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Atoms and centro-symmetric molecules, for which second-harmonic elastic scattering is
forbidden in the electric dipole approximation, are shown to cause double photon scattering in
the electric quadrupole approximation. The process is described by a 4-th rank tensor of quadru-
polar polarizability qua_' x whose non-zero and independent elements are available in tabulated
form for all point groups. General formulae are derived for the light intensity components
quadrupolarly scattered at 2w as well as for their depolarization ratios, which are shown to

depend on the scattering angle otherwise than in the case of electric dipole scattering. The
theory is applied to atomic gases and ones with molecules of simpler symmetry.

1. Introduction

By using light from a giant pulsed ruby laser, Terhune [1] and Maker [2] performed
the first observations of second-harmonic scattering (SHS) in liquids consisting of molecules
without a centre of symmetry (H,O, CCl,, etc.).

Different aspects of this three-photon scattering process have been elucidated by
Blaton [3], Neugebauer [4], Kielich [5], Cyvin ef al. [6], and Bersohn ez al. [7]. In the
electric-dipole approximation in the absence of molecular correlations, elastic SHS is
described by a nonlinear polarizability tensor 47 [5] having non-zero elements for mole-
cules without a centre of symmetry.

From the very beginning, Terhune et al. [1] noted the presence of weak SHS from the
liquid trans-dichloroethylene, the molecules of which are centro-symmetric (in the cis-isomer
of C,H,Cl,, whose molecules lack a centre of inversion, the intensity was 20 times larger).
These facts led Kielich [8] to work out a theory of SHS by centro-symmetric, strongly
correlated molecules. SHS by centro-symmetric molecules occurs when, in condensed
phases, their symmetry undergoes degradation under the action of the electric fields of
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their neighbours. This new kind of SHS has been studied in detail recently in C¢Hg and CS,
by Lalanne, Martin and Kielich [9], who employed ruby and neodymium lasers in their
experiment.

In this paper, we show that in the electric-quadrupole approximation even individual
centro-symmetric molecules cause SHS. Strictly speaking, this scattering comes from two
sources, namely: (i) scattering of the dipole kind albeit induced by inhomogeneities of the
electric field of the light wave within a molecule (the electric field gradient of the wave
produces a change in dipole polarizability [10, 11]) and (i) electric-quadrupole scattering
(a strong electric field induces electric quadrupole moments). The investigation of this
type of scattering in gaseous systems is bound to provide new data on the tensors of
quadrupolar polarizability of atoms as well as centro-symmetric molecules.

2. Fundamentals of the theory

We are concerned with the electric and quadrupole radiation fields at a large distance
R = sR from the scattering atom or molecule,

1 ..
ED(R) = I?C—z {S X (SX D)}I—R/c, (1)
1
EQ(R) = W {S x[sx(s- Q)]}t—-R/w @)

where the electric dipole moment and electric quadrupole tensor of the molecule are, by
definition:

D= Zevrvs (3)
Q = %Zev(3rvrv—r%U)’ (4)

e, is the v-th electric charge with radius vector r,, and U the symmetric unit tensor.
We define the intensity of light scattered with oscillations given by the unit vector »
(such that n-s=0) by a medium of number density ¢ as follows:

I, = o[EQR) - n]*>q, 3

The averaging has to be performed here over all possible molecular orientations 2 and
time t.

On inserting (1) and (2) into (5), we obtain respectively for the intensities of electric
dipolar and electric quadrupolar scattering [12] :

0 -
DIn = 1—{2_04 <DiDjninj>ﬂ,v (6)

e
QIn = 9R__2é€ <Qiijlninjsksl>n,t' )
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It is our aim to calculate the intensities of SHS caused by an intense electric field
of strength
E(r, t) = eE(r) cos wt,

where e is a unit vector in the field direction E.
The components of the electric dipole moment D; and quadrupole tensor moment Qi
induced in the molecule at the frequency 2w, are [11]

D =1 {%buk KDEM+ } @B DE(r)+ ...} cos 20t, 8)
=% ‘Ikz uEk(r)El(r) cos 2wt + .. )]

where b} % is the tensor of nonlinear dlpole polarizability of order 2 induced by the square
of a uniform electric field, £, The tensor g7 ’tu describes quadrupolar nonlinear polarizability-
of order 2.

