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We propose that the study of reversal ratios in double-photon scattering (DPhS) offers a new means of direct deter-
mination of the anisotropy of nonlinear polarizability in molecules without a centre of symmetry. The fine structure
theoty of rotational DPhS of circularly polarized light is treated from the viewpoint of angular momentum theory as

well as irreducible spherical tensors.

1. Introduction

The theoretical fundamentals of multi-photon elas-
tic and inelastic light scattering [1, 2] along with the
earliest observations in liquids with noncentro-sym-
metric [3, 4] and centro-symmetric [5] molecules
have given rise to the modern nonlinear molecular
spectroscopy [6, 7]. The present level of laser tech-
niques and highly sensitive methods of photon detec-
tion [4] permit the unravelling of fine structure in
rotational spectra of double-photon Rayleigh as well
as Raman scattering [8—10].

We give an analysis of double-photon scattering
(DPhS) by circularly polarized light both classically
by cartesian tensors, and by angular momentum the-
ory and irreducible spherical tensors. The former meth-
od permits simple calculations of reversal ratios and
their relation to the anisotropy of nonlinear polar-
izability of noncentro-symmetric molecules. The lat-
ter permits the fine structure analysis of DPhS spec-
tra due to rotational motion and vibrational—rotational
transitions of molecules.

2. Elastic scattering
Consider a molecular gas excited by an intense laser

wave with electric field E(w) oscillating at the circular
frequency w. The molecular electric dipole moment

induced at doubled frequency 2w is [1]:

1. =2 bl] % E 2 ER, 4]

where the third-rank tensor bz/k defines the second-

order nonlinear molecular polarizability, a function

of 2w. In ground states, nonzero tensor elements

blzl‘ic’ exist only for noncentro-symmetric molecules.
With circularly polarized light propagating along

Z, we have for the right sense:

= (B9 +iEVNT ®)
whence the induced dipole moments are respectively:
mi® = (X2 FiY29) EC Y3 3)
Here, on the assumption of total symmetry of b,]k ,
XpO=plg +bke, YR =ple pke ()
X2 =ple —3bZe, Y20 =p20 _3p2e . (5)

We define the following 2¢w scattering intensities for
right and left senses:

2% = (Nj2cYy 2@ (m2)yh,, (6)
where ()¢, denotes averaging over all possible equally
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probable orientations £ of the N molecules. In order
to effect the averaging of (6), we transform b,]k from
laboratory (i, 7, k = x, ¥, z) to molecular (&, §,y =

1, 2, 3) coordinates:

b2w (7

bl]k €ia g Cky Papy

(directional cosines c;,,). By (3)—(7), we finally obtain:

4
2w N (2w 2 2 N2
I+w"2100 <_c_> (14a2w+62w)1+

20 . N )
I_w_m_<c> 6212, ®)

where we have introduced the following nonlinear,
respectively isotropic and anisotropic molecular param-
eters:

— 32 2
a2w boc(éJB baf;,'y
_1 2 2 2 2
=70 ba;;/ ba‘;'y - 3ba?306 a(vuv) ©)

By (8), we get the reversal ratio [11] for second-har-
monic scattering by a gas of molecules:

2 1563
Ro™ s = i (10
T fraed 1405 +62w

12w

In particular for molecular symmetries Ty, D3y, and Cyy,,
this yields:

2 - 2
o5 =0, [32

w

= 150352, (9a)
whence R, , = 15.If, for a given symmetry, the aniso-
tropic parameter vamshes B, = 0, then also R, , = 0.
The assumption a%w = Bzw yields R, = 1.

For the molecular symmetries C4,, C¢, and C,,

the nonlinear parameters (9) become [9]:

2w + 2b2w

o, = (b33 + 2b153)%, —3b353)% (9b)

85, = 3%

Likewise, they can be derived for other molecular
symmetries.
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3. Rotational fine structure

Consider now a vibrational--rotational transition in
the ground electron state giving rise to fine rotational
structure of second harmonic scattering.

On denoting by x, y, z the vectors of the cartesian
frame X, Y, Z the spherical reference system is defined
by spherical vectors of the standard basis:

—3iV2 (x +ip),
ey =iz,
=3iV2 (x - ip). (11)

An arbitrary vector 4 =xA, +yA,, + 24, now takes
the form

A=2e Ay, = Die, ~n-14_, (12)
q q

where ¢ = +1, 0, —1 and the brackets [ ] denote a tran-
sition to the contrastandard basis.

Starting from the vector components (12) in the
spherical basis, we use Clebsch—Gordan coefficients
to obtain spherical tensors of successively higher rank
in accordance with the formula:

I 1,1

I 1h A

Tl = ¥ [ ]TmlT .
myny m1m2m

(13)

We assume the phase to be chosen so as to fulfil the
relations:

o I-m !
T, =(=1) T, (13a)
The above property is unaffected by tensor composi-
tion according to (13).

We symmetrize each of the thus described tensors
by the genealogical coefficient method [4, 12], ob-
taining:

_ Im pl
- 2 Cijk B, (14)
Im
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Table 1
Coefficients cll]’}g

bl'jk

m booo bioo b_go bivo

bg  be-o  base  beee buwe b

B 13

B 2/J15

B ~ 2//15
By VI3

B! ~1//15 .
Bl —1/\/15

Bp ~BN5

1/3
/15
115
1V/10
2/ /15
215
115

The transformation coefficients cll]',’é
We define the DPhS intensity tensor [1,9]:

""154 NUJ’T
& c 2J+ 1

X 2 @' T MR 0T

1&’:

U

m[—

X @I T MBS It L, (15):

il
I =3 E, E} is the incident light intensity, NV, ;. the
number of molecules in the initial state, g; the nuclear
statistical weight factor, wg = 2w * w,, the scattered
frequency, and w,, are molecular frequencies. The
quantum numbers v define the vibrational state and
J M 7 the rotational state. For symmetric top mole-
cules 7 = K, and for linear ones moreoyer K = 0.

At incident EY light, we get by (14) and (15) the
following right and left circularly polarized scattered
light components:

] 1 wg\t

J1JI\2 J'3J\2
x{zs( ) I31I2+3< >|§§l2}13,
K'qk/ 1 —KrK

+
-8

) w\ J 3
"~ & <7> @+ <_K rK
(16)

are given in table 1.

J\2
D312 12
>|Br|1+.

The tilde in E states that the spherical tensor is ex-
pressed in coordmates rlgldly attached to the molecule.
The coefficients (M My M 3 ) are Wigner 3j-symbols.

Performing in (16) 4 summation over all possible
quantum transitions J K - J'K’, we obtain for the
total intensity formulas (8), where 2¢w has to be re-
placed by w, = 2w * w,,, and the nonlinear param-
eters in (9) by:

k= }_‘,IE 2, B.,2=12 B3 (17)
14

For elastic scattering, these parameters reduce to the
form (9) as a result of classical averaging. For inelastic
scattering, on the other hand, we have:

. 0B’ 2
w2 _ q '
z:_)u;ql _Zq) K@)o w 10 lvm>( ,

(17a)

where Q,,, is a normal coordinate of the mth molecular
vibration.

Linear molecules admit transitions with AJ=*1,
* 3, and the Wigner coefficients in (16) are simple
functions of the quantum number J:

for AJ=+3:

t

, 25 (J+tDU+DE+3)
@7+1) <ooo> =G DI T+
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for AJ=+1:

, J’1J2 J+1
(N”)(ooo) Ak

4

, 2 3 JU+ 1D +2)
@7+ (000> 3 G-I DI

When considering transitions AJ=— 1, —3, one has to
replace J by J — 1 above.

For T4-symmetric molecules, with energy indepen-
dent of the quantum number K, the intensity of the
J = J"band is obtained after summation over all pos-
sible K, with the selection rule AK = 2. Eq. (16)
yields:

W\ oy + 1
[93= 15178 = 56 &V, b <—C-S> . (16a)

4. Conclusions

From the above we conclude that the numerical
value of the reversal ratio (10) in DPhS lies within the
range:

0<R, <15, (18)

where the lower limit O corresponds to weak nonlinear
anisotropy (8;,, < ay,,) or none at all (8,,, = 0)
whereas the upper limit 15 is attained in molecules
with very large nonlinear anisotropy (8, , > a5, or
o, =0).

For comparison, in single-photon scattering we
have [11]:

O<R, =682 /(3c% +p2)<6, (19)

with isotropic and anisotropic parameters of the linear
polarizability tensor agg in the form:

2 - W W 2 -1 w oW W W
o, =y 4, ﬁw—2(3aaﬁaaﬁ aaaaﬁﬁ). (20)
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Formula (18), considered against the background
of (19), shows that experimental studies of the reversal
ratio of DPhS will provide an excellent extension of
existing R , studies. Their advantage over studies based
on the depolarisation ratio [1-5, 9]

2 2
<p’ = 7a2w+862w

= =2 L2 21
20 2 2 3
63 oz, t 12 Bzw

O

resides in the fact that the reversal ratio permits the
direct determination of the anisotropy of nonlinear
molecular polarizability 8, ,, as is seen from eqs. (8)
and (10).

The above-proposed methods can be of use in cal-
culating the ellipticity [13] and angular dependence
[14] of nonlinear light scattering.
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