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Summary. This paper contains a quantitative analysis of molecular light scattering and optical
birefringence in the Lorentz and Onsager local field approach taking into account the ellipsoidal shape
of scattering molecules. 10 liquids are selected for numerical analysis, and it is shown that satisfactory
agreement between the experimental data and the theory resorting to the ellipsoidal Onsager-Scholte

- and Lorentz models is achieved for the depolarization ratio and optical birefringence, whereas with
regard to the Rayleigh ratio agreement is more satisfactory when resorting to the spherical models.
These results point to a larger role of molecular shape in anisotropic light scattering and optical bire-
fringence than in isotropic scattering, and to its unimportance in molecular refraction. It is found
that better agreement with experiment is obtained within the framework of statistical-molecular theory
taking into consideration (beside fluctuations in number density of molecules and anisotropy of their
polarizability) translational fluctuations, fluctuations in molecular field anisotropy, fluctuations in
molecular angular correlations, as well as fluctuations in molecular hyperpolarizability.

1. INTRODUCTION

Statistical-molecular theory of anisotropic light scattering in liquids leads, in general,
to results that are of a rather highly involved form both in the case of optically isotropic
'[1-4] and optically anisotropic [2 - 8] molecules. The statistical-molecular theory of
optically-induced birefringence in liquids [9] is likewise involved. The parameters of mole-
cular correlations intervening in these effects can in fact be determined from other pheno-
mena, thus e.g. from Kerr [10 - 13] or Cotton-Mouton [12, 14] effect; however, such a
procedure requires that the electric and magnetic properties of the molecules in question
"be known beforehand. It is felt that a theory describing the liquid state and at the same
time leading to simple expressions convenient for numerical evaluations is worth elabo-
rating. As we hope to show further on, this aim can be achieved by resorting to Lorentz’s
[15] or Onsager’s [16] model taking into account the so-called anisotropy of the local field
due to non-sphericity of the cavity (as is the case with the Lorentz model [17]) or to the
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shape and anisotropy of the molecule (as is that of the Onsager-Scholte model [7-9, 16,
18 - 22]). Obviously, the final results derived with these models are mathematically simple
only if short-range molecular correlations are neglected.

2. THE RESPECTIVE LOCAL FIELDS

When a dielectric isotropic medium is acted on by the electric field of a light wave,
each of its molecules is acted on by a local field F which is the sum of the macroscopic
field E existing throughout the medium and the field F’ stemming additionally from neigh-
bouring polarized molecules. There are currently two ways of calculating this local field:
one is due to Lorentz [15], and the other to Onsager [16].

According to Lorentz, the supplementary field F is in a first approximation propor-
tional to the dipolar polarization P of the medium; if the cavity containing the molecule
under consideration is assumed as ellipsoidal, the field component along the principal
axis i of the ellipsoid is [17]:

Fi=4zL,P;, 1

with L; a geometrical parameter of shape of the ellipsoid given [19] as:

[ee]

Li=%rr, rsf

0
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+rDVE+R)(s+rD)(s+72)

2

i, ry, r3 being the semi-axes, and L,+L, +Lz=1.
Keeping in mind that the polarization vector B and electric field vector E of the light
wave are, in the case of an isotropic medium of index 7, related by the formula:

4nP;=(n*-1)E,, (3
we obtain by (1) for the Lorentz local field:
Fi=E+4nL,P;={1+(n*—1) L} E,. C)]

In particular, for a spherical cavity we have L, =L,=L;=1%, and the field (4) reduces
to the well-known form:

n?+2
= 3 E;. (5)
With regard to (5), we can rewrite (4) as follows:
2
+2 .
F=22 T B F, (6)
where
Fi=(n’—1)(L,~ D E, ™

denotes the anisotropy of the local field; this anisotropy, in the Lorentz case, is caused
by the deviation of the cavity from the spherical shape. Clearly, for a spherical cavity,
the anisotropy (7) vanishes.
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If we assume the medium to consist of optically anisotropic molecules having polari-
zabilities a, # a,# a, in the three principal axis directions 1, 2, 3 of the molecule, the dipole
moment induced in a molecule by the local field (4) can be written as:

m;=a,F,=a’E,, (®)
where
a:“={1+(n2—1)L,} ai (9)

is the effective polarizability of the molecule.

