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A complete molecular-statistical theory of anisotropic light scattering by multi-com-
ponent systems is proposed. The depolarisation of scattered light is interpreted in terms of
an effective optical anisotropy of regions of short-range ordering in the solution. This aniso-
tropy is calculated by molecular-statistical perturbation calculus in the second approxi-
mation inclusively. The zero-th approximation accounts for scattering by the optical aniso-
tropy of individual molecules and their angular interactions. In the first approximation,
translational-orientational fluctuations intervene. In the second approximation, moreover
translational fluctuations and orientational fluctuations are active.

For certain model assumptions, numerical calculations of the various contributions to
the effective optical molecular anisotropy are performed to the end yielding very satisfactory
agreement with recent meéasurements of anisotropic light scattering by the binary liquid systems
CsHg-CCl; and CS,—CCl,. Investigation of the deviations from additivity in the effective
optical anisotropy of the solutions provides highly relevant information bearing on the
many-body distribution functions, describing the correlations between the molecules of
different species' as well as of the same species. ,

1. Introduction

The method, elaborated at Bordeaux University [1], of separate measurements of
anisotropic molecular light scattering, has recently been applied by Bothorel [2] and
DeZeli€ et al. [3] in studies of depolarized scattered light from molecular solutions in the
entire range of concentrations. In this paper, we propose an extension of the existing
molecular-statistical theory [4,5] to account for the above mentioned experimental
studies.

Anisotropic light scattering by atomic solutions is currently interpreted in terms
of the translational fluctuations introduced by Yvon [6] in the theory of molecular refrac-
tion and by Kirkwood [7] in that of molecular polarisation of simple liquids. It will be
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shown here that the optical anisotropy induced in regions of near ordering originates not
only in pairwise correlations but also in three- and four-body interactions [8].

In solutions containing anisotropic molecules, besides scattering on angular correla-
tions [9, 10], an important rdle is played by translational-orientational fluctuations [4, 5],
especially in cases when the molecules of the solvent are isotropic. Contrary to the earlier
belief that such solvents could be considered as neutral, the solvent effect [4, 11] has to
be taken into account, in particular when determining the optical anisotropy of asymmetric
molecules by the method of infinitely dilute solutions [4]. However, we shall not be taking
into consideration the optical activity of molecules the light scattering theory of which
has been proposed by Atkins and Barrow [12] as well as Blum and Frisch [13] without
molecular correlations, and by Kielich [14] including molecular interactions.

In liquids and dense solutions, one has to deal with an effective molecular anisotropy
[4,5,9], which we calculate strictly in this paper by molecular-statistical perturbation
calculus. The results thus obtained are quite general, and we apply them to various particu-
lar cases. On certain model assumptions, we carry out numerical calculations of the
successive contributions to anisotropic light scattering. The results of these calculations
are found to be in good agreement with experiment for solutions of benzene in CCl,
as well as of carbon disulphide in CCl,.

2. Fundamentals of the theory

We consider a volume ¥, containing N = Y, N; unlike molecules; N; is the number
i

of molecules of the i-th species. If neither internal interference nor frequency and spatial
dispersion are present, we define the effective optical anisotropy of the many-component
system as follows [4, 5]:

3 N; Ny
PSS S aen) o
ij p=1 g=1

where the symbol { > stands for statistical averaging in the presence of molecular corre-
lations. 7 :

The deviator of the symmetric optical polarizability tensor 4,; of the p-th molecule
of the i-th species immersed in the medium is defined by the following equation:

D, =A4,— 3 U(Api: D), 2

where U is the unit tensor of rank 2: U = xx+yy+ 2z, X, y, 7 being unit vectors in the
directions of the axes X, Y, Z of Cartesian coordinates; obviously, the trace of the deviator
(2) vanishes: D, : U = 0.

The value of the polarizability tensor 4,; depends on the internal state of the molecule,
denoted by the lower indices p, i as well as on its configuration with respect to the molecules
surrounding it in V. As long as the factors causing a perturbation of the molecular polariz-
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ability are not excessively strong, one is justified in applying classical perturbation calculus,
which leads to the expansion:

@

Ay = AD+AP+AD+ ... Z AD, A3)

where, in the zero-th approximation, the tensor:
AD = a, @ .

defines the optical polarizability of the intrinsically anisotropic molecule in the ground
state.

Higher approximations of the expansion (3) are to be derived from various specific
processes, such as the translational fluctuations of Yvon [6] and Kirkwood [7], transla-
tional-orientational fluctuations [4, 5], and fluctuations of electric molecular fields leading
‘to nonlinear polarizability of the molecules [9, 10].