In the case of molecules without a centre of symmetry there exist non-zero tensor
elements b5 ;fv» and we deal with the intense dipole-dipole SHS discussed in detail in earlier
papers [5-7]. For molecules with a centre of inversion in their ground state all b7 i;x vanish
and, in the above approximation, SHS is forbidden. Nevertheless, for centro- symmetric
molecules too, SHS is allowed in the quadrupolar approximation described by the tensor
g% % having, for the ground state also, non-zero tensor elements irrespective of the
type of symmetry, including the spherical symmetry. The non-zero and mutually inde-
pendent elements of the quadrupole-polarizability tensor q? . are listed in Table I for all
point groups.

By inserting the expansion (8) into (6), and (9) into (7), we obtain for dipolar SHS
(in the quadrupole approximation) and quadrupolar SHS (in the dipole approximation):

DI,,(ZO)) Kqum mkq1$01<ninjsl(c)s?emeneoep>ﬂs (10)
° (2w) = Kqum(r}:,ikqaﬁjl(ninjskslemeneoep>!)' (11)

. . 20\ oI?

Above, we have introduced the notation K,,=| —
¢/ T2R?
light intensity as I = E2i2. s° is the unit vector in the propagation direction of the

incident beam (s° - e = 0).

and assumed the incident

3. Electric quadrupole scattering by individual molecules

Note that in Eq. (10), as compared with (11), we have performed a pairwise interchange
of indices: k <> n and [ <> p, so as to conform to the order of indices in Eqs (8) and (9).
We thus achieve a simplification of the results of isotropic averaging.

The averaging procedures in both (10) and (11) are identical. The general result for
the product nz;p,piene.e.e, is given in the Appendix. For dipole radiation, we have
to insert p=s° and s° - e = 0; for quadrupole radiation p=1s and s n=0.

Consider specifically the case with s° parallel to the y-axis and observation taking
place in the xy-plane in a direction subtending an angle 3 with s°. The laboratory xyz
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co-ordinate system is rigidly attached to the centre of the scattering volume. With this

configuration, we can distinguish the following four situations: the unit vector e can be

assumed to be parallel to x or to z, and similarly, the unit vector s can be parallel or

perpendicular to the xy-plane. These yield the 4 components of scattered light H,, V,,, Hy, V3,

where the subscript (v stands for vertical and 4 for horizontal) describes the state of polari-

zation of the incident light wave relative to the plane of observation.

For dipole radiation, we have
PH2:p-e=0, (n's°) =sin®9; PH;:(n-¢)* =cos®9, (m's°)* =sin”9,
(12)
by2e.(g-e) =1, n-s°=0; °V°:me=ns"=0,
and for quadrupole radiation
CH:p-e=s5-e=0; 2HX:(n-e)*=cos’9, (s-e)® =sin>9,

op20. (g =1, s-e=0;, 2W:n-e=0, (s-e’=sin’9. 13)

With regard to (A.2) and (10) and the previously stated conditions Eq. (12) yields:

K
Drr2 20 20 2
W = et BipumorThmi o
Pyze = Ko {961 dmnop — 1 jiimnop} dimenied 1ot 19
1890 S

' K 1 ® Y .
PH ;Z.w(s) = DVuzm"l' {ﬁ (75; jéklo-mnop_5ijaklmnap)qi2n,mkq?;:ol_Dnzm_zpvvz } sin” 9,

PHE(9) = PH}(9)+ PV ="V2%) cos? 5,
where we have used the notation:
Aijpimnop = 25200130 muop— 6030110 mnop + 27010 1umnop — 270110 idmnop + O jitmnop +

+9048 jtmnop + 9810 jimnop + 90 kT itmnop + 90 10 ikmnop-

For quadrupole radiation, with regard to (A.2) and (13), we obtain from Eq. (11):

K
Q20 _ 20 2 20
va = "% Aijklmnapqmg:,ikqol’:ﬂ’
Kz o o
Qszm = 189‘:) {95k10'ijmnop—aijklmnop}Qrznn,ikqu,ﬂ’ (15)

2p2a(g) = Qp20 4 (2H2 _2p29) cos? g,

@ ® K2 . @
QH: (‘9) = Qsz + 7;6% Slnz 8 cosz 199i,iklmm)pqrzni‘:,ikqu,jb
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where, in deriving the form of 2y 22(9) and 2H2?(9), we made use of the obvious fact
that the combinations &;; Oymep a0d Ox10ijmmops acting on the tensor product q,,,,,,,kq,,p il
yield the same result, whereas the tensor ijumnop 1S of the form:

-Qijklmnop =63 a'iiklamnop+356iiklm"011 - 905"’6”"'”“1’ - 455ik6j Imnop ™ 455itajkmnop B
- 4551',‘0','1",”01,+455jlaikmm)p‘

From Eqs (14) and (15), we derive the following reciprocity relations between the
components:

Dme — DHim(OO)’ DVth — Dng(OO)’ DHgm(goo) — DHfm(QOO), (16&)
Op2e = QY2e0%),  QV2® = PWPU(90°) = CH;A(90°) = 2H,(0°). (16b)
These reciprocity relations obviously differ from those of Krishnan, which hold for dipole
radiation due to the square of an electric field and have the well-known form [8, 13]

DH'?G) — DI/h2w = Hha)(goo).

The formulae quite generally derived above for the intensity of scattered light can
be particularized for various molecular symmetries. To achieve this, the relations between
the non-zero elements of the quadrupole hyper-polarizability tensor q " have to be avail-
able. These relations have been found by standard methods of group theory [14] and
are listed in Table L

4. Application and discussion

In atoms and molecules possessing icosahedral symmetry, the tensor qf,‘:}d has but
one independent tensor element and takes the form [11]

Qizj(fkt =% ‘12m[3(5ik5ﬂ+5i151k)-‘25ij5m]a an

where the parameter ¢,, = 1—zgq,2j“:, is the mean hyper-polarizability; in the present

case gz = drvas-
Insertion of (17) into Egs (14) and (15) transforms them into:

DV,,Z"’ — D~Vh2¢o = QHza) — QVUZw — QVth(s) — 0,

2

20\° ol
DHZw — DHZoJ 9) = 2 'n2 9,
v ('9) h ( ) ¢ 128R2 g2 St

2 6 12
Hy; () = ( co) 3§R2 g3, sin® 9 cos* 9. (18)

The two kinds of radiation under discussion can be easily distinguished from one
another owing to the circumstance that the component H?® has its source in dipole

radiation exclusively. A supplementary factor helping to distinguish between them is to
be found in the different angular dependences of the components HZ®
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For molecules having the symmetry Oy, the tensor q,zj‘f,", presents the two independent
tensor elements g, and ¢22., and takes the form:

qizj?kl = % 420 3(0ud 1+ 80 5) — 20,0, ] +
+ 3 quKq[s( XX £l+9i}j.§k9l+2i£ jékél)—aijkl]’ 19
where ¢,, = s(qm,—I-qux) and x, is a dimensionless anisotropy parameter, x, =
34—

5q2co
The unit vectors X, y, z point in the directions of the axes x, y, z of laboratory co-ordinates.

For dipolar scattering by (19) in the quadrupole approximation, Eqs (14) and (15) yield:

20\° 5eI*
Dy 2w Dy/20 2 2
pe = 2PpRe o (0] = g2 42
g (c) 3024R? 120"

?.
° 20 ol? 9/
bp2o(9) = ( . ) 54193R? qu[401c +7(27—)€x ) sin® 9],
o 20\° oI’ .
PHZo(9) =( > TR q2w[20K:+(189+{{6x2) sin 9], (20)
whereas for quadrupolar scattering in the dipole approximation:
20\® 5oI*
QVZm — 2QH2w == ,
v v (c) 3024 Lo

20\° 5eI*
op;2e(9) =( ) e Bora2—cos’ 9),

ep2a(g) = (2“’> o [10%2 + (189 +x2) sin® § cos? 9. @1
h G0 o

It may be worth noting that for x, = 0, i.e. for g, =32 ¢2°., formulae (20) and (21)
reduce to the relations (18).

Similar calculations can be effected for other symmetries. Obviously, these will involve
other elements of the hyper-polarizability tensor.

In the analysis of scattered light it is convenient to resort to depolarization ratios.
Since we are dealing here with two kinds of scattering of similar magnitude, the depolariza-
tion can be defined for both simultaneously or for each separately. Using Krishnan’s
definition D, = H,/V, and D, = V,/H,, this can be done easily by resorting to the rela-
tions (14) and (15) or, with regard to the symmetries considered here, to Eqs (18), (20)
and (21).