In Onsager’s model, the local field consists of the field G of the cavity and a reaction
field R; the dimensions of the cavity are taken as identical to those of the molecule itself.
This model, which was formulated by Onsager for the case of spherical cavity, was subse-
quently extended by Scholte to that of an ellipsoidal cavity [18] immersed in a continuous
medium of refractive index n. The field of the ellipsoidal cavity is [20]:

2

G,= ml"—_n—z)—Li E, (10)
whereas the reaction field is expressed as follows:
Ry;=fim;, (1)
where
f= 3L(1-L)(n*—1) 12)

{nz +(1 —nz)L‘} rl r2 7'3

is a parameter of the reaction field.
The fields (10) and (11) lead to eq. (8), albeit with an effective polarizability of the
form
nla,
{(n*+(1-n?)L}(1~fia)’

which is readily seen to go over into the Lorentz form (9) on replacing the right hand
term by a polarizability given by the formula

a}

(13)

("2—1) F1¥ar3
adi= -7 .
31+ -1 L]

In particular, for a spherical cavity, the effective polarizabilities (9) and (13) become:

(14)

2
. +2
in the Lorentz case af—-—(n 3 ) a;, (15)

3n’r’a,
@+ 1) r*-2(n*=Da,

in the Onsager case a}

(16)

Table 1 contains polarizability values as well as dimension and shape parameters
for various isolated molecules. The effective polarizabilities calculated with the data
of Table 1 and eqs (9) and (15) (Lorentz model) and, respectively, eqs (13) and (16) (On-
sager model), are given in Tables 2 and 3.
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Table 1
Molecular parameters for several anisotropic molecules
Polarizabilities (10~24 ¢cm?) Semiaxes (A°) Shape factors
Molecule

ai | az ' as ry | ra l rs L1 | Lz | L3
CS, 15.14° 5.54 5.54 6.8¢ 3.7 3.7 0.19¢ 0.405 0.405
CeHs 12,312 12.31 6.35 7.1° 7.1 3.7 0.234 0.23 0.54
C;HsO 6.96° 7.22 4.82 5.49 6.7 4.0 0.31° 0.24 0.45
C;Hg 15.64° 13.66 7.48 8.54 6.5 4.0 0.19¢ 0.30 0.51
CHCl,4 6.68* 9.01 9.01 4.6¢ 7.1 7.1 0.46° 0.27 0.27
CsH;sCl 15.51° 13.82 7.42 8.5¢ 6.5 3.7 0.19° 0.26 0.55
CsH3;NO, 17.16° 14.19 7.41 8.5¢ 6.5 3.7 0.18° 0.25 0.57
C¢HsBr 16.84° 12.13 9.56 8.8¢ 6.5 39 0.19° 0.28 0.53
CsHF 11.26° 11.06 7.11 7.6¢ 6.5 3.7 0.14¢ 0.36 0.50
CsHsN 10.84* 11.88 5.78 6.6° 6.5 3.7 0.30¢ 0.23 0.47

s Stuart H. A., Die Struktur des Freien Molekiils, Bd. I, Springer - Verlag, Berlin—Géttingen —Heidelberg (1952).
® Landolt - Bornstein Tabellen, I Bd. 510, 512 (1951).
¢ Le Févre C. G. and Le Févre R, J. W., Rev. Pure Appl. Chem, 5, 261-318 (1955).

¢ Yasumi M., Okabayashi H. and Komooka H., Bull. Chem. Soc. Japan, 31, 673 (1958).

