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Translational—orientational fluctuations are shown to raise or lower the depolarization of light scattered by so-
lutions according to the structure of the near-order region of anisotropic molecules. In solutions of atoms, transla-
tional fluctuations induce anisotropic scattering already described in the bi-molecular radial correlations approxima-
tion; in accordance with the latest experiments, this scattering undergoes an increase or decrease depending on ter-
nary radial correlations. A general expression for the effective optical anisotropy of the near-order region in solutions
is applied to the dilute case permitting, in a novel manner, determination of both the value and sign of the anisotropy
for isolated solute molecules.

1. Introduction

Depolarization of light scattered by an interaction-less gas is known to be due solely to the intrinsic anisotropy
of the isolated molecule [1]. In real gases, liquids [2] and real solutions [3], the depolarizing agent generally re-
sides in an effective optical anisotropy of the region of near ordering, where various statistical fluctuations take
place. On neglecting internal interference as well as frequency and spatial dispersion, this effective anisotropy can
be defined, for multi-component systems, as [3, 4] :
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where we have introduced the deviation tensor of optical molecular polarizability:
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Above, m(P?) is the electric dipole moment induced in molecule p of species i (immersed in a medium with a
total number of molecules N = Z;V;) by the electric field E of the incident light wave; 84p is Kronecker’s unit
tensor, the summation is over recurring indices « and 8, and { ) stands for statistical averaging in the presence of
molecular correlations.

The deviation tensor (2) is defined to vanish for isolated atoms and isotropically polarizable molecules i.e. when
a linear vector function m®?) = a,; E holds, where a,; denotes the scalar optical polarizability of molecule p of

* On leave from the Institute of Physics, A.Mickiewicz University, Poznan, Poland.

516



Volume 10, number § CHEMICAL PHYSICS LETTERS 1 September 1971

species i. The deviation tensor (2) and consequently the effective anisotropy (1) differ from zeio only if:
(i) the molecules are intrinsically anisotropic in the ground state,
(ii) if isotropically polarizable atoms or molecules interact subject to translational knkwood Yvon fluctuations,
or if the molecular interactions perturb their intrinsic polarizabilities [2] in accordan:e with the Jansen-Mazur
[5] model, and
(ii1) if the atoms or molecules are subject to non-linear polarizability in the time- and spatjally fluctuating elec-
tric field of neighbouring molecules [3, 6] .

2. Angular correlations

For optically inactive molecules with intrinsic anisotropy given by the linear polasizstility tansor a“ D the
deviation tensor (1) becomes simply, in the absence of molecular fields,
@9y =D _
Dﬁlﬁ (0) aaﬂ aptaaﬁ ) : (3)
whence the effective anisotropy (1) can be written in the form of an expansion.
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is the optical anisotropy of the isolated molecule of component i at molar fraction /,.
The parameter JA describes angular correlations between moleux]es of species £ av o warphicity we adduce
p ] p { E

it for the case of axially-symmetric molecules (when a(’) = a22 # a33) and y; = a(’) w‘/?‘! KR
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’(]2)(1!, 7_} denoting the binary correlation function for molecules p and g of species s 77 5t oot s T
and 7_ with their symmetry axes subtending the angle 0(”‘7), p = N[V is the putabes & oo ot nolecudss in the

medium of volume V.
The expansion (4) applied to a two-component solution yields [3]:

2 2.2 2 /A ,
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whence the anisotropy of the solution is found to be an additive property only as luﬂ; aangie o orrelations are
absent. If present between like molecules (Jll and J22) or between ones of difivicni spe cooa {8y 4, angular coue-

lations cause a deviation from addivity in FZ proportlona] to the square of the molm h & UOns,

Numerically, the angular-correlation parameters J i can be determined experimen it in pus dymds [7--9]
and solutions [10—13] and calculated theoretically for weak correlations {2, 3] and Fc)r the verv strong angula
correlations existing in benzene and nitrobenzene [4]. In the two limiting cases [ 14} of snokecvlis correlated

(i) into parallel pairs (paratropism, J{} =z)and

(ii) into pairs of mutually perpendicular partners (diatropism, l,] —~z[2), one can grin infoanation regarding
the number z of nearest neighbours.

517



Volume 10, number 5 CHEMICAL PHYSICS LETTERS 1 September 1971
3. Translational—orientational fluctuations

The tensor expressed in the form of eq. (3) led to our obtaining a non-zero effective anisotropy (1), reducible
to an additive anisotropy of isolated molecules (5) and a non-additive anisotropy (6) of angularly pairwise-inter-
acting molecules. In this approximation, multi-molecular (trlple and higher) correlations become apparent only
indirectly by way of the two-molecule correlation function g( ). We obtain a direct expression of the influence of
multimolecular correlations on I'? by writing the deviation tensor (2) in a form taking into account translational
and orientational fluctuations

nypﬁi)zDgy)(O) EZ} (a(pt) (sk) &5053 21;1) (sk))T(pS) ¥ (8)

where T(p )= -, 5(3
s at dlstance r

Insertion of eq. (8) into eq. (1) yields, in addition to the anisotropy (4), yet another anisotropy due to trans-
lational and orientational fluctuations:

Fosy pss p ¢85 is the tensor of interaction between dipoles induced in molecules p and

Eff( Taa; TR + Efffk( Taask* Do) * - (9)

For axially symmetric molecules and pairwise correlations (in a first approximation with respect to the inter-
action tensor T) we get:

TR oy = 3030, =1)Ba+y,=1) + 7 Ga,=)Bay+y— W oA + §r,7(Ga,+3a 4 49) KEA (10)

involving the new cross parameters of pairwise radldl—-angular correlations:
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Bp,- and Gq]- denoting the angles between the symmetry axes of molecules p and g (of species / and j) and the
vectorr,, respectively.

On considering the form of the correlation factors (11) and (12) we note that the contribution (10) is non-zero
only if correlations of the orientational kind are present and that this contribution is positive or negative according
to whether the molecules tend to combine into roughly paratropic or diatropic pairs [4] .

The anisotropy 1‘12{ Aijk 18 given explicitly in the appendix.

4, Translational fluctuations

The second approximation will be considered here only after neglecting intrinsic anisotropy i.e. when the devi-
ation (3) vanishes; in eq. (8) the sole contribution to the effective anisotropy (1) is then due to purely translational
fluctuations:

2 - 2,R
Tg; =942 , (13)

518



Volume 10, number 5 CHEMICAL PHYSICS LETTERS 1 September 1971

involving the bi-molecular radial correlation factor
R_ 20 -6 ,(2)
= f f Toq & Up>Tg)d7,47, > (14)

which is subject to calculation using Kirkwood’s rigid-sphere model [6] and the general Lennard-Jones potential
[15].
The next contribution, that with three-molecule correlations, is (neglecting anisotropy) of the form:

) 2, 2,2 R
TR = 60;0,0, +a;a7 ay +a; a,a0) iy s (15)

with the ternary radial correlation parameter of the form:
2
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g,(j?(’rp, T 7,) denoting the ternary correlation function for three molecules p, q and s of species i,/ and k at con-
figurations Tp Tq and 7.

The ternary correlation parameter (16) deserves particular attention since it can be positive or negative, where-
as the parameter (14) is always positive. When the vectorsr,, and r,; are approximately parallel (asymmetric struc-
ture of nearest ordering), J}}k is positive, raising the effective anisotropy. If r, , is almost perpendicular on r ¢ or
subtending the angle /3 (symmetric structure of nearest ordering), J}}k is negative thus lowering the effective ani-
sotropy. The latter case is close to reality (especially in atomic substances) since with increasing density the struc-
ture of near order tends to become more and more symmetrical, and effective anisotropy has to decrease. This
conclusion is confirmed by the latest measurements of the spectrum of the depolarized light scattered by liquefied
[16—18] and highly compressed [19] rare gases.

5. Dilute solutions

By combining eqs. (4) and (9) we obtain a general expression for the effective anisotropy of multi-component
systems:

2 _ 2 2 2
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where the first term expresses the additivity of anisotropies of the isolated molecules of the components in mix-
ture. The higher terms define deviations from addivity in the effective anisotropy arising from bi-molecular, tri-
molecular and multi-molecular correlations of the radial and angular kinds.

On applying expansion (17) to dilute solutions as done by us in the Kerr-effect theory of multi-component sys-
tems [20], one obtains for infinitely high dilution:

T2, 2
2203 (2 e 2 2 2 2
(‘a_f—)f-»o =Nt {af(F11+F111 * )+ 2(P12_F11)+ 3(F112_F111) N PP (18)

where f= f, is the molar fraction of solute.
If the solvent (index 1) consists of intrinsically non-anisotropic molecules (y; = 0), eq. (18) yields with regard
to the previous results (6), (10), (13) and (15),
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ar2 )
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g
Since Jlfz/.llfl = Jlflz/ﬂfu ~ p,/p1, when considering cases in which a; ~ a, the effects of pure redistribution
cancel out mutually and we obtain by eq. (19), for the optical anisotropy of a solute molecule at infinite dilu-
tion,

ar2
V3 = (T';)H) — 20,7, [2Gay +7,) Toa* + 3a, I5] (20)
Consequently, in determinations of values of the optical anisotropy of axially symmetric molecules from meas-
urements of light scattering by infinitely dilute solutions, an important role belongs to solvent—solute molecular
translational—orientational cross fluctuations whose positive or negative contribution to 'y%w is considerable.
Moreover, obviously, eq. (20) can provide a new method for determining not only the value but also the sign
of the optical anisotropy of axially symmetric molecules, since JII{Z can be positive or negative [4].

In fact, as.confirmed by the latest experiments, anisotropic molecules while continually regrouping them-
selves in the fluctuational region of near ordering, at the same time reorient themselves with respect to each
other causing an increase or decrease in the depolarization of scattered light. In atomic and molecular solutions
lacking intrinsic optical anisotropy, the effective anisotropy induced by fluctuations in bi-molecular regrouping
can undergo a lowering or an enhancement under the influence of multi-molecular regroupings in the near order
region.
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Appendix

Since the polarizability tensor for molecules with axial symmetry (unit vector §) is
(i) = - i) gD

we get with regard to egs. (1) and (8) (in an approximation linear in the interaction tensor T):

) N;i Nj
2 =55 2770 5 5 (3cos* 4P —1))
if p=1 g=1
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+ 7i7j(3ak M’Yk)[(:;sz(xqj) cos 95}74) 4S<(xpi)) To(;gr) Sépi} + (3sf(xpl') cos 0{5_174) _S((XQJ')) Tofgr) SL(;I]')]
+ 7,7, (3 cos el.g.l’q ) cos e].(,g’) —cos 0y s Tofg” Sg" )
(rq) (pr) (griy i) 7(qr) g(rk)
+ (3 cos 6/ @ cos 0" —cos 6].]? ) S Tag S5 3. (A2)

In bi-molecular correlation approximation we obtain from eq. (A.2) expressions (4), (6) and (9)—(12). In
the case of a solution where the molecules of component 1 have zero intrinsic anisotropy and those of com-
ponent 2 are axially symmetric eq. (A.2) leads to the contribution

2 — 2. iRA
TRa 112 = 21211 (A-3)

occurring in eqs. (18)—(20) with parameter
2
* JRA _P 29 _1),3,03
112 i fff (3 cos 0p2 l)rps gllZ(Tp’Tq’Ts)dTpqude (A4)

describing ternary correlations between two isotropic molecules and one anisotropic one.
Thus, l"%{ A1z and F% A 112 define the influence of a solvent on the optical anisotropy of molecules in solution.
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