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Summary. A classical theory of complete dielectric saturation in dilute solutions of prolate and
oblate macromolecules is proposed, taking into account the reorientation of permanent and induced
electric dipoles by an applied DC electric field of arbitrary strength up to field strengths causing, in
the limiting case, complete alignment of all the macromolecules in solution. Graphs of electric reorien-
tation saturation functions are plotted for non-dipolar, weakly dipolar, and strongly dipolar macro-
molecules. It is shown that, depending on the electric and geometrical structure of the microsystems,
not only monotonously positive or negative saturation can occur but also new saturation processes
which change their sign from positive to negative or inversely as the field increases. The theory is ten-
tatively applied to a qualitative interpretation of experimental results.

1. INTRODUCTION

To O’Konski and co-workers [1 - 3] are due the earliest experiments on electric satu-
ration of optical birefringence in polymer solutions. The theory of this phenomenon is
based essentially on the Langevin-Debye theory [4 - 6] of electric reorientation of the
dipoles and polarizability ellipsoids of the macromolecules in a strong DC electric field.
- " Complete electric saturation of the change in dielectric permittivity has been observed
but recently in solutions of dipolar macromolecules (where saturation was negative 4)}
and in solutions of nondipolar and weakly dipolar ones (where saturation was found
to be positive in the entire range of variations of the electric field strength [8, 9]). A theory
of complete dielectric saturation was put forward already by Booth [10], who applied
the Onsager model [11] to dipolar water molecules. Applying the semi-macroscopic Kirk-
wood [12] — Fréhlich [13] method for dielectrics, Kielich [14] proposed a theory of com-
plete dielectric saturation in dipolar liquids taking into consideration statistical mole-
cular correlations.

In this paper, we shall develop the recently announced [15] theory of complete dir
electric saturation in solutions of macromolecules and colloid particles. We assume, fo-
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simplicity, the macromolecules as sufficiently rigid, prolate or oblate in shape, and pre-
senting or not presenting a permanent dipole moment. Particular stress will be laid on
molecules which are dipolar and, moreover, anisotropically polarizable, since here a
strong DC electric field causes a reorientation of the permanent and induced dipoles,
leading to the following two cases: (a) If the macromolecules (or colloid particles) are
prolate, with dipole moment lying in the direction of maximal electric polarizability,
the two reorientation processes (that of reorientation of the permament dipoles and that
of reorientation of the induced ones) enhance one another, making saturation easier;
(b) Inversely, if the microsystems are oblate, so that their permanent dipole moment is
perpendicular to the direction of maximal polarizability, the two reorientational processes
compete, leading to a lesser degree of ordering (field-alignment).

2. FUNDAMENTALS OF THE THEORY OF ELECTRIC REORIENTATION

Let us consider a polymer or colloid solution so dilute as to render interactions between
the macromolecules or colloid particles negligible. Neither can there be any direct inter-
action between these macrosystems and the molecules of the solvent, which is assumed
as not affecting their properties. Let &,, &,, &3 denote the principal electric permittivities
of a microsystem in solution in an isotropic solvent of permittivity &,. The linear electric
polarizabilities of the microsystem (macromolecule, colloid particle) are now given as
[16, 17}:
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ry, T3, I3, denoting the semi-axes of the dielectric ellipsoid. For the sphere we have
L, =L,=L;=1%; for a cylinder with axis directed along the principal 1-axis L, =0,
L, =L;=%; for a flat circular disc Ly =L, =0, L3 = 1.

We assume the microsystem to possess the permanent electric dipole moment p
and to be linearly polarizable. The total electric moment in an externally applied elec-
tric fleld E is now:

my=p+a; F; (3

with «;; — the tensor of its linear polarizability the principal elements in which are given
by (1). The electric field F is the field effectively acting on the microsystem in solution;
in general, it is not identical with the external field ¥ {17].