* Ref. 20

Table 2

Computed values of effective polarizabilities, in units 10~24 cm3, for the spherical and ellipsoidal
Lorentz models

Molecule Lorentz spherical Lorentz ellipsoidal

at a% at at a at
CS; 23.57 8.63 8.63 19.94 9.28 9.28
CsHe 17.48 17.48 9.02 15.87 15.87 10.67
C3H:0 8.92 9.26 6.18 8.78 8.68 6.66
C,Hs 22.15 19.34 10.59 19.35 18.77 12.24
CHCl; 9.11 12.29 12.29 10.03 11.66 11.66
CsHCl 22.30 19.87 10.67 19.37 18.53 12.78
CsHsNO, 25.36 20.97 10.95 21.59 19.27 13.46
CeHsBr 24.80 17.87 14.08 21.37 16.95 16.74
CsHsF 15.53 15.25 9.80 13.05 15.58 11.15
CsHsN 15.46 16.94 8.24 14.99 15.37 9.25

The experimental results show that when a medium goes over from the gaseous to
the liquid state its optical anisotropy undergoes a change. This is corroborated by the
theoretical calculations carried out for different local field models (Tables 2 and 3). The
spherical models of Lorentz and Onsager raise the effective polarizability of a molecule
as compared with the ellipsoidal models. Indeed, the optical anisotropy values calculated
with the spherical Lorentz and Onsager models (Tables 5 and 7) are 2 to 2,5 times larger
than those obtained with the ellipsoidal models (Tables 6 and 8) for liquids like CsHs,
'C3H¢O, C,Hg, CS,, CeHsF, CsHiN, and 3 to 4 times larger for CHCl;, CsH;Cl,
CgH;NO, and CgH,Br. With the aim of comparing the theoretical values of effective
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Table 3

Computed values of effective polarizabilities, in units 10=24 cm?, for the spherical and ellipsoidal
Onsager models

Onsager spherical Onsager-Scholte
Molecule

at a? a% at | a% a3
CS, 20.92 7.22 7.22 18.14 7.69 7.69
CsHs 15.58 15.58 7.92 14.43 14.43 9.27
C;HsO 8.36 8.68 5.76 8.24 8.22 6.17
C,H, 19.82 17.24 9.32 17.84 16.82 10.64
CHCl, 8.18 11.09 11.09 8.92 10.63 10.63
CsHsCl 19.83 17.59 9.31 17.77 16.64 . 11.03
CsHsNO, 22.27 18.27 9.39 19.67 17.10 11.42
CsHsBr 21.73 15.48 12.14 19.39 14.85 14.25
Ce¢H,sF 14.06 13.81 8.79 12.33 14.07 9.89
CsHs;N 13.76 15.13 7.23 13.42 14.01 8.01

optical anisotropies, we calculated Afxp (Table 4) which, on neglecting angular correla-
tions, is of the form [8]:

Af,p=8-i—D7T) PpkTBr(oy 4y +03)>. (16a)
The ellipsoidal models yield values of effective optical anisotropies in accordance,
to within experimental error, with the experimentally measured ones. Exceptions are:
CS,, for which we get values that are twice larger, and CsH;N, for which the values are
three times larger.
On the other hand, the spherical models considerably raise the effective anisotropy
as compared with the experimental results.

3. RAYLEIGH RATIO AND DEFOLARIZATION RATIO

; Statistical-molecular theory of light scattering by liquids leads quite generally to the
following equation for the intensity temsor [8}:

I:t={sisea et+Sanis (36at+eaet)}1' | (17)

Above, I =FE? is the incident intensity, and & a unit vector in the direction of the electric
field E. The constants of isotropic and anisotropic light scattering are of the form:

1 727\* , ¥ N am® 5@
sis=~<~”> (T ¥ =0, (18)

9 j. p=1q=1 6E¢ (3Eﬂ
1 2n\* , N X/ omP om®@ omP om@P

Sanisz_“ e <Z z 3 - d >’ (19)
90 }, p=1q=1 aEﬂ aEp aEa 5Eﬁ

m'® being the component of the dipole moment induced in the p-th molecule of the medium,
and the symbol { ) standing for statistical averageing.