We shall now assess the ratio of quadrupole second-harmonic intensity 2I(2w) and
usual linear intensity ®/(w) numerically. In particular, for a gas, we have the Rayleigh
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4
)
formula, ’I(w) ~ | —) a2 I, where a,, is the linear polarizability of the atom. Omittin
: ing

any consideration of the polarization state and angular dependences, we have for atomic
gases the approximate formula [11]

°1Q2w) 1<2w>2 (qz,,, 21
Plw) 4\ c 'af,) '

For xenon, a, = 4.11x10~2*cm® and [16] ¢ = —1.08 xX103% e. s. u. whence
212w
——D( ) 5 107272721,
()

At the ruby laser wavelength (A = 6943 A), the ratio of these intensities is of the
order of 1012 I, which is too low for experimental detection. The only hope of detecting
the effect in atomic gases lies in strong UV lasers and future lasers operating in the X-ray
region.

Let us now make an assessment of the ratio of electric quadrupole scattering 2I(2w)
and dipole scattering ° I(bizj‘;"). In the case of tetrahedrally symmetric molecules, this ratio

is approximately
U0a) 35 (20) (420’
PlQw) T 192\ ¢ ) \bi%,)°
where 522, is the only non-zero tensor element 75 for the symmetry 7,. For methane,
b%, = 1032 e.s. u. [17] and ¢ = —1.2x1073% e.s. u. [18], whence
212w)

~ 10711472,
P12w)

In the visible range, the above ratio is of the order of several per cent, but grows for UV
and shorter wavelengths.

Obviously, the role of SHS increases in the case of strongly quadrupolar molecules
(like CS,) and macromolecules of dimensions smaller than the incident wavelength.

APPENDIX

The result of isotropic averaging of the 8-th rank tensor nn;p,pee,e.e, over all pos-
sible directions of the vectors n, p and e with respect to the laboratory axes xyz has to be
expressed in terms of appropriate combinations of the unit tensor 6;;,041,0ms 0, -.. This
can be written as follows:

NN DDIemenep)a = A10ii010mmopT A28 110 mnop + A30:0kimop+ A2000  jmnop +
+ A50, jkmnop + A6L OO jimnop T 010 jkmnop + 0 kT stmnop + 0 510 — (A.1)

In establishing the final form of (A.1), we resorted to the pairwise equivalence of the indices
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i and j; k and I; m and n; and o and p; in other words, to the equality of the respective
expansion coefficients.

The tensor 0 jxmn, consists of seven permutational combinations of the form 6;;64mnop>
and the tensor Oy, of five combinations of the form 66,0, Hence, finally,

Grnop = OrmnBop -+ OmoPup+ SmpOno

By consecutive contraction of the tensor (A.1) in the pairs of indices i = j; k =1,
m=n;o=p;and i=k;j=1;, m=n; o=p; ... etc., and keeping in mind that

mpp=n-p, ne=mn-e pe=p-e,
and nm; = pip; = €6, = 1,

we obtain a set of 6 equations for the coefficients A, ... 4¢, the solutions of which,
inserted into (A.1), yield:

<ninjpkplemeneoep>ﬂ = —5—66 {252[1 (n p) —(n e) _(p . e)2+

+2n-p)(n-e)(p: e)]éijék,amw+63[— 142(n- p)*+(n-e)*+(p- e+
+(n-e)(p* €)*—4(n" p) (n- &) (P 01O mmop+9[—3+2(n " p)*+
+7(n- e +3(p- €)*~5(n- &)’ (p- e)*—4(n " p) (n" €) (P " €)]0u0imnop
+9[=3+2(n- p)*+3(n- &)’ +7(p - &)*~5(n" e)*(p - &) ~4(n " p) (n" ) (P* )]0:/kuimnop
+[1+2(n" p?—5(n-€)*—5(p - e)*+35(n- €)*(p - &) +
—20(n - p) (n - €) (P * &)1, jsimop+[1—2(n " P’ ~(n-&)*—(p ey’ +

—5(" : e)2(p . e)2 +8(" : p) (" : e) (p ' e)] [5ikajlmnop+6ilajkmnap+
+ Bjko'ilmnop + 5jlaikmnop]}' (A2)

The preceding result can easily be checked by putting p = e. The result obtained in
this way coincides with the earlier [15] result of {nm;eieenenes€,)a for third-harmonic
dipole scattering.
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