In the present work, we shall restrict ourselves to the approximations resulting from
the Yvon-Kirkwood approach in dipolar treatment, for which the n-th approximation is:

Ny
Ag? = @yt (_Z Z Tpig;- ;)" &)
J q=1
where
Tpiyy = puu(3 piai¥piaj ™ giqj U) (6)

is the tensor of dipole-dipole interaction between the molecules p and ¢ of species i mutually
distant by r,;,;. The trace of the tensor (6) vanishes, T': U = 0.
With regard to the expansion (3), we can re-write the quantity (1) as follows:

o0
r?= Oz o2 Gr2 Gz, =y or?, Q)

n=0

n Ni Ny
. 3 —m
orr = 2 Z z <Z E D : D, ’> ®
- m=0 ij p=1 g=1

is the effective anisotropy of the n-th approximation.
By methods of classical statistical mechanics we obtain:

where

Ny, Ny, Ny,

Z<Z Z qudjz ) =

irin p1=1 p2=1 pn=

=y 2 Xy Xiy o X3 05 [ oo [ D1 Dy ... B8 (1, o T, o dTy (9)
k=1 Tf
with the notation: x; = N;/N; o = N/V — the number density of molecules; 4, a symme-

trizing operator, contracting the product of functions &, ... &, to a dependence on k
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molecules; and g ... ;. (7,,, ..., 7,,) the correlation function of the k molecules, repre-
senting the components #, ... i, whose configurations are given by the coordinates Tpy oo Tp
respectively.

By (9), we re-write the n-th contribution to the effective anisotropy (8) in the following
form:

2 : : L
(n)F2 = Z Z XX oo xik(n)rizlir“ik’ (10)
k=1 igigeeip
with
Wr: =0 for n>1,

whereas ®I'};, . for k > 2 represents the contributions to the effective anisotropy from
k-fold molecular interactions. ,

The first three terms of the expansion (7) with regard to (10) for the many-component
system. assume the form: :

Or2 _ Z xi(o)[vil_*_ z xixj(o)pfj’ ' an
i ij
(I)Fz = Z xin(l)FiZj+ Z xixjxk(l)rizjk, (12)
ij ijk .
2)p2 2)p2 (2)p2 2)2
{ )F = z xixj( )Fij+ Z xixjxk )Fijk+ Zk, xinxkxl( )I'ijkl. (13)
ij ’ . ijk ij

Egs (11)—(13) show that, whereas the contribution to effective anisotropy from intrinsic
anisotropic properties alone of the molecules of the various components is contained
in “I? by way of I}, the higher expressions involving ®I’2, ®ri. ®rk, describe
contributions due respectively to pairwise, triple, and four-molecule interactions between
molecules composing the solution irrespective of whether they be molecules of the same
or different components. The n-th term of (7) contains contributions from pairwise inter-
actions up to (n-+2)-fold interactions.

3. Zero-th approximation of the theory

If the solution in V' is free of statistical-fluctuational processes, the effective anisotropy
(8) yields in the zero-th approximation:

. N; N; :
3
S VI3
i rp=1 g=1 )

ij
where the deviator of the polarizability tensor of the isolated molecule is:
foi’) = ay—ayU, » 15)

@y = @y 2 U3 = Y0P +a"+4P") denoting the mean optical polarizability of the p-th
molecule -of species /.
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If, in particular, the molecule is ivsotropica]ly polarizable,

Api = api U, : (16)

the deviator of the zero-th approximation (15) vanishes.

The deviator (15) differs from zero only if the molecule is, intrinsically, optically ani-
sotropic. If in particular the molecule presents different polarizabilities in the three direc-
tions of its principle axes, Eq.’(15) becomes [5]:

D(O) = 6plQpl+ % vpi pi> (153)

where we have introduced the tensors:
Qpi = xpixpi_ypiypi’ : (17)
S, = 32,2, U, 18)

(having the property of vanishing trace) as well as the optical anisotropies of the isolated
molecule of species i:

5y =4 (@ —a®), v = o —(@I+a N2 19
The anisotropy (14) can be represented in the form (11), with:
©r2 = 3 p©: D = 3 (a;: a,—3a}), (20)

orz — _ D(O) D(O) .
" <Z Z ) 2
q¢p

We write the optical anisotropy (20) of the isolated molecule in the well known explicit
form:

Or2 — 4 {(@P —a®)?+(af’ — o) + (P —aP)*}, (202)
which, for the axially symmetric case (a, = a, # 4,), leads to:
Or} =9} = @-a’. . (200)

With regard to the form (15a) of the polarizability deviator, we re-write the effective
anisotropy (21) due to angular correlations as follows:

Or2 = 55,0940, J8 +v8, I3 +1iv 5 . (2la)

where we have introduced the following angular correlation parameters:

Ny
3
= (i)
q=1
q¥#p
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1 ,
= <Z S, s,,,.> : (22)
J .

In particular, for axially symmetric molecules, we hence obtain the previous results [4]:

Or = yy,Jss, (21b)

J

where with regard to (18) the angular correlation parameter is of the form:

Ny
Iy = % <Z {3z ij)2—1}> . (222)
! q¥p .

The above parameter can be expressed anew in terms of binary correlation functions,
as follows:

ijs = % JI (3 cos? Opigi— 1)g§f’(‘rm~, T )T pdTy; - (22b)

with 0,,,; denoting the angle between the vectors z,; and z,; of the axes of symmetry
of two mutually interacting molecules having the configurations Ty and ,;.