Table 4
Experimental data for several liquids

pri0-at B [pre102 Ris*106 |Rynyy'106 | R-106 421048 | 521048
Liquid lem-3] | = cm? D fom-1] ['c"n;_ll fem-1 | 5102  Ra oms) | foms
546 my p— cm$] cmf]
CS, 0.65¢ 1200 | 71.9¢ | 839+ | 383 59.11n | 92,160
0.669% 13,18 | 72,98 | 84,60 | 2,94 | 21,54 | 49.4
9.997 | 1.634 | 94» 0.68¢ 123 | 7160 | 86n 3,08m
0.62¢ 1323 | 7237 | 85.6¢
0.651°
0.64¢
0.42: 5,91 9.9+ | 158 | 048 | 262° | 17.30n | 35.52s
0.438°
0.40-0.425 | 6.03¢ | 10.27¢ | 163+ | 0.620 | 2643 | 147
CeH, 6.736 | 1.503: | 95 0.428¢ 5677 | 10,130 | 154¢ | 0.82m
0.41° 16.1¢
0.4150 16.1°
0.423¢
0.208 2140 | 1460 368 | 0.3 | 1617 | 3.48" | 5.200
0.2315 0.15¢
C;H(O 8.202 | 1.350¢ | 128 0.236
0.163
0.482 523 | 13.17* | 184+ | L11x | 313 26.14n | 54.34=
0.528v 5470 | 1293 | 17.28 | 0.66!
C.H, 5649 | 1.499t | 92: 0.43 - 0.49¢ 1931 | 1.03m
0.514
0.2040 436 | 2.80f | 7.16¢ | 0.22x | 21.39 | 4.072 | 543+
0.22¢ 4368 | 2828 | 745 | 021 4.13
CHCl, 7510 | 1446t | 8T 0.225»
0.215°
0.58¢ 422 | 16.38% | 20.65 | 1.031 | 31.19¢ | 36.39 | 54.63
CeHsCl 5902 | 15218 | 75 0.60! 31.06
0.575!
0.74¢ XD 60,7¢ | 65.8% | 3.13x | 33.08 | 79.83* | 74.92*
CeHsNO, 5.887 | 1.560+ | 49+ 0.652! 8.09" | 62.140 2.50! 84.5¢
0.68) 2,550
0.753
0.57¢ 137 | 3415 | 31.71= | 40.89*
N 0.65
CoHsBr 5704 | 15600 | 65!
CeHsF 6367 | 1.4621 | 95! 2599 | 9.33n
CsH3N 0.461 4.51% | 9.69% | 14.2¢ 2402 | 9.89s | 31.94%
7.486 | 1.509 | 48 0.455¢ 21.850

& Values taken from ref. 25.

® Leite R. C. C., Moore R. 8., Porto S. P. S, J. Chem. Phys. 40 (1964).

¢ Kratohvil, J. P., DeZelic Gj., Kerker M., Matijewic E,, J. Polymer Sci. 57, 59 (1962).
¢ Weill, G., Ann. Physique, 6, 1063 (1961).

* Giurgea, M., Ghita L., et Ghita C., Revue de Physique, 7 (1962).

f Giurgea M., Ghita C., et Ghita L., Studii i Cercetari de Fizica, 3 (1962).

¢ Fabielinskiy, I. L., Molekularnoye Rasseyaniye Sveta (Moskva 1965).

% Deselic Gj. and Vavra, J., Croat. Chem. Acta 38, 35 (1966).

! Volkenshteyn, M. V., Molekularnaya Optika (Gostekhizdat, Moskva 1951).

) Landolt-BSrnstein Tables, Il Band, 8 Teil (Springer-Verlag, Berlin).

k Paillette M., CR. Acad. Sci. Paris, 262, 264 (1966).

! Shen, Y., Phys. Letters, 20, 378 (1966).

m Wang, C. C. Phys. Rev. 152, 149 (1966).