The potential energy of a microsystem in the external electric field is, to within the
second power of the field strength [18]:

u(Q, E)=—py, Fi—4a, F,F,. C))
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On the simplifying assumption that the microsystems are rotation-symmetric about
their principal 3-axis along which the dipole moment g is directed (we shall define this
axis by the unit vector k), we have [19]:

wi=psk;, a;;=ad;+(as—o)(kk;—46,), )]
d;; denoting Kronecker’s unit tensor with diagonal elements equalling 1 and non-diago-
2
nal elements equalling 0, and a=(}i—;—i1-) the mean polarizability,

Let e be a unit vector pointing in the direction of the externally applied electric field;
with regard to egs. (5), we can now write (3) and (4) more simply in the form:

me;=m-e=p;cos 3+ {o+ (a3 —;)(cos 28—} F, 6)
u(Q, E)=—p; Fcos9—4{a+(a;—a,)(cos’ 8~} F?; ' @)

9 is the angle between the symmetry axis of the microsystem and the direction in which
the field acts (e;k;=e-k=cos ).

In the absence of an electric field, the axes of the microsystems point randomly, and
no direction is privileged. When an electric field is applied to the solution, the micro-
systems undergo orientation by the field. As a result of this reorientational process, and
after the system as a whole has attained thermodynamical equilibrium, the symmetry
axes of the microsystems are directionally distributed in accordance with a Maxwell-
-Boltzmann statistical distribution function:

u(Q,E)
exp{—— T }

f exp {— ? (f;wE)} aQ

where the integral in the denominator extends over all orientations 2 with respect to the
field E. The differential body angle dQ=sin 3d9dg, with ¢ the azimuth of the symmetry
axis.

If, in particular, the potential energy of a microsystem is of the form (7), the distri-
bution function depends explicitly on 3§ only, and can be written as follows [20]:

J(Q,B)= ®

3+qcos®9
£9, B)= — exp(pcos3+qcos’ ) )
2 [ exp(pcos8+gcos® 9)sin $d9
(1]
with
us F
P=T7 (10)

denoting a dimensionless parameter of reorientation of the permanent electric dipoles
43, and

q="———F? )]
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a parameter of reorientation of the induced electric dipoles, whose anisotropy of pola-
rizability is defined as |o3—a,].

In the distribution function (9), the upper sign ,,+ " has to be used in the case of pro-
late (cigar-like) microsystems, whose anisotropy of polarizability is positive: az—e;>0.
This, e. g., is the case of the CS, molecule. The lower sign ,,—* is for oblate (disc-shaped)
microsystems, whose polarizability anisotropy is negative, a;—o,; <0, as in the case .of
the C¢Hg molecule.

With the explicite form of the distribution function (9) known, we are now able to
calculate the statistical mean value of the projection of the dipole moment (6) into the
field direction, from the well-known definition:

(m-e);= [ m-ef(2,E)dQ, (12)
This leads to the result:
{m-e)g=aF +p3{cos g+ (a3 —0t1)(cos” )z~ F (13
where [20]:

f cos"3exp(pcos $+ gcos® 9)sin 348
Ccos" 9D p=Ly(p, +4)="— : (14)
f exp(pcos9+gcos®9)sindd9 - :

o

Above, we have introduced generalized Langevin functions L,.

When the mean statistical projection of the electric moment into the direction of
the field is known, we can proceed to calculate the electric polarization P of the medium
as a whole. In the present case (in the absence of correlations), this polarization is of the
form: ‘

Pg=p{m-e)g (15)

with p — the number density of macromolecules per volume V of the solution.