4. First approximation of the theory

By (8), the effective anisotropy of the first approximation is given by the expression:

N Ny
3
o= 23 50 epiopinpiog). e
’ i r=1 gq=1

ij
where, besides the deviator of the zero-th approximation (15), we have that of the first
approximation which, with regard to Eqs (2) and (5), is of the form:

Ny
DS’ =-1 Xk: Zl {3api “Toirre * Gpe— U[(api ) Tpirk]}‘ (24

One readily notes that, in this case too, the intrinsic anisotropy of the molecules owing
to which the deviator (15) differs from zero plays an essential rdle. It is feasible to calculate
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the anisotropy (23) for the deviators (15) and (24) in general form; however, with the aim
of simplifying the final results, we shall restrict our considerations to molecules having
the axial symmetry for which the polarizability tensor is of the form:

a, = a;U+ % 9,8y, (25)

leading to deviators (15) and (24) in the form of:

DY =1yS,, (15b)
N
Df,? = — %; Z, {270,047 i+ 38796 3(T i * S) — UT pirie : S)] +
+ 394 [3(Spi * Tpire) — U(Spi : Ty ]+
+ 97l 3CS,i * Tpirr " Se) — U(Spi * S+ T i) 1} (242)

On insertion of (15a) and (24a) in Eq. (23) and on performing a symmetrization
operation, we obtain the following effective anisotropy of the first approximation:

EEOXPH DV N

where we have introduced the quantity:
FE0 = — 1 8(pi, qj, rk) {910,048y : Ty +

+ 697105851 1 (Sgj * Tyjnd) + 71776851 (Sgi * Tgjre * S} 27

Above, S(p;, g, ;) is the operator of symmetrization over all 6 permutations of the indi-

ces pn q §s g ke
By (9), Eq. (26) can be put in the form (12), where the contribution due to two-body

interactions is [4]:
(I)th = % [r.3a;—yy) Ba;+v; —)’j)Jisz‘*‘J’j(?’ai —y) (3a;+ )’j—'}’:)JTS] +
+2y,(3a;+3a;+9,+7,)Ky;, (28)

with the correlation parameters:

Ny

1
P =~ 6, <2Tpiqj : qu> ; (29)

a#p

J = 18xj Z (Spi+sq1) (Spl Tp:q] : qu)> . (30)
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With regard to the definition of the tensors (6) and (18), the above parameters can
be expressed in the following form (4):

[ _
Jisz = Y Jf (3 cos? 0y 1)rpi;jg§j2)(‘cpi, T )T ATy, (29a)

' Q
JiTjs - ﬁ Jf(s COSZ eqj 1) P’ﬂgg)(’rpl’ qu)drpldr

K;; = i% J](fi cos 8, cos 6,;—cos B,,;) x

-3 _(2) - ,
X €08 Opig;T pigi8ij (Tpis Ta)dTpidTyjs (30a)

rendering apparent the radial and angular dependence (8, and 6,; denote the angles
between the molecular symmetry axes z,; and z,; and the vector r,;).
It will be noted that, in order that the parameters of pairwise radial-angular correla-
tions (29) and (30) shall be non-zero, correlations of the angular kind have to be present.
The contribution to the effective anisotropy of the first approximation due to three-
-body interactions is:

Ori, = 5 e <§ E F%f:’>>- @
k
#p r#p
r¥q

Likewise to the procedure applied above, by using Eq. (9) one can represent Eq. (31)
in the form of (12):

or zk = S(pi, 45, 1) {ria;ad +2}’J’ﬂkKuk +'}’i')’17kKuk} (32)

where the following paraineters intervene:

3 YO A

o
Kg}k) 18x xk<z Z pi ( 'qurk)>a _ 39
>
ngzk) = 54x xk <z z pi * ( quk Srk)>, (35)
q¥p

r¥q
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which, with (6), (18) and the symmetrization operators S(pi, gj, rk) acting on the above
parameters, go over into:

2 pp
4 -
Jip = 2—17 j(3 cos’ opi_ l)rqjgkggk)(fpis Tqi» Trk)dTpiquderka (33a)
92 P
K}}k’ =57 (3 cos 0,,;,; cos 0,; cos 6, j—cosz 0,4 j—cos2 0y —
_cosz 6qj+ S)qurkrkguk(rpv Tgis ,k)d‘l'md‘t dTrk, ' : (34&)
2 ppp .
K2 =2 ||| {cost 0,3 cos 0, cos g
i =55 08 0,7 €08 0,43 c0s 6,,; cos 0, — 08 O~

—3 €05 0,,3,; €08 0,,; €08 0,5+ €0s” 0,,;+c0s® 6, — 4} x
X rzl_jrkgijk(Tpi’ Tgis Trk)dfpiquderks (35a)

0,i, 04, 0, being the angles between the symmetry axes of molecules z,;, z,;, % and

the vector rgjy.

5. Second approximation of the theory

In the second approximation, by (8), we derive the effective anisotropy:

@2 _ z <Z Z (DQ: D@+ DY : DY+ DR : DY) > (36)

In addition to the deviators (15) and (24), we have here a deviator of the second
approximation the form of which, with regard to (2) and (5), is:

Ne M1
D(p%) = % % 21 Z {3apl pirk B Trksl : asl_ U(api : asl) : (Tpirk t byt Trksl)}' (37)
r=1 s=

It is highly significant that, whereas for isotropically polarizable molecules (y; = 0)
the deviator (15b) of the zero-th approximation vanishes, the deviator of the first approxi-
mation (24a) does not, but assumes the simple form:

Di;li) = — Z Z, aa,T, pirk: (24b)