® Values calculated from formulas (39), (40), (16a).

» Schmidt R. L., Journal of Colloid and Interface Science, 27, 516 (1968).

* Malmberg M. S., Lippincott, E. R., Journal of Colloid and Interface Science 27, 591 (1968).
* Ghita C., Revue Roumaine de Chimie, 13, 1019 - 1025 (1968).
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On neglecting in eqs. (18) and (19) molecular correlations of the angular type, and
with regard to the relation (8), we obtain in a satisfactory approximation:

2 4 * * *\ 2
Sis=N<'§) (a—“1+a32+a3) kaﬂT’ (20)

s N (2 4 o))
anis 45 7 3

where p=N/V is the number density of molecules, f; the isothermal compressibility
coefficient, and

A*=}{(a}—a3)*+(a5—a})’ +(a3—a2)"} (22)

the effective optical anisotropy of the molecule values of which for several liquids are
assembled in Tables 2 and 3.

From the general equation (17) we obtain for the Rayleigh ratio, when the incident
light is natural and observation of scattered light is performed perpendicularly to the
direction of incidence,

R=Ri;+Rqnis» (23)

with the Rayleigh ratios of isotropic and anisotropic light scattering related with the
constants (20) and (21) as follows:
1 13

Ris= T/ Sis,

Runie=—— Suniss 24
2V anis 2V anis ( )

V being the volume of the scattering medium.
At identical conditions of observation, eq. (17) yields for the depolarization ratio:

6Sanis

D=--—2° . (25)
Sis + 7Sanis

The expressions (20) - (22) are obviously seen to contain only parameters which are
available. Consequently, we can compute numerically the quantities R and D and com-
pare them with the existing experimental data, which are assembled in Tables 4 - 8. Such
a comparison shows that the constants of isotropic light scattering are considerably smaller
than the experimental values of Table 4 both for the spherical and ellipsoidal models
of Lorentz and Onsager. On the other hand, the values of R,,;, behave variously according
to the liquid and the model assumed. Assuming the spherical Lorentz model, we get
RE(RE for CS,, CHCly, CeHsNO, and CgHN. For the other liquids, RiaeyRie

Assuming the spherical Onsager model, one has RZW(RZ? in CS,, CHCl;, CsH,Cl,
CgH;NO, and C4H;N. Assuming the ellipsoidal models of Lorentz and Onsager, we
come to values of the anisotropic light scattering constants which are about twice smaller
than the experimental data and indeed five times smaller for CHCl;, three times sma-
lier for CgHCl, and eight times smaller for C;HsNO,.

The preceding analysis permits the conclusion that the approach to light scattering

by resorting to models leads to values of isotropic and anisotropic light scattering con-
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stants which diverge strongly from the values measured in experiment. Moreover, it has
to be stressed that the assumption of a spherical model of the molecule raises the values
of R, and R,,;, with respect to the ellipsoidal model. The calculations of this paper have
been performed on neglecting short range angular correlations. This simplification, which
renders the numerical computations mathematically easier, overlooks statistical inter-
molecular interactions in the liquid which essentially affect the value of the optical aniso-
tropy and, consequently, the value of the constant of anisotropic light scattering by the
liquid. This explains the divergences between the experimental data and the theoretical
values derived here,

The ratio of light depolarization calculated from eq. (25) on the assumption of a spherical
shape of the molecule takes values slightly in excess of the experimental ones., The el-
lipsoidal models lead to values in accordance with experiment.

4. MOLECULAR REFRACTION AND OPTICAL KERR EFFECT

Molecular refraction, given as:
n?—1
T n?42

Vn (26)

is expressed, with regard to eq. (8), by the formula:

4n at+az+al
Rm=~3— NA(——n‘Z—;T), (27)

where V,, is the molar volume, N, Avogadro’s number, and the effective polarizabilities
a; are given by egs. (9) and (13)- (16).

When very intense light is incident on the medium, its refractive index becomes a
function of the light intensity I and the medium itself becomes optically anisotropic.
The difference between the indices is:

nll—nJ_:anI, (28)

with B, — the experimentally measured optical Kerr effect constant, expressed as follows
in terms of properties of the medium [8, 21]:
(n2 +2)4
B,=—"~B,, 29
" 54p2 * (29)
with
drp 2
B=—"F——— A°, 30
’ 5(n*+2)%kT (30)

the effective optical anisotropy of the molecule being given by eq. (22).
The experimental data for R, and B, are assembled in Table 4; those computed theo-
retically for the respective models are to be found in Tables 5 - 8.



Values computed with Lorentz’s spherical model

Table 5

_— 42.10*% | R,,-105 | R%-10° | Runis-10%| R-10° R,

L d is is anis D-10% | B,-1012 m
e [em®] | fem=*] | [em~*} | [em~*] | fem™!] g [em]
CS. 223.204 | 6.22 14.41 60.31 66.53 71.9 6.295 22.03
Ce¢Hs 71.572 | 3.31 6.89 12,19 15.50 57.0 1.636 26.02
C3HO 8.554 | 1.98 3.34 1.77 3.75 27.9 0.291 15.96
C;Hg 109.046 | 3.17 6.51 15.57 18.74 62.2 2.103 30.90
CHCl; 10.112 | 2.21 4.37 1.92 4.13 27.3 0.279 20.75
CeHsCl 112.900 2.90 6.06 16.84 19.74 64.9 2.202 30.87
CsHsNO, 163.660 2.21 4,99 24.35 26.56 73.4 3.015 32.55
CsHsBr 88.68 2.71 6.62 12.79 15.50 61.5 1.583 32.37
C¢HsF 35,188 | 2.52 5.30 5.66 8.18 46.9 0.805 24.72
CsH N 65.004 | 1.77 3.61 12.30 14.07 67.6 1.636 23.96

Table 6
Values computed with Lorentz’s ellipsoidal model
I A42.108 | Ry,-10% | RE-10° |R,ais-10% R-10° R
L d 1is is anis D,loz B, ,1012
s em®] | [em~1] | [em~!] | [em~*] | [em~!] g fem®]
CS, 113.636 | 5.53 12.82 30.70 36.23 64.2 3.205 20.77
CsHs 27.040 | 3.08 6.41 4.60 7.68 38.2 0.618 25.10
C3H:0 4361 | 1.94 3.28 0.90 2.84 17.6 0.149 15.80
C;H, 46.765 | 2.96 6.08 6.68 9.64 47.0 0.902 29.89
CHCl; 2.657 2.17 4.28 0.50 2.67 9.5 0.073 20.55
CeH;Cl 38.598 | 2.66 5.58 5.76 8.42 46.1 0.753 29.61
C¢HsNO, 52.617 | 1.99 4.49 7.83 9.82 58.2 0.969 30.88
Ce¢HsBr 20464 | 2.55 6.23 2.95 5.50 329 0.365 31.40
CsH;sF 14818 | 2.42 5.09 2.39 4.81 29.8 0.339 24.23
CsH;sN 35.166 1.68 3.42 6.65 8.33 58.3 0.885 23.34
Table 7
Values computed with Onsager’s spherical model