On inserting (13) and (14) into eq. (15), we obtain a generalized Debye-Langevin
expression for the polarization of a solution of macromolecules or colloid- particles in
an externally applied electric field of arbitrary field strength: : ‘

PE=P{°‘F+P‘3L1(P, +q)+ (s —ay) [Ly(p, iQ)f‘j}]F} . (16)

3. CALCULATION OF COMPLETE DIELECTRIC SATURATION

We define the dielectric permittivity of a medium immersed in an intense electric
field, after Debye [5], as follows:
ob 0Py

E)=—" —1+4
s(B)=gp=1+inTg

, (17

where D=E+4zP is the electric induction vector.
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In experimental determinations of variations in electric permittivity due to an intense
DC electric field E, these variations are measured by means of another electric field E,
which, in general, is slowly variable in time. A diagram of the generator used in measuring

Fig. 1. Block diagram of the generator for measuring the electric
permittivity de and changes in permittivity &, due to a strong DC
electric field

C — capacitance over which the pulse voltage is applied to the liquid condenser C,;
C, — 0,25 uF blocking condenser; C,, — standard condenser foxj measuring changes
in electric permittivity

the dielectric permittivity e, and its variations de in a strong DC electric field E is shown
in Fig. 1. Here, we are interested in the difference between the permittivity £(E) measured
in the presence of the external field and the dielectric constant ¢(0) measured in its absence:

56(E)—s (E)—£(0) (:}f) (%’) as)
m/ Em=0 . E=0 - -

The electric polarlzatmn measured with the weak field E,, alone is a linear functlon of
the field strength E,. By eq. (16), it is given by the well-known formula of Debye [5]:

Us : '
P ——F,, = - 19
Em ™ p(a+3kT) m ( )

since with regard to (14) we have, in a first approximation:

I‘tSFm

4
Llp. 20=3=57

. Lpxg=%, O

with F,, — the internal field existing in the presence of the measuring field E,, alone; ta-
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king into account only the contribution due to the solvent, we can approximate F,, by
resorting to Lorentz’s model:
go+2
3

Fp,= Ey,. (21)

By egs. (17) and (18) we obtain, as done previously [18], the following expression for
the differential variation in electric permittvity (assuming that the measuring field E,
and the strong polarizing field E both act in the same direction):

0Pg 0Pg
Se(E)=4 = — == . 22
@=00{(7)__ (G ez} e
In eq. (22), we have introduced the quantity
o [0Pg ~1/0F
={1—dn—{( —),._ = . 23
co={i-4nz(end G, @

With regard to the expression (16) for the total electric polarisation, we can re-write eq.
(22) in the form:

4 2
6s(E>=§Q(e){izlaa—allR,(p, iq)—,f—;R,.@, iq)}, (24)

where we have introduced the reorientation function for macromolecules in the phenomenon
of dielectric saturation:

d
Ra(p’ iQ)=%{ﬁ [3L2(p*’ iq*)— 1] (Fm+F)} ’ (25)
m Em=0
kT ( 8
R(p, £9)=1-3—{—L,(p* +4* : (26
WP, £9) :ﬂs {6F,,, 1W(p q)}Em=0 )

Above, the reorientation parameters p* and ¢* (with asterisks) depend simultaneously
on the measuring field F,, and the polarizing field F (the total internal field acting on
a microsystem is F,,+ F).

Taking the derivative of the generalized Langevin functions (14) with respect to the
measuring field (keeping in mind that the reorientation parameters depend on the to-
tal internal field F,,+ F), we obtain:

oL, (p*, +4%)
oE,

a *
} ={L..+1(p,irq)—L,.(p,iq)Ll(p,iq)}( d ) +
En=0 aEm Em=0

*

0
i{L.+z(p,iq)—L..<p,J_rq)L2<p,iq)}(a§ ) @
m m=0

as a result of which the reorientation functions (25) and (26) reduce to the form given
in Refs [9, 15]:

R(p, )= (p, @+ 3p{Ls(p, £9)—Li(p, +q) Ly(p, + @)}
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+3g{L(p, +9)—L3(p, £}, (28)

- ﬁ6<-%) {Ly(p, £a)—Ly(p, @) Lo(p, £ )} (29

These expressions contain the reorientation function for macromolecules introduced
by O’Konski et al. [1] for describing electric saturation of Kerr’s effect:

n”—n_,_

=+2np|og—a| PP, £9); (30)

n, and n; denoting the light refractive indices for oscillations respectively parallel and
perpendicular to the direction of the field E, and n — the refractive index in the absence
of an electric field; o and «2 are principal optical polarizabilities of the macromolecule

for the light oscillation frequency . By using the substitution [1]t=4/q cos Siﬁ: for
q

g#0, we reduce the generalized Langevin functions (14) to a form well-adapted to direct
numerical computations [20]:

2
2
ool (%)) n
4 (u—, P )exp(itz)dt (1)

L s i" = =
P 2 D= o, 2 0) 24
_Gii%;
where we have introduced the integrals:
Vg _P_
o pz “*3 vq .
I(p, iq)=%eXP{¥|:<ZE>+q:|} f exp(+t?)dt, (32)
—Vit 254_

which reduce to tabulated integrals. In fact, the integrals [exp(¢?)d¢ up to x=10 are to
0

be found in tabulated form in Ref. [21], whereas the integrals fexp(—??) dt=<%‘> erf x
V]

are expressed directly in terms of the tabulated error function erf x.
With regard to eq. (31), we obtain explicitely for n=1, 2, 3, 4 the following Langevin
functions [15]:

_p eP_e—P

Lip, 2)=F it~
(P, £4) T 24 4I(p, +9)
24 P -p P -p
P F2q efte p(ef—e™P)
Ly(p, t9)= F - )
z 4q> T 4q"1(p, +q) 84°I(p, %9
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p(P*F6q) p(ef+e™®  (p*Fdg+4q*)(P—e7P)

Lip, x9)=F - +
(P 3¢ 871G, 10 166700, £9)
4 —__ 2 2 — 2 -
P +129(qFp°) , (p*F6q+4q°) (e’ +e7*
L4(P) iq)= 4 -_l- 5/2 ( )""'
164 16¢°“I(p, +q)
p(p>+44> F10g) (e’ —e7P)
32¢"?1(p, +9) ’ (33)

4. APPLICATIONS TO PARTICULAR CASES

When the macromolecules in solution have dimensions comparable to the dimensions
of the molecules of the solvent, the field F really acting on the macromolecules is in gene-
ral different from the mean macroscopic field E in the medium; in an approximation,
the field F can be assumed in the form (21). By (19), we now have:

OPg,, 13 \[eo+2

— =pla+— ’

OE, Jg.=0 3kT 3
whence, by eq. (17),

4 0 [ 0Pg 4n N B\ g—1
T— =— —|= )
9e\3E, )u.0 3 '\ 73T so+2

which, when inserted into eq. (23), leads to the following value of the macroscopic para-

meter:
2
00-(*5). (o

When the dimensions of the macromolecules in solution exceed those of the solvent
molecules, the field really acting on a macromolecule does not practically differ from the
mean macroscopic field i.e. we have F=EF, and the parameter (23) reduces to unity:

Q2(e)=1. (35)
4.1. WEAKLY DIPOLAR MACROMOLECULES

In the case when the macromolecules in solution do not possess permanent electric
dipoles, or when their permanent dipoles are small, but when these macromolecules are
anisotropically polarisable, it is convenient to write the expression (24) as follows:

8
5¢(E) = i;" pQ(8) a3 —y| Sulp, £4). (36)

Eq. (36) contains the function of reorientation saturation of induced dipoles
2

S.p, =R (p, iq)i(p )Ru(p, +q) 37

4q

affected by the presence of weak permanent electric dipoles, as implied by the parameter p.
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In particular, when the macromolecules have no permanent dipoles (p==0), we have
S(+q)=R,(%q) and eq. (36) becomes [9]:

8
3¢ (E)= i{ pQ(e) |3 — 21| Su( ), (38)

where the reorientation saturation function for non-dipolar macromolecules is (on put-
ting p=0 in eq. (28)):

S+ ) =2 (+9)+3q{Li(x9—L3(£9)}, (39
the Kerr saturation function being:
®(+q)=3{3L,(+9)-1}. (40)

Graphs of the functions (39) and (40) vs. the parameter ¢ are plotted in Fig, 2.
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Fig. 2. Graphs of the electric reorientation saturation function
R, (+g) for non-dipolar liquids, and of the function ®(+¢q) descri-
bing electric saturation of Kerr’s effect

The Langevin functions of even order now appearing in egs. (39) and (40) (they re-
sult from eqs. (32) and (33) for p=0) are of the form [22]:

1 1
Lt =F—* —pm 3’
’ 297 2¢""1(£9) (41)
3 2qF3

Ltg)=—% —— >
{2D=4mt g
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where Vi
I(:l:q)=exp(¢q)gexp(itz)dt- (42)

a) In the case of weak reorientation, when g<1 (corresponding to a weak field or
low polarizability anisotropy or high temperature), the Langevin functions (41) can be
expanded in a series in powers of g yielding with good accuracy [6, 20]:

1 4q 8¢°_ 164°
Lyt@)=—t—Ft—F—— 4.,
(ED=gt ot Tt
1 8g 164°_ 32¢°
Ltq)=—t-L 09 - 24

57105 1575+51975+"' “3)
Consequently, the reorientation functions (39) and (40) now become:
2q 4q°_84°
S, =4 F 4, 44
(£9) s +63 Fost (449)
29 4q°_ 84°
d =t F— ...
(FD=to5+ysF st “43)

b) In the case of very strong reorientation, at g>10 (corresponding to an intense field
or considerable anisotropy of polarizability or low temperature), the Langevin functions
can be replaced by the following expressions [23]:
for positive anisotropy

q q (46)

2 (1
L4(+q)=1——+0<—2>,
e \q

1 1

3 1
L4(—Q)=‘i?+0 2

In the case of complete electric saturation, with all the macromolecules aligned along
the electric field vector, i.e. when g— oo, the Langevin functions (46) for prolate micro-
systems tend to unity and so do the reorientation functions (39) and (40):

Si(+g—0)=P(+g->0)=1, (48)

for negative anisotropy

“n

and eq. (38) now yields:
8n
58(+°°)=?PQ(5)|“3—“1|- (49)

In the case of complete saturation (alignment) of oblate macromolecules, the Lan-
gevin functions (47) vanish at g—oo, and one has:

S(—g—0)=P(—g->w0)=~1}%; (50)
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accordingly, dielectric saturation is now given as:
4z
58(‘°°)=—3"PQ(8) Ias““xl- (51

Thus, in the case of non-dipolar microsystems, complete saturation of electric per-
mittivity is always positive, and we have the relation:

0t (+ 00)=20e(—00), (52)

i.e. complete dielectric saturation of prolate microsystems is double that of oblate ones
with negative anisotropy of polarizability.

For the case of anisotropically polarizable microsystems presenting moreover a per-
manent electric dipole moment, reorientation is quite generally given by the function (37),
graphs of which are plotted vs. g, for various values of the parameter p, in Fig. 3.

Salptq)

p=4Vg.

20 p=Va. 30 g

ﬁf BW
Kk
RER

p=5Vgy

-6
Fig. 3. Graphs visualizing the changes in shape of the function S,(p, +4)
due to superposition of permanent dipole reorientation (parameter p)
on the reorientation of positively anisotropic induced dipoles (p,+q)

and negatively anisotropic induced dipoles (p, —g)
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4.2, STRONGLY DIPOLAR MACROMOLECULES

For strongly dipolar anisotropically polarizable macromolecules, we have by eq. (24):

dnp
oe(E)= —gﬁpQ(S)S (p,x9), (53)
i

where the reorientation saturation function for dipolar macromolecules is:

i |
5,(p, +9)=R,(p, iq):F4;q§Ra(P, +4). (54)

If, in particular, the macromolecules are strongly dipolar whereas their polarizability
anisotropy is quite negligible or vanishing (q<<p2), one can write eq. (53) in the form:

SkT‘ u(P) (55)
the reorientation function (54) reducing to:
S.(p)=R,(p)=3L1(p)—2%(p), (56)
with: ‘
?(p)=1{3L(p)—1}. (57

The Langevin functions occurring here are of the form [6, 14]

L1(p)EL(p)=cothp—~117, L,(p)=1~ 211;—1’) (58)

For weak dipolar reorientation (p<1), we have the expansions:

r P20 P
LiD=3—45% 525 2725

(59)
1 2p2 ap*  2p°
L = = .
D)=3%%5 "oa5 s
with regard to (59) the reorientation functions (56) become:

2 4 6

p° 2p" p
60
SlP) =563 225~ (60)

For strong reorientation (p>10), we have the following expressions for the functions

(58):
1 2 2
Lip=1——, Ly=l——+= (61)
p p p

and the function (56) reduces simply to:

S p=1—5. (62)
p
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Electric saturation of dipolar reorientation (p—o0) is described by the function:
S, (p—>o0)=1, (62a)

and, with regard to (55), one can express electric saturation of the change in electric per-
mittivity of strongly dipolar liquids in the form' '

(63)

3kT

which, as one sees, is negative and independent of the DC electric field strength.
For the case of dipolar, anisotropically polarizable macromolecules which exhibit
weak reorientation in a DC electric field, the Langevin functions (14) take the form [24]:
‘P p° 4pg
,tQ)= o ——
L, £0= 3 5+ 43
1! 2p* Mg
L -——+————+—
2(p, £9) 45
P p3 8pg

Ly(p, @) =————t——
(P, 2D =5 =155t o5

2

1 4p 8q
Ly, e A 64
(P, 9= +105 105 (64)

so that now the functions (28) and (29) become:

R.(p, +q)—— (65)

+2
5
q

R(p, +q)___+45 : (66)

On inserting (65) and (66) into eq. (54), one obtains for moderate reorientation:

84> ,
<p2 F8q ——2>
NP7 (67)

5

On taking into consideration the explicite form of the reorientation parameters of
permanent and induced electric dipoles (10) and (11), one obtains with regard to (53)
and (67) the following expression for the quadratic change in electric permittivity:

4 Ias - “1| Ng l‘g 2
2oy —ay|*+ - F?, 68
15kTQ(8){ R (68)

which, on the assumption of the Lorentz model (21), goes over with regard to (34) into
the well-known Langevin [4] — Debye [5] — Herweg [25] formula:

§ 2

i T 4
u g+2
58(E)—1—5*ﬁ{2|“3“°‘1‘ +4 oy allkT kz%z}( 03 )EZ- (69)

Reorientation of strongly dipolar anisotropically polarizable macromolecules is quite
generally described by the saturation function (54), graphs of which are shown in Fig. 4.

S,p, t=

de(E)=




a=Plo~) a=Phelt a=Phsl-) a=Plei a=Pibs-) a=Plhst+) q=0
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Fig. 4a. Graphs of the electric reorientation saturation function S, (p, + q)
for dipolar liquids

The bold-face type curve (g=10) describes the electric saturation due only to reorientation

of permanent electric dipoles. The dashed type curves describe superposition of the re-

orientations of permanent and induced dipoles for the case of prolate (cigar-like) macro-

molecules (positive electric anisotropy); the continuous thin type curves describe this su-

perposition for the case of oblate (disc-shaped) macromolecules (negative electric ani-
sotropy)

Sup, £9) 2 4 6 8 10

_0,2 !

-0

Fig. 4b. Graph of the function S.(p, +q) exhibiting an anomalously
steep increase in dielectric saturation
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5. DISCUSSION AND CONCLUSIONS

Fig. 2 shows graphs of the function §,(4¢) describing electric saturation of the change
in electric permittivity of solutions of non-dipolar macromolecules as compared with the
function ®(4-q) of electric saturation of Kerr’s effect. Whereas in the region of moderate
reorientation (for values of ¢ between 1 and 10) the two functions lie wide apart, they
become identical in shape and value for very small values of ¢ (i.e. g<1) and resemble one
another in the region of very strong reorientation g~ 10. Now, why do S, and & differ
in shape in function of ¢? In Kerr’s effect, the quantity subject to measurement by means
of the light beam is, in fact, the change in refractive index due to reorientation in the
strong DC electric field alone, but not due to reorientation in the oscillating electric
field of the measuring light wave, whose intensity is very weak. (One can, of course, mea-
sure optical reorientation in the so-called ,,optical Kerr effect” induced by an intense
laser beam [26, 27]). On the other hand, when measuring the changes in electric permitti-
vity, what we measure is the reorientation of macromolecules in both the strong polarizing
DC electric field and the weak measuring field, provided the time-variations of the latter
are sufficiently slow to allow the macromolecules to align themselves (the oscillation
frequency of the measuring field has to lie below the value of Debye dipole dispersion
[5]). In our measurements, the liquid condenser C, was in the resonance circuit of a mea-
suring generator able to produce oscillations between 2 and 8 MHz, according to the total
capacitance in the resonance circuit [8].

Let us still draw attention to the following: Suppose we had calculated, instead of
the differential change in electric permittivity defined by eq. (18), a difference-variation
{28, 29] defined as:

D D
de(E)= 7 <E)E=o-a(E) £(0) (70)
i.e. defined as the difference between the dielectric constant in a strong DC field &(E)
and in the absence of a field (at E=0). The definition (70) corresponds to the case of a
single strong field E; we would have obtained, in place of egs. (36) and (53):

8n [eo+2\°
AS(E)=i—§'P< 03 )I“s“%lGa(P, +9), (71)
dnpd  [(eo+2\?
¢(E) 3T P\ 3 AP £4) (72)

where the reorientation saturation functions are now of the form:

Ga(P,iq)=¢(P,iq)iZ%{3L1(p,iq)—p}, (73)

3 -4 9

and are consequently seen to differ from the previous functions (37) and (54). Graphs
of the functions (73) and (74) are plotted in Figs 5 and 6.
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Fig. 5. Graphs of the function G.(p, + ¢) versus g, for some fixed values of the parameter

Restricting ourselves in the case of weak reorientation to a first approximation defining
quadratic variations, we obtain the following relations:

4
(12q+2p2—£—>
4q

S.(p, +9)=3G.(p, £4)= : : (1%

_o 84
)

Thus, in a first approximation, the quadratic changes in permittivity de(E) are 3 times
larger than the changes 4e¢(E); that is to say, we have the relation:

d¢(E)=34e(E). (77
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Fig. 6. Graphs of the function G,(p, +¢q) versus p,
for some fixed values of the parameter g, for prolate
and oblate macromolecules

From the graphs of Figs. (2) - (6), one notes that the variations de(E) differ considerably
from the variations 4e(E) at moderate values of the DC field strength (i.e. when, in mea-
surements of de, reorientation in the measuring field superimposes itself perceptibly on
the reorientation due to the strong DC field); however, as the DC fields become stronger
and stronger, the discrepancies between Jde(E) and Ae(E) tend to become smaller and
vanish altogether at complete saturation, when de(00)=A4e(c0). In experiment, obviously,
one measures the variation de(E) defined by eqs. (18) and (24), whereas the quantity 4e(E)
is of purely theoretical significance [29].

From the graphs of Figs. 4 and 6 one sees that in strongly dipolar liquids, where only
reorientation of permanent dipoles is apparent (but reorientation of induced dipoles is
not), the variations in electric permittivity are negative in the entire range of values of
the electric field, including saturation. On the other hand, in liquids the molecules of
which are anisotropically polarizable, the variations in electric permittivity can exhibit a
change in sign to positive, with a steep numerical increase in Je, according to the shape
of the molecules and the strength of the applied electric field. E.g. the curve g=p?/2 of
Fig. 4a shows that for disc-like molecules deis at first negative, then grows, attains a maximal
value, falls to zero (at p=3), becomes positive, exhibits an extremum (at p=4.5), falls
to zero, to become negative again at saturation (not all of the curve is plotted here). In
Fig. 4b we have curves showing the possibility of initially positive variations de (for
prolate as well as oblate macromolecules) which can increase more than five-fold in the
prolate case (cf. the curve g=p?) and fall to zero at higher field strengths.
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Thus, the theoretical curves (Figs 2 - 6) lead to predict new varieties of dielectric
saturation (purely negative, purely positive, or involving changes in sign from negative
to positive and vice versa) according to the electric and geometrical structure of the micro-
systems and the applied DC electric field strength. Hitherto, two shapes of complete
dielectric saturation have been detected in polymer solutions: Parry Jones, Gregson and
Davies [7] performed the first observations of complete negative saturation in solutions
of poly-y-benzyl-L-glutamate in dioxane in the entire range of variation of the electric
field strength. Since in this case we have [20] p=0.1 E and g=10"% E?, yielding q/p*=10"3,
the phenomenon is dominated by reorientation of permanent dipoles decisively and electric
saturation is described by values of the function S, contained (Fig. 4a) between ¢=0
and g<p?/36.

Przeniczny [8, 9] carried out measurements in other solutions of non-dipolar and
weakly dipolar macromolecules finding in all cases positive electric saturation, as shown
in Fig. 7. For cases of non-dipolar macromolecules, the shapes of the saturation process
are given by the curves R,(1¢) of Fig. 2, whereas for strongly anisotropic macromole-
cules possessing a permanent dipole moment the saturation is rendered by the curves
of Fig. 3.

The full quantitative comparison of the present theory and the experimental results
will require the subtraction from dJe of the measured electrostrictive contribution de,,
and electrocaloric contribution de,.. The total measured variation is in fact [18]:

O8pes = 08 + 36y O 9
a¢-10*
f 0979q/100¢m3
5| Qoststg/00cm 9 j o
—
, 00944q/100cm?
3
O1044/100cm O CeHs
3 A CCly
Ve o
1 3
i 1 i L
0 10 2 30 “w o0t

Fig. 7. Changes d¢ in electric permittivity measured versus E2

[e.s.u.], for solutions of isotactic polystyrene in C¢Hg and in CCl,.

The respective numerical data for the solutions are given in
Table 1
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Table 1
Concentrations, densities, electric permittivities and refractive indices of the solutions*
Concen-
Solution tration Density £ np Makers
g/100 cm?3
Polystyrene (isotactic) in CsHg 0.09151 0.8780 2.25, 1.5004¢ Polystyrene
" Py (isotactic)
Polystyrene (isotactic) in CgHs 0.0979 0.8789 2,25, 1.50085
Dr. T. Schu-
Polystyrene (isotactic) in C¢Hs 0.1104 0.8783 2.245 1.5010; | chardt
Polystyrene (isotactic) in CCl, | 0.0944 | 1.51180 | 221, | 1.4601, | GMBH,
Germany
CeHs
ZK ,,Haj-
duki”, Po-
land
CCl,
BDH En-
gland

* All measurements were performed at temperature (20 +0,5)°C.

In general, calculations [30] for molecular liquids show dJe,, to be positive and Je,, nega-
tive. In certain cases, the two effects are equal in absolute value and cancel out, but one
can come upon cases where they are of the same sign and consequently affect de strongly.
A quantitative analysis including these effects, together with calculations of the reorien-
tation parameters p and ¢, will be given in a subsequent paper.
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