In this way, notwithstanding the fact that D(o) = 0 and owing to the existence of the de-
viator (24b), the effective anisotropy of the second approximation of the theory is found
to differ from zero even in the case of isotropically polarizable molecules:

i DS S S S oo



172

The preceding expression can be written explicitly in the form (13), as follows:

@r? = 9atalJR, , (39)
(zia)rrizjk = 38(p;, q;, "k)aiaf aJ ﬁ-k, (40)
@r tzjkx =58 q s Tes S0 ;0,04 S‘kla “n

where the integral parameters due successively to two-body, three-body and four-body
interaction are of the form:

Ny
1 z : 0 -
J 5 = § < T pigi * T, piqi> =2 VJJ rp,-q&jgg )(Tpi’ Tqi)drpidrqi 42
J
q#p

) .
e -5 - . .
J 5% = 'I;‘ JI[ [3(r pigj rqjsk)z_ "ﬁiqﬂ'; jrk]rpi;jr quskggk)(fpi, Tqj Trk)d“?pid'qudfrk, 43)
oy ([ P @ o Dz dr, dr,dr, (44
ikl = % pirk + Lqjs18ija\Tpis Tgjs Trks Tst)ATpiAT,;0T ATy, )

When dealing with intrinsically anisotropic molecules, all three deviators (15b),
(242) and (37) have to be inserted in Eq. (36). This leads, on symmetrization, to:

NyoooNx
1 P
@r? = Oriy — g < E Fif-’é’z”>, (45)
} T ijkl pars

where the first term is given by (38). In the second term, we have introduced the following
function: ‘

F{ET® = 24 S(pi, qj, vk, s1) {162y,a,a,a,[S,; : Ty Tos) +
+2(8y: * Tpig) : T ]+ 1877 ja,a,[ 68,5 1 (S, - i Ton) +
+ 381t (Tgjme* S * Tos) +3(S i * Tpigy * Sy;) 2 T+ 6(Sy; - Ty : (S, qus,)‘—
=208 : Tpi) (Syy 2 Tpy) 1+ 677 1aai[ 68, 2 (S, - Tpive” S Tg)+
+38,: 1 (Sgy Tyjar * T Sp)+6(Sy; + T, vigi " i) * S * Trea)) —
=208y * Syt Thigy) (S Trues) ] +97 7068 ¢ (Sgs * Tyjr * St " Tt * Su) +

+ 3(Spi Tk " S (qu *Tpia Sa) —(Spi Sy T, pirk) (qu *8q: T, qj&l)]}- (46)
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6. Discussion of some particular cases

In this paper, our discussion will bear more closely on the two-component system.
On symmetrization of ®I'? . with regard to the order of all indices (to take into account
the physical properties of the interactions), the expansions (11)-(13) now become:

or2 = (°)F2+x (0)F2+x2(0) +2x1x2(°)F21 +x2(0)rzz, @7
W2 = x2Or? £2x,%, 02, +x30r?,, +3x3x,0rz, , +

+3%, x50 551+ %30T 55, (48)

A2 = x3Or} +2x,%,P05 + X3P, + %39} +

+3x2x, 02 4+ 3%, X302 +x3PT 3, + %1202+
+4x3x, P31 11 +6x3x3 DT 3514 +4x,5 50 5251 + %5503, (49)
In addition to contributions due to anisotropy of linear polarizability of the isolated
molecules of the components unperturbed by interaction (9r%, r?), Eqs (47)~(49)
now contain explicitly the effect of interactions between like molecules of each of the

components (I3, ®r:,, ©r3, etc.) as well as between unlike molecules of different
components (Or3,, Wr2,, Ari,, etc.).

a. Solution with a low concentration of one component

Let us assume component 2 as present at very low concentration (x, — 0). This
amounts to considering solutions in which the molecules of component 2 are surrounded
by molecules of component 1 and in which the probability of an interaction between the
molecules of component 2 is very small (N,/N — 0).

If the molecules of both components are anisotropically polarizable, Eqs (20b) and
(47)—(49) with x, = x (x; = 1—x) yield:

or? 2 .2 d ©r2 (W2 , (P2
a‘ =72—y1+ a—x( Iy + T+ T+
. x—=0

—'((O)F§1+(1)F11+(2)F11+---)]+3[((1)F§11 +Prig+..)-

-("riy, +(2)Ff11+---)]+4[(2)F§111—(Z)Ff111+---]} . (50)

x-0

b. Solution consisting of isotropically and anisotropically polarizable
molecules

In our further considerations, we shall be dealing with a special class of binary solu-
tions, namely ones in which the molecules of component 1 are isotropically polarizable
(e.g. CCl,, for which y, = 0) whereas those of component 2 are anisotropically polarizable
(e.g. CS,, CgHj, for which y, 5= 0). We shall consider a component 2 with molecules having
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the axial symmetry and thus obeying Eq. (20b). For the solution described above (y, = 0,
y2 # 0), Eqs (20b), (21b), (28) and (32) lead to:

2 2 1)y2 ‘
©p2 _ ©Op2 _©Op2 _ Mp2 _ Op2 (1)

since the ®'T'3,, ™r? | vanish owing to the circumstance’that translational fluctuations
are inoperative unless # > 2 (there can be no radial-angular interaction between isotropic
molecules). The radial correlation parameters, which determine the contribution to
effective anisotropy from the component with isotropically polarizable molecules alone,
depend on powers n > 2 of the interaction tensor 7.

For the case under consideration, we have:

OF2 . x,Or2 5202 (52)
(1)1"2 = 2x x2( rz, +x2(1)F22+3x1x2 wr2. +3x1x2(1)1"221 +x3r2,,. (53)
Eq. (50), for very small x,, becomes:

or’ 2 0 prz @2 @) 2
M =Y+ _0x( i+ T+ 5T+
x—0 .

+2(0r3 + 3, - Prip+3(Ori, +¥r3, - 2ri, +

+4((2)F§111—(2)F§11'1)} . (54
x—0 .

Calculated by methods of classical mechanics and statistical physics, the expressions
in (54) describing the interactions between the molecules in solution have the following
form, resulting from considerations of previous Sections of this paper:

Or2, = 2a,9,(3a,+y,)>VJ5, : : (55)
(l)rzu = 2“1?2(3)-]211, : (56)
Dr3y =941, —_ (57

(_2)F§1 = [9aia5+ % afy§+2a1y§(a2 + % Y25+
+a172[2y5+2a,(6a, —2)+(3az—7,) (ag +a, +9,) 0I5 +40172(6 25t ,A (58)
®riy = 18alty,, (59)

(2)1—'%11 = § 5(q1, r)at{(B3az—72) [6Qa; —y,) 5, +
+ (6‘12 Y2l ta1 + 5720511 + 27, [(6a, + 3a,— v 121 +3aOT54 1), (60)
i = 94t (61)

(2)F§111 = & 5(q1, 1, 51)03[(3‘12 }’2)-]2111"' z 72-’2111] v (62)
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where the parameters JE i JE ijks JE ju are given respectively by Eqs (42)—(44) and the others
are defined as follows:

n,m [4 a1 m
- ) RA v J f [(3 cos? 88290 — 1)+ ¢, Jr o 85T pss Tg )75, A7, (63)
0’ ‘
(n)Jgfl = '2—; JVJ\J‘ (3 C082 0;4121'1) 1)7‘1111'18'211(1:172’ Tqv 1’-rx)d"'-pzd":thd‘rna (64)’

o’
I3t = 7 (9 cos 6222 cos 6% cos BE) 3 cos® GFV —3 cos? 92 +

+ l)rpqu p2r1g211(1p2’ a1° Tn)dT d‘L' dTH’ (65)
0?
I = J] (9 cos 0% cos 9 cos {1 —3 cos® 92 —
Y ) -3 _ -3 _(3
—3 cos 05’421" + l)rpl‘llr‘ll'lg(ll)l(rl’z’ Tgr0 Tn)dtmdtqtdrrp (66)
= [9 cos 8192 cos 82210 cos O30
2111 (qul)rpzlu

( (rS) (pq)-3 (qr)
+cos Bp‘lz"‘).cos Oaird qm) 3(2 cos® O pm+cos o rqm)—

( ) -3
—3cos o(rm)(zrpm +r41r1) -3 °°5 0(:1‘;11) q1r1+2(rpzqi+rq1r1)] X
~3 (4
X rns;g(Zl)l 1(Tp2’ qu TI", tsl)dtpzdt dt dep (67)

with 0;‘{"") the angle between the symmetry axis of molecule p of component i (axis Zp)
and the radius connecting molecules g and r of components j and k, and 0{;’;;’,} the .
angle between the radius connecting molecule p of component i and molecule g of com-
ponent j and the radius connecting molecule 7 of component k and molecule s of compo-
nent /.

The constant occurring in Eq. (63) amounts to:

m = —(3 cos” 6,—1)", (68)

which denotes a quantity isotropically averaged over all possible directions. In Eq. (68),
we have: ¢; = 0, ¢, = —4/5. As apparent from Eqs (55)-(67), the effective optical aniso~
tropy of a solution of two components with respectively isotropically and anisotropically
polarizable molecules depends on the following factors: the “pure” anisotropy of the
isolated molecule of component 2 (y3), as well as the intermolecular radial interactions
(parameters J®) and radial-angular interactions (parameters J R4y due to fluctuations of
the molecular fields. Hence, not only redistribution through radial interactions (radial
configuration) is effective, but moreover an essential role belongs to the mutual configura-
tion of the molecules with respect to the privileged symmetry axis of one of them (the
z-axis).
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c. Effective optical anisotropy of a two-component solution consisting
of isotropic molecules

For a two-component solution both components of which have isotropically polariz-
able molecules (y, = y, = 0), Eqs (55)—(62) assume the following form:

mF%l = mf%u =0, (69)

®ri; = 941714, (70)

®r3, = 9aia3J3], gy

®r3u = 354, "1)“%“2[2‘11-7211"‘“2]11{21]7 (72)
Drig = 9atJi111s (73)

Prii =358, ry $1)a23J3111. (74)

Thus, such systems can exhibit an effective optical anisotropy due solely to Yvon-
-Kirkwood translational fluctuations (expressed in terms of radial interaction parameters).

7. Numerical calculations

We now proceed to a closer analysis and numerical calculations of some two-compo-
nent solutions, consisting of a component 1 with isotropically polarizable molecules and
a component 2 with anisotropically polarizable ones. As “1” we consider carbon tetra-
chloride, whereas for “2” we take benzene and carbon disulphide: the former is characte-
rized by a negative anisotropy (y, < 0) and the latter by a positive anisotropy (y, > 0).
Our numerical calculations are restricted to two-molecule interactions. Accordingly,
the effective anisotropy is numerically given, quite generally, by the expression:

I? = x,p3+ %03, +2x,%,03 +x3 3,5, (75
where
r %1 =®r %1,
rj = Or3,+9ri,
I} = Or%, +Orh,+ 1,

The quantities @r?,, Or3,, @r2, ©r2, and ®r, are given by Eqs (57), (55), (59),
(21) and (28). The expressions derived from Eq. (45) for ‘*I'Z, are highly involved and
will not be adduced explicitly in this paper, but will be dealt with separately. They depend
on the radial correlation parameter (42) as well as on certain radial-angular parameters.
In practice, the calculation of the effective anisotropy reduces to the numerical compu-
“tation of the interaction parameters. The two-molecule correlation functions occurring
in these parameters can be expressed quite generally as follows [9, 21]:

- gg_]?)(rpb qu) = Q—zgij(rpiqj) exp {— Vpiqj/kT}s (76)
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where g;;(r,;) is the radial correlation function, whereas Viip;(Fpigj @pis @,;) is the
energy of non-central two-body interactions [5, 15] (@ = [dw, = | dw,). Since the lowest
multipole moment of the CCl, molecule is an octupole (which we may as well omit in
our calculations), the interaction energy V,; between two molecules of component 1
coincides with the dispersional energy, V,(r,,5,» @p, @) = ‘“s" . The molecules of compo-
nent 2, C¢Hg and CS,, have quadrupole moments. Hence the energy of interaction V,,
between molecules of “2” and ““1” consists of the energy of dispersional interaction and
that of interaction between the dipole moment induced in molecule “1”* and the quadrupole
moment of molecule “2” (V;, = V5P 27 9). Finally, the energy of interaction between
molecules of component 2, ¥,,, consists of the energy of dispersional interaction, that of
interaction between the induced dipole moment and the quadrupole moment, and that of
interaction between the two quadrupole moments (V,, = VesP4 V94 Ve 9. On
expanding the exponential function in (76), we can express the angular-radial correlation
parameters in terms of radial correlation parameters:

gy = 4”95 Toin; ~8(Tpig))d pig- (77)

For example, the parameters describing radial interactions between molecules of compo-
nent 1 and with molecules of component 2 (J1 » J12), occurring in Eqs (57) and (58);
are given as follows:

J11 = 2<rp1q1>s . (78)
1 = 2<rp1qz>’ ' (79)

whereas the parameters of angular-radial interaction between molecules of the two com-
ponents (GDJRA (6124 (6.2) JR4y  written explicitly so as to render apparent the dlSpCl'-
sional and 1nduced dlpole-quadrupole interactions, are of the form:

GO - € (0S4 § Colr T (80)
ODRLEP = C (K rpaid+ 3 cl<r;;f>), (81)
ORJFLI® = £ Ci((rpas> +2CT7atd); 32
COJIEO = Ckrpud+ 5 Cilrpul>+ 33 Colrpidd), (83)
COJFI0 = Co(rpay+ % Cilrpad+ 38 Colrpad, (84)
OV = Co{rpamy+ 55 Cilrpsy+ 182 Corpihd), (85)
where:
1 hvyv, 0172
1710 vi+v, kT’ (86)
12 @2 @7)

2= 35% b
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- The: parameters of interaction between molecules of the component 2 are calculated
. similarly.
Tn densé liquids (903 1.31 for CCl,, 1.03 for CgHg, 0.90 for CS,), the decisive
role in defining the structure of the liquid belongs to repulsive forces. The function g(r;;)
of Eq. (77) can now be represented as follows [16]:

g(ri;) = yo(ri;) exp {"‘ %;?)} > (88)
where: R K
ug(ryy) = 4ey; [(%)12— (—:—i{'—)G] +g; for ry; < 21/50,-j,
o B, Y i (89)
u(ry) =0 for r;; > 2"%;.
In our numerical calculations we have zissumed, for yo(rip:
yo(ri) = 0 1y < oy and ry; > 2Y%;
Yo(rij) = 1 oy < ry; < 2% (50)
In Eqgs (88)—(90), the parameters {r~") have the form:
e (-~ (',’j) (@Pa)"  _mraamizony
<r ""> Pl Z Zm![n+3(2m+2k—1)] (-2 ) O

m=0 k=0

with B = (kT)~*. Here, and in all angular, radial and angular-radial parameters, ¢ stands
for the number density of molecules i.e. the number of molecules per unit volume Wthh is
a function of the concentration. Denoting the concentration of component 2 by x (x =x;,

= 1-—-x), we can)express o in terms of the concentrations of the pure components:

é1@2
02— x(02~¢1)
The parameters o;; and &; of the Lennard-Jones potential for two unlike molecules

can be expressed in terms of the parameters for molecules of each species by way of the
followmg empmcal relation [17, 18]:

0= 92)

1(o;+0o
ij = '\/8i8j . (93)
TABLE I
Liquid ¢ 1072 g, x 10?4 ay X 10%* | ;% 10%% | ax10** | yx10** | ox10° gk O x 102¢
- [em=®1| [em®] | [cm?] [em?®] [cm®] fem®] | [em} [17]1] [°K] [17]] [esul
CCls 6.21 10.5 10.5 10.5 10.5 0 5.947 322.7 0
CeHs 6.74 12.31 12.31 6.35 10.32 . —5.96 5.349 412.3 12 [19]
CS; 9.94 5.54 5.54 15.14 8.74 9.60 4.483 467 9 [20]
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TABLE 1I

Calculated contributions from each of the components of the system CCl,—CsHs to the effective optical
anisotropy I'* and theoretically calculated anisotropic scattered intensity Hy, for the wavelength A = 546 mp.
at 25°C throughout the entire range of concentrations

ox 1072 n* | x5 x10%%| x1I'f x 10%8 lexif)?; x xifilzo fs I2x 108 H'Ehizﬁx
X2 _3 — 6 . 6 X X 6 X
[om3] |[A=546mp}  [cm®] [cm®] [em®] [cm®] [cm®] o]
0.00 6.21 1.4596 0 5.45 0 0 5.45 0.75
0.02 6.22 1.4604 0.71 5.24 0.28 —0.001 6.23 0.86
0.04 6.23 1.4612 1.42 5.04 0.56 —0.005 7.02 0.97
0.06 6.24 1.4621 2.13 4.84 0.82 —0.01 7.78 1.08
0.08 6.25 1.4629 2.84 4.65 1.07 ~0.02 8.54 1.19
0.1 6.26 1.4638 3.55 4.45 1.32 —0.03 9.29 1.29
0.2 6.31 1.4680 7.10 3.55 2.36 —0.12 12.89 1.82
0.3 6.36 1.4722 10.66 2.73 3.12 —0.27 16.24 2.33
0.4 6.41 1.4764 14.21 2.03 3.59 —0.48 19.35 2.81
0.5 6.46 1.4807 17.76 1.42 3.77 —0.76 22.19 3.27
0.6 6.52 1.4849 21.31 0.92 3.65 —1.11 24.77 3.70
0.7 6.57 1.‘4892 24.86 0.52 3.22 —-1.52 27.08 4.10
0.8 6.63 1.4934 28.42 0.23 2.48 —2.01 29.12 4.48
0.9 6.68 1.4977 31.97 0.06 1.40 —2.56 30.87 4.81
1.0 6.74 1.5019 35.52 0 0 —3.19 32.33 5.12
* calculated from Ref. [3].
TABLE I11

Calculated contributions from each of the components of the system CCl,—CS, to the effective optical
anisotropy I'2 and theoretically calculated anisotropic scattered intensity Hy for the wavelength A= 546mp
at-25°C throughout the entire range of concentrations ’

L. lexaom o x93 X 1048 | T, x 10% Zx‘;‘;(l)?:x xil; f)i:. I2x10% Hih i‘:ﬁx
2 —3 —_ 6 6 6
[cm3] |A=546my{ [cm°®] [em®] em®] fom®] [gm ]} fem-1]
- 0.00 6.21 1.4610 0 5.45 0 0 5.45 0.75
0.02 6.26 0.4623 1.84 5.27 0.42 0.01 7.54 1.05
- 0.04 6.30 1.4639 3.69 5.10 0.83 0.03 9.65 1.35
0.06 6.35 1.4654 553 4.92 1.23 0.08 - 11.76 1.66
0.08 6.40 1.4671 7.37 4.76 1.62 0.14 13.89 1.99
0.1 6.45 1.4687 19.22 4.58 1.99 0.22 16.01 2.31
0.2 6.71 1.4786 18.43 3.77 3.69 0.91 26.80 4.08
0.3 7.060 1.4904 - 27.65 3.01 5.05 2.14 37.85 6.12
0.4 7.31 1.5040 36.84 2.31 6.00 3.97 49.12 8.46
. 0.5 7.64 1.5203 46.08 1.67 6.55 6.48 60.78 11.19
0.6 8.01 -1.5383 55.30 1.12 6.60 9.27 72.74 14.40
0.7 8.42 1.5583 64.51 0.66 6.07 14.01 85.25 18.24
0.8 8.87 1.5805 7373 ° 0.31 4.87 19.28 98.19 22.84
0.9 9.38 1.6046 82.94 0.08 2.90 25.80 111.72 28.43
1.0 9.94 1,6308 92.16 0 0 3375 125.91 35.22

* calculated .from Ref. [3].
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The molecular data used in the computations are listed in Table I. Tables II and III
contain the theoretically calculated values of effective optical anisotropies respectively
for the solutions CgHg—CCl, and CS,—CCl, at 25°C in the entire range of concen-

. HV
0] .
35t Experimental data for CCls+CSp: o -[3], m ~[23]
for CCly + CsHg: o =[3], u-[23], o -[24]
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0 o 02 03 0 05 06 a7 08 09 D
mole fraction X, :

Fig. 1. Intensity of the anisotropic scattered component vs. the molar fraction x,. The present theoretical
results are plotted as continuous curves (upper curve — CCl, +SC; solution; lower curve — CCl, + CeHs
solution)

trations. Also, by resorting to the relation between the anisotropic component of scattered
light -intensity H, and the effective anisotropy [5, 9, 21]:

167* (n? +2\?
=— I? 94
v 1514< 3 ) ¢ ©9
we have calculated the theoretical values of H, for the wavelength A = 5460 A and plotted
them against recent experimental results {3, 23,24] in Fig. 1.

8. Conclusions

The present paper contains a theoretical analysis of the molecular mechanisms,
a discussion of the intermolecular interactions, and numerical calculations for the aniso-
tropic component of scattered light for two, selected binary solutions (CgHg—CCl,;
CCl,—CS,). Satisfactory agreement with experiment is thought to be achieved. The
subsisting divergences between the theoretical and experimental results are due, among
others, to the fact that the present numerical calculations are restricted to pairwise mole-
cular interactions, though we give general expressions for the contribution to the effective
optical anisotropy from three- and four-molecule interactions also. These expressions
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will be the subject of further analysis. The per cent deviation of the theoretical results
from the experimental data is the largest in pure CCl, (although small in absolute value);
this can be taken as corroborating our supposition that multi-molecular interactions, which
are particularly high in isotropically polarizable molecules, play an important rdle.

Our numerical calculations point to a decisive rdle of repulsive forces, as implied
by the Lennard-Jones potential, in the formation of the internal structure of dense liquids,
for which go® > 0.65 (in addition to noncentral forces due to the electric and optical
properties of the molecules, like dispersional and multipole interactions, etc.). This, in
our calculations, is apparent by way of the potential of Eq. (89). It was our assumption
that, beyond the range of action of the forces of repulsion between two molecules, the
latter cease to interact with one another, as they become involved in much stronger repulsive
interaction with other molecules. The radial correlation parametérs {r™"), calculated here
for this model, vield results in satisfactory agreement with experiment.

Our calculations point to non-additivity of the effective anisotropy of solutions.
Tables I and III show how the contributions to the effective optical anisotropy from
interaction between molecules of the same species and of different species vary in the
entire range of concentrations. A calculation for a solvent consisting of isotropic molecules
(CCl,) points to the rdle of interactions between its molecules and those of the solute.
The contribution to effective optical anisotropy from interactions between unlike molecules
is non-negligible even if one of the two species consists of isotropic molecules. Significantly,
this contribution varies with concentration, up to a maximal value of 209/ of the effective
optical anisotropy in CCl,—Cg¢Hs at x, = 0.3, and up to 139 of the total in CCL,—CS,
at x, = 04.

. Interaction between anisotropically polanzable molecules (in our case, between like
ones, thus C4H,, and CS,) leads to the emergence of some near range ordering; the prob-
ability of a given structure depends on their optical and geometrical properties. This
last problem, however, requires a separate analysis, which will be given in another paper.

We moreover hope to extend the molecular mechanisms proposed above to the case
of gases under high pressure [22].

The present work was intended in the honour of the Centenary of Marian Smolu-
chowski (28.V.1872-5.X1.1917), to whom is due the basis of the molecular fluctuational
theory of light scattering.

The authors wish to thank the Physics Committee of the III Department of the
Polish Academy of Sciences for sponsoring this investigation.

APPENDIX

On insertion of (25) into (37), we obtain the followihg second-approximation deviator
for axially symmetric molecules:

D;f) = _BL- Z Z Z {27aiakal[3 pirk : Trksl— U(Tpirk . Trksl)] +

kl r=1 s=

+9aiakv1[3 pirk - T, rkst Ssl U( pirk - T, rksl) : Ssl] +
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4 9ay,ay[3T ik S * Tona— UT i Trrr) © S +‘
+ 970,41 [3S,; * Tpirk * Lot — UL pigsc * Toag)) = Spi] +
+3aiYk71[3 pirk " Sei " Toest * St — UT s * Sy Topat) Sszj +
+ 3y 38, Tpim * S * T, rhst ™ U(I wirke * Seie " Toxst) © Spi] +
+3%:a038pi " Tpirie* Tkt * S~ U(Syi * Ssp) 2 Tpime * Tas) 1+
+ 00380 * Toirk * Sk Tovst * St — U(Spi * Sqt) : (Tpie * S * Taa)1}- (AD)

This deviator, inserted with the deviators (15b) and (24a) into Eq. (36), leads to the result
given by formula (45).

When decomposing the expression (27) into contributions from two-molecule and three-

-molecule correlations, it is convenient to use the following relations (we resort to the
definition of the tensor (18)):

11

{2]
[3]
[4]
[5]
[6]
[71
[8]
[9]
{10

S qurk = 3(zp1 qjrk zpl) (A2)
Spt : (Stu J"k) = 9(zm ztu) (zpt qjrk ztu) (‘S i+Sqi) T ajrks (A3)

Spi 1 (Sgj Tojri " Se) = 272 * 247) (T * 2pa) (Zgj " Tgjo * 2 —
Spi 2 (Sg;* Tojm)—Saj s Typec* S,k)—(Sp,- T+ S—(Spi+ 85+ 8u) : Ty (Ad)
On putting p; = g; in (A3) and (A4), we get the .following identities for pairs:
Spi 2 (Spi * Tpirk) = Spi * Tpiris ) (A3a)
15 (o1 Toir " S) = Spi s (Tpige * Sy +2T iy Sy (Ada)

Similar relations can also be derived for products of the tensors occurring in (46).
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