i A4%2-10%8 | Ry,-10° | R%-10°% | Ranis+ 105 R-10° R

L d 1s is anis D'loz B _1012 L
au em®] | [em~'] | fem~!] | [em~'] | [cm~?] ’ [cm?]
CS, 187.416 4.67 7.90 50.64 55.31 73.2 5.29 19.09
CeHg 58.676 2.62 4.37 9.99 12.61 57.6 1.34 23.13
C3:HO 7.694 | 1.74 2.55 1.60 3.34 28.4 0.26 14.93
C,Hg 89.816 2.51 4.16 12.83 15.34 62.9 1.73 27.52
CHCl, 8.41 1.80 2,96 1.60 3.40 27.8 0.23 18.70
CeHsCl 92.123 2.27 3.77 13.74 16.01 65.6 1.80 27.31
CsHsNO, 131.028 1.68 2.94 19.50 21.18 73.9 2.41 28.37
Ce¢HsBr 71.093 2.05 3,88 10.25 12.30 62.5 1.27 28.15
CsH;F 26.517 2.06 3.56 4.27 6.33 45.2 0.61 22.33
Cs;HsN 53.450 1.39 2.28 10.11 11.50 68.3 1.35 21.29
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Table 8
Values computed with the Onsager-Scholte ellipsoidal model
A 4*.10*8 | R,,+10° | R{-10° | Ryny,-105 R-108 102 1012 Ra
Liquid fem®] | fem~*] | fem~*1 | fem~1] | fem=21 | 210 | 10 oy
CS; 109.20 4.19 7.45 29.51 33.70 67.8 3.08 18.08
CeH; 26.63 2.49 4.28 4.53 7.02 424 0.61 22.56
C,H:O 4.24 1.71 2.56 0.88 2.59 18.6 0.15 14.82
C,Hs 45.54 2.39 4.09 6.50 8.89 50.9 0.88 26.88
CHCl; 2.92 1.78 2.93 0.56 2.34 12.4 0.08 18.59
CesHsCl 38.49 2.14 3.67 5.74 7.88 50.7 0.75 26.56
CeHsNO, 53.47 1.57 2.88 7.96 9.53 62.7 0.99 27.38
CsHsBr 23.70 1.97 3.82 3.42 5.39 41.4 0.42 27.65
Ce¢H,F 13.23 2.02 3.53 2.13 4.15 31.0 0.30 22.09
Cs;H,N 32.81 1.34 222 6.21 7.55 61.2 0.83 20.88

On confronting the latter with the experimental data we see that the spherical models
raise the optical birefringence constant B, (the Lorentz model does so much more mar-
kedly than the Onsager model). The values of B, calculated with the ellipsoidal models
are below the experimental data for CHCl;, C4HsCl, CcHsNO, and C¢HsBr; for the
other liquids, they coincide with experiment.

The results of calculations of molecular refraction are generally in accordance with
(spherical models) or slightly lower than the experimental data. Of all the quantities cal-
culated in this paper, the molecular refraction R, is the least sensitive to the assumptions
made as to molecular shape and local field.

5. DISCUSSION AND CONCLUSIONS

The results of the present, model-based calculations prove that good accordance with
the experimental data requires taking into account short range angular molecular cor-
relations [13, 22]. Independently, the ellipsoidal models make apparent the important
role of molecular geometrical shape in anisotropic light scattering and optical birefrin-
gence.

The formula for R;, resulting from the thermodynamical-fluctuational Smoluchowski-
-Einstein theory is [24]:

n? on*\?
R‘*’sz‘ kTﬂr(p 3;); (3D
. on*\ . : . i
where the quantity (p —5>T is accessible to direct experimental determination [24, 25]

or can be calculated theoretically once the equation of state relating the index »n and den-
sity p is available [13].
Using the ellipsoidal Lorentz model, we have by egs. (9), (26) and (27):

on? Li+a,L,+a,L
< L) =(n2_1){1+(n2_1)<a1 1T a4, as 3)} (32)
ap Jr aj+a,+ag
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This expression, on neglecting the anisotropy of the local field, reduces to the well-known

Einstein formula:
on? ) n®+2
— ) =(n?%-1 s 33
( op ) T (n )( 3 ) 2

which yields values by 5- 10 per cent in excess of the experimental ones [25].
Anisotropy of the Onsager-Scholte field leads to the formula:

2 * % *
(20 - (Lreieed), o
6/) T Al +A2 +A3
where we have used the notation:
2_ * —
Ai=a}"{l—-(n :)ai Li [1+3(1 Li)ai]} . (35)
n a; ryrary

a 2
The values of (p al> calculated with the respective local field models are assembled
P/t

in Table 9; the quantity R}, hence calculated (eq. 31) is given in Tables 5 - 8. The Lorentz

Table 9
on® . .
Values of p s for the various electrostatic models
P /T
()
pl—
9
Liquid pit
. Lorentz Lorentz Onsager Onsager
tal
experimen spherical ellipsoidal spherical -Scholte
CS., 2.37 2.60 2.45 1.93 1.87
CsHs 1.65 1.79 1.72 1.42 1.41
C;HsO 1.09 1.08 0.95 0.95
C;H, 1.58 1.77 1.71 1.41 1.40
CHCl; 1.435 1.49 1.47 1.23 1.22
CsH;Cl 1.72 1.89 1.81 1.49 1.47
CsHsNO, 1.875 2.12 2.01 1.63 1.61
CsHsBr 2.12 2.06 1.62 1.61
CsHF 1.57 1.54 1.29 1.28
CsHsN 1.82 1.77 1.45 1.43

model, spherical and ellipsoidal, yields results in excess of experiment [25], whereas
those from the Onsager and Onsager-Scholte models lie somewhat below the experimental
data. The situation is similar with regard to R{.

By eqgs. (23) - (25), we have

Ryws 13D

— 36
R]. 6 - 7D ( )



42 . 8. Kielich, J. Pieczyfiska

and the following formulas permitting separate calculations of R;, and R,,;, once R and
D are known experimentally:
6—7D

=——R,

7 6+6D (37)
13DR

R ..=—. 38

anis ™ 61+ 6D (38)

The values of R,, and R, calculated from egs. (37) and (38) are given in Table 4.

6. ROLE OF MOLECULAR CORRELATIONS

In the statistical-molecular approach, the scattering constants (18) and (19) become

[3, 8]:
2 4 2 2 2
se=v (5) (557) @)
V [2r\* [n?+2\?
Sanl:=?<’ll_> <_3—) Faniu (40)

with F,, and F,,,, denoting respectively molecular factors of isotropic and anisotropic
light scattering which depend on the optical properties of the atoms or molecules and
on the micro-structure of the medium. In the general case, these factors are of a mathe-
matically highly involved form [21, 29] but in certain cases expressions well adapted to
direct, numerical calculations can be obtained.

a) Role of translational fluctuations. For a medium consisting of atoms or isotro-
pically polarizable molecules, one obtains on taking into account spatial redistribution
[8, 21]:

Fi,=pa®(pkTPr+4a*Jg+...), (41)
Fos=pa*(a®Jg+..). (42)

It is thus seen that, in this case, by eq. (41) isotropic scattering of light is caused not
only by fluctuations in the number density pkTpS; of molecules but moreover by trans-
lational fluctuations [30, 31] leading to their spatial redistribution which, in a first ap-
proximation, is given as a?Jg, where [14]:

Jr=8np [ r *g(r)dr (43)

is a parameter of pairwise radial correlations, described by the radial function g(r). The
parameter (43) can be determined experimentally, or calculated directly taking g(r) in
Kirkwood’s approximation [31] which yields [32]:

an’p
R op

(43a)

with v — the molecular volume.
Eq. (42) shows that the translational fluctuations not only enhance isotropic scattering
but moreover act as a source of anisotropic light scattering by dense atomic liquids or



Molecular Shape in Light Scattering and Optical Birefringence in Liquids 43

ones consisting of isotropically polarizable molecules [3, 8, 21]. For CCly, pkTf;=0.026,
whereas 4a2J;=0.034 (with Jg calculated from eq. (43a) for pv=1) or 4a2J,=0.005
(with the experimentally determined value Ji=1.3-10*% cm™¢ [14]). Hence, translational
fluctuations contribute at least 20 per cent to isotropic scattering; theoretically (eq. 43a)
their contribution can amount to over 100 per cent, according to the model used in the
calculations.

b) Réle of orientational fluctuations. In a liquid consisting of anisotropic molecules,
fluctuations in orientational molecular interaction can raise or reduce the anisotropic
scattering of light by the liquid. These fluