
R**(9) and depolarisation ratio D2

3(7+10 cos 9+cos® $)D2®—1—6 cos $+cos? 9

RZw 9 = 44
©) 3(7—10 cos 8+cos® $)D2®—~1+6 cos $ +cos? § “44)
whence in particular:
re 9D2“’—1
R™(0) = —pie (45)

Formulas (43) and (45) permit the conclusion that the values of the reversal ratio
R*%(0) have to lie within the interval [0,15], according to the scattering medium.

Relations between the quantities R*“(9) and D?°(9) can be easily derived by calcula-
tion of D?° from (40) and insertion into (44). For example, Eqs (41) and (45) yield: -

2w (T _2 R™0)
be <5) " 3 14+R*(0) “46)
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4. The molecular-statistical properties of SHLS

4.1. Scattering on fluctuations of molecular orientation

It was our assumption that the hyperpolarizability tensor of the medium B,,,By was,
in a first approximation, totally symmetric. This assumption is justifiable provided B3 can
be written in the form [36]:

Bl = z b2® exp (idk - v,), C))
=1

that is to say, as long as effects of the molecular fields are negligible and the process of
second-harmonic scattering is determined by the tensor ba,,y of the isolated molecule. It
is this tensor which, on previously made assumptions, can ba dealt with as totally symme-
tric and real. Here, 4k = k,,—2k,,, where k, and k,, are respectively the wave vectors
of incident and scattered light and r, is the radius vector of the p-th scattering molecule.
Eq. (47) yields:

aﬂy(Baﬂy)*> = < Z Z bnzz;)y(p) :;;(q) exp (lAk ' qu)>,

p=1 g=
(BB = <P§1 q; b2rPbI D exp (idk - ry)). (48)
Above, |r,,| = |r,—r,| is the distance between the p-th and g-th molecule. Now, on intro-

ducing the binary correlation function g(¢,, z,), where ¢, is a variable describing the posi-
tion r, and orientation w, of the p-th molecule, and keepmg in mind that for liquids and
gases this function depends on the mutual position of the molecules only, the expression
(48) is transformed to:

aﬂy(Baﬂy)*> = aﬂy aﬂy(l + J(l))a
aﬁﬁ(Bayy)*> =N bappbazzyu;(l +JD), (49)

where J§© and J are angular correlation parameters, describing coherent scattering
on fluctuations of the orientations of correlated molecules [2]. They are of the form:

4 Ak
inl) - __TCQ J‘J‘ b2w(P)b2w(l1) sin ( "s ) g(rpq’ ®p, )rpqdr da) da)

apy
aﬂv uﬂy krpq

47'CQ , wota S (AKT5.)
JP = o7 J] bf,’,’:,"’)bfw(q) Akl 8o ©ps 0I5, A1 pdw, dwy, (50)
aﬂli ayy Tpq

where o is the number density of molecules.

According to the statistical molecular distribution of the medium, these parameters
can be positive or negative. In other words, light scattering by fluctuations of orientation
can either enhance or weaken the incoherent light scattering by fluctuations of the hyper-
polarizability of individual molecules. At scattering of light of a wavelength A by mole-
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cules whose linear dimensions d 'fulﬁl the condition d <{ 1/20, the interference factor
sin (4kr,,)/Akr,, can be approx1mated by 1 and the parameters (50) reduce to a simpler form.
In fact, the preceding inequality condition is the criterion of applicability of the theory of
electric dipole scattering. If this is not the case, scattering by individual electric quadru-
poles can no longer be left unconsidered [39].

At weak angular interaction, or if the molecules are of a shape so highly symmetric
that all orientations are equally probable, the parameters (50) can be averaged isotropically
over all molecular orientations and vanish.

We now proceed to apply our general expressions to a special case of molecular
symmetry. We shall consider tetrahedral molecules of the symmetry T, like CCl,, CH,,
or CF,. The hyperpolarizability tensor bm possesses non-zero tensor elements for o s
# B % v and is of the form [1,4]:

bf;;,(m [l(p)( J(p)k(P) + k}}p)jsp)) +
+ jgp)(i;f’)k;p) + k;p)igp)) T kip)(if;p)jgp) + j,‘g"’ig"’)], (51)

where i, j, k are versors of the axes 1, 2, 3 of molecular co-ordinates, rigidly attached to
the molecule under consideration.
With regard to (49) and (51), Egs (14) and (15) yield:

B3, =0,
I, = 15N(b33:)(1+JP). (52)
The parameter J§ is of the following, rather complicated form:
JL = 4np [f {cos 67 cos OFP cos OFP +cos 6P cos HFP cos HFL +
+cos 0FP cos 0 cos 05 +cos 07 cos 6% cos 052 +cos 6% cos OFD cos HF +
+cos 652 cos 05 cos 07} g(r g @y @I, d1 dw,dw,, (53)

where e. g. 0% is the angle between the 1-axis of co-ordinates attached to the p-th molecule
and the 2-ax1s of the g-th one.

Obviously, for tetrahedral molecules, one would be justified in putting approxi-
mately J$" = 0 for reasons stat.d previously. But even without doing so we get from
(35), (39) and (42), successively, expressions which are independent of either the tensor
element 473; or the orientational correlation parameter, thus:

pio =2, ppey - TS
3 8
13+14 cos $+3 cos? 9
R2‘°(.9)= +14 cos 3+3 cos . (5 4)

13—14 cos 843 cos® 9

Consequently, the values D2® = 2/3, D?°(n/2) = 5/8 and R**(0) = 15 are majorants,
defined in a previous Section. No wonder, as these were just the values obtained on the
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condition BZ; = 0, as it is the case for tetrahedral molecules in the absence of molecular
fields. The result 2/3, originally derived by Kielich [1], is modified only if one proceeds to
take into consideration scattering by statistical fluctuations of molecular fields, since now
(BIy(Ban*> # 0.

A discussion of the expressions (49) for other molecular symmetries is to be found
in a paper by Kielich [4]; we consequently restrict ourselves to this one example.

4.2. Scattering by fluctuations of molecular fields

When dealing with scattering by dense isotropic media, liquids and compressed
gases, one has moreover to consider effects due to fluctuations of molecular fields.
In this approximation, the tensor B2, has to be written as follows:

N
aF(") JFW®
B, = Z{bf,;;@) (58,,+ i, )(5,,y+ EE"_) +C20PFE) . } (55
v

p=1
where the fourth-rank tensor cfﬂ‘"y‘, is that of hyperpolarizability of crder 4 induced in
molecule p by the molecular field F, due in general to the other N—1 molecules of the
medium, in the absence of an externally applied electric field.
Quite generally, the field of permanent molecules is:

N
1
F(p) Zl {Tu(;zq)ugq) 1 T;ﬁ’}?)@(")+ - (539(4) }’ (56)
q=
q#p

where u, ©, and £ are respectively the permanent electric dipole, quadrupole and octupole
moment of the molecule [40]. The tensors T2%, T%2 and T2, are those of binary (pair-
wise) interaction between molecules p and g respectlvely of the dipole-dipole, dipole-
quadrupole, and quadrupole-quadrupole kinds [25] and differ from zero for p # q.

Now F is the molecular field which appears when an external electric field is applied.
It establishes an additional, spatial molecular redistribution, related with Yvon-Kirkwood
[41] translational fluctuations. We write the field of induced electric dipoles in the form
of the following expansion [25, 40]:

N

F;P) = — Z T(pq)aw(q)E + Z Z T(M) w(q)T(qr) w(r)E )
q=1 g=1 r=1
a#p q#p r#q

where agy is the tensor of linear optical polarizability of the molecule.

In (55), we have omitted the influence of this field on the hyperpolarizability cZs.
Our calculations led us to this simplification. In fact, fluctuations of the fields F, would
by no means modify the permutational symmetry of the tensor Bm Hence, the symmetric
terms (13) alone suffice fully for the description of scattering by fluctuations of the fields
of permanent multipoles.

The non-symmetric terms (16), however, differ from zero due to scattering by fluctu-
ations of the molecular fields F of induced dipoles. In fact, in the present problem the
tensor Bf,,“; can be dealt with as symmetric in the last pair of indices only.
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For tetrahedral molecules specifically, on omitting at this stage the effects of varia-
tions in molecular fields 0F/0E = 0, Eq. (55) yields:

aﬁy Z {blw(p)_l_cfl;oy(ép)F(p) }’ (58)

Zw(p) (p)
aﬂﬂ = Z Capps F

Keeping in mind that the lowest moment of such molecules is an octupole, we obtain
from (56) [40]:

(p) _ _1
FOa_ﬁ
q
q

TEH0;—. © (%9

Fip=

The tensor cf;"y,, in the present case can satisfactorily be dealt with as isotropic, /. e.

:ﬂa;wﬁ =73 c2¢o(5aﬁ5y6+5a75ﬂ6+5aééﬂy) (60)
with ¢,, = cfa‘};,,/S denoting the mean hyperpolarizability, and the octupole moment in
the form [40]:

Qaﬂy = QIZS[iu(jﬂky + kﬂjy) +ja(iﬁky + kpiy) + ka(iﬂj-y +Jﬂly)] (61)

We restrict our considerations to pairwise interactions. On averaging over all possible
molecular orientations, Eqs (14) and (15) transform to:

T3, = 15Nbi3;bi%s,
B%w = %% Nc%wQ%ZSRIO' (62)

The anisotropic factor I'3,, thus does not in the present approximation depend on the
fluctuations of the molecular field F,, whereas the isotropic factor BZ, is now non-zero
only as a result of the scattering mechanism considered above. The quantity R,, repre-
sents the parameter of radial interactions; at n = 10, it is defined by the following ex-
pression [4]:

R, = 4mo [ rp 2 g(rp)dr (63)

where g(r,,) is the binary radial distribution function.

‘We now proceed to consider scattering by fluctuations of the molecular fields of in-
duced dipoles. General expressions for the symmetric and non-symmetric scattering fac-
tors 42°— A2 valid for an arbitrary isotropic medium are adduced in Appendix. Here,
we shall discuss some computational steps for tetrahedral molecules.

In the present approximation, we obtain from (55) and (56) at:

Ao = G,04 64
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(where a, = aj,/3 is the mean linear molecular "polarizability) with an accuracy to
within a2

N N

N N
2w = % Z Z Z Z Za)(p)wa(q) (r) (S)T(pr)T(qS)> (65)

=1 g=1 r=1 s=1
crEp S¥q

For pairwise interactions only (p = ¢, r = s;p = 5,q = r) and on averaging over all
possible molecular orientations, this yields with regard to (51):

B%w = 16 Nb123b12302R6 (66)

R¢ is the parameter of translational fluctuations given by (63) at n = 6.
In turn, the contribution to I';, from scattering on fluctuations of the molecular
field F of induced dipoles is:

I3, = 1% Nb29:b3%:a2Rs. 67
On assembling (62), (66) and (67) we obtain, for the symmetric scattering factors (13):
sAzm = 325 Nb123 123{5+ 248 2R6}
2545° = s45° = 35 N{—bi3; 123(5+16a2R6)+ 280 2 .Q%23R 10}
sA3® = 35 N{3b13:b155(5+ 720 Rs) + 25° 3.2%23R 10}
sA3° = % N{—b}53b135(1 +8a;Re) + 302123R10}- (68)

Obviously, the terms proportional to R can as well be derived from Eqs ((D1)—(D4))
on insertion of (55) and (66).

It is the non-symmetric parts of the molecular scattering factors that we obtain from
((D5)—(D7)) with (55) and (64) in the form:

20 __ — 36 2
nsAs” = — _NSA — 175 Nb123b123a R,
20 _ 20 _ 198 2
nsA3® = — 7NsA1 = — 175 Nb123b123a R,
20 __ 9 (] ]
nsAs” = — i?Nbuabusasz- (69)

Let us now calculate the depolarisation ratios D2° and D2“(n/2). With regard to (26)
and (30), and by (68) and (69), we have:

31 14 ¢50 \2
2 1+ ?a R6 <bL) Q%23R10
Dzw _ = 123 (70)
v 2 s
3.7 . Blaa)
1+ 5 R6 b 9123R10
123
314,
1+ —a R6
p2° (’f =2 25 1)
“\2) 8, 4t - 14<c2,,, 2. R '
._a ——
40 5} b123 123M0
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Eqs (71) and (70) yield, in place of (41),

1+ 314 2R
20 e dole
o2 () _ 9Di°~1 25 . -
©\2) 120 i 63\ ,
1+ 'io—o D2°’ aa,Rs

The conclusion to be drawn from (70) and (71) is that agreement with experimental
results can be obtained only if scattering on fluctuations of the molecular field of octupoles
is much stronger than the effects due to molecular redistribution.

In the formulas for D2 of Refs [4,42] the contributions due to molecular redistribu-
tion (a2Rg) differed by certain numerical factors from those of Eq. (70) since only the
symmetric scattering components (66)-(67) were taken into consideration in those cal-
culations.

The calculation of the next Section will substantiate this.

5. Calculations

In order to evaluate the contributions from the various scattering mechanisms, it is
in the first place necessary to have available the values of the translational fluctuation
parameters Rg and R,.

Applying Kirkwood’s approximation [40] to the correlation function g(r,,), we
obtain quite generally for n >4 [43]:

dmp { \"2
R, = 3 5)) :, (73)

where v is the molecular volume, 0.6 < pv < 0.74 [40].

Recent, more accurate calculations [44] indicate that the solution of (73) yields
experimentally correct values from n =8 onwards. At n = 6, the parameters evaluated
from (73) are, on the average, some 15 times too large compared with those to be expected
from the experimental study of linear anisotropic light scattering [44] and Kerr’s effect
[43]. The solution [44]:

nt2 m n
471:9 ( 1) <n> (4ﬁ8) _ 2m+;n+1
Rs = 33 Z z mi(2m+2n+1) [1=2 ] (74)

is found to circumvent these deficiencies (¢ and ¢ are constants of the Lennard-Jones po-
tential, and B = 1/kT). The parameter Rs, computed from (74), is Rg = 2.5 * 10** cm™®
for CCl,, whereas R;o = 5+ 1072 cm~1° from Eq. (73). For CCl, molecules g, = 10.5 -
- 1048 ¢cm3, and the factor a2 Rg = 2.5 - 102 is negligibly small. The largest of the numerical
factors preceding the latter in Egs (70)-(72) are but slightly larger than 10. Hence, in the
present case, the redistribution terms can as well be omitted. The reason for the discrep-
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ancy between the theoretical and experimental values has to be sought in the predomi-
nant rdle of scattering on fluctuations of the octupole fields. It will be remembered that
this latter process was described by the symmetric part of the molecular scattering factors
only. Thus, for these molecules, the relations (40), (44) and (45) are fulfilled as well as
Eq. (41), as one finds immediately from (72) on omission of the redistributional terms.
Oninsertion of the experimental result D2® = 0.34 [6]into Eq. (41), we get D>®(r/2) = 0.50.
The value measured by Terhune et al. [6] amounts to 0.53+0.07. Thus, in this case, the
theoretically derived relation (41) is very satisfactorily fulfilled.

We are here led immediately to a conclusion of a more general nature. In fact, the
fulfillment or non-fulfillment of the relations (40) and (41) by a set of experimentally
measured values of depolarisation ratios provides a direct symptom of the importance or,
as the case may be, unimportance of molecular redistribution in SHG. In the latter even-
tuality, it will be possible to make direct evaluations of the parameters R from relations
of the type of (72). For example, with regard to water, insertion of the experimental value
[6] D2 = 0.117+0.015 into (41) yields D2°(n/2) = 0.04+0.08, whereas experimentally
DZ°(n/2) = 0.18+0.02 [6]. We have adduced so highly accurate values for two reasons:
firstly, in order to show how a small error in experimental depolarisation ratio D?“, amount-
ing in this instance to 13 per cent, affects essentially the value of D?“(n/2) to be expected
from the relation (41), and secondly, because of the discrepancy apparent between the
calculated and measured D?“(n/2)-values, even when providing for the interval of error.
The source of this discrepancy resides in the large contribution from scattering by fluctua-
tions of the molecular fields of induced dipoles.

For CCly,, at the values b}5; = 3.10-32 esu [45] and c,, = 3.6 - 1036 esu [46] agree-
ment with the experimental value of D2® is obtained from (70) at ©,,; = 15 - 10~3% esu
[4,42]. This value is by a half smaller than the one calculated by Weinberg [7].

From Eqgs (34) and (68), on omitting terms containing molecular redistribution, we
get for the reversal ratio:

2oy 15
R**(0) = .. (75)
24 ¢\
I+ — 9 —“b Q123R;0
123

With the calculated value of Q,,5, Eq. (43) yields a value of R*®(0) = 3 i. e. five times
less than for scattering by a gaseous medium. Obviously, the same value has to result
from (44) by insertion of D2® = 0.34 [6].

For CCl, molecules two more values for D2® are available from measurements by
Maker [8] and Lalanne [9] amounting, respectively, to 0.55 and 0.45. Neither, however,
dealt with scattering of circularly polarized light. At the above values, one would have,
respectively: from (68) Q,,; = 6 - 103 esu and 10 - 10-3* esu; from (41) D?*(z/2) = 0.6
and 0.56; and from (45) R*“(0) = 8.8 and 5.6. A repetition of the measurements could
possibly decide in favour of one of the sets of values. The discrepancy is seen to be the
largest for the reversal ratio.

It should be stressed that the recourse to circularly polarized incident light makes
available information inaccessible from studies of the scattering of linearly polarized



249

light. The relation (27) between the depolarisation ratios D2® and DZ®(9) is always ful-
filled, since it is density-independent i. e. independent of the kind and size of molecular
interaction. The relation (46) between the depolarisation ratio D?(z/2) and reversal ratio
R2°(0) will hold for all those dense media where scattering by fluctuations of the
molecular field of induced dipoles can be neglected; otherwise, it will undergo a modifi-
cation always only by a redistribution term, proportional to the parameter Rq. This circum-
stance will permit the direct evaluation of the radial molecular interactions. The effects
due to scattering by fluctuations of molecular multipole fields described by the symmetric
terms of the molecular scattering factors, are already taken into account by the relation (46).

It would appear still more interesting to perform experiments applying, at the same
time, circularly polarized and linearly polarized light. Such measurements would yield
simultaneously a larger number of relations between the various parameters (40), (41),
(44) and (45), characterizing the scattered light and consequently can be expected to
disclose more accurate information concerning the interactions between molecules.

The authors wish to thank the Physics Committee of the III-rd Department of the
Polish Academy of Sciences for sponsoring this investigation.

APPENDIX

We here adduce formulas, generally valid for isotropic media and describing the
influence of spatial redistribution of molecules on SHLS. In the symmetric factors, we
omit the terms accounting for scattering by fluctuations in orientation and fluctuations of
molecular fields of permanent multipoles. The non-symmetric terms of the molecular
scattering factors ysA7”— nsA2® are non-zero only owing to fluctuations of the molecular
fields of induced dipoles.

By (13) and (16), with regard to (55) and (57), on restricting our calculations to pair-
wise interactions, and on performing an averaging over all possible orientations of the
molecules, we obtain:

20)
SA1

26 i — 13baﬁﬂb§;;)a @ +3(—123b25b 50+

+131B25b22)a2 +200(5b2e b2 — 3b35sb e dsd .} (D1)

2R
SAZO = 2.42° = 2626 N{-7(3b25b2— 11bZ5blmanam+

+3(61b25 b2 — 5Tb2syb2e)al —200(b22 b2 —2b2blmaga,}, (D2)

AZ® = 'Ez— N{7(23b22b% + b2 bn amag, +

+3(=b23b2 +1Tb b2 as +200(3b25bZ0+ bbb agde)s (D3)
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Ry
SAgm = -7 N{7(baﬂy azz;; aﬂﬂb:;;') (a 3“0))"’
+40(b:xﬂy afs baﬂﬁbazt;;)a:;aw}‘ ' (D4)
20 3 20 R 20y ,0
NSA4 = - ENSAZ = 875 {(4baﬂy apy 15baﬂﬂbayy)aenaen+
—3(14b35 b2 — 15bagbl)at — 50b2a(b2tas — b2oal)a,}, (D5)
20 3 20 R 20y 0 0
NSA3 = - ENSAI 1750 N{(61baﬂy apy 17baﬂﬂbww)a a +
+3(49b%5b28 ~ 53b¢p,,b3;;)a +200b255(b2eas — b2ial)a,}, (D6)
NsA3® = 750 {3( bagybas+ bbb (agam+27a3) +
200baﬂﬁ(b02zy(: o ay'y aa)am} (D7)

where a, = al,/3 is, as previously, the mean linear polarizability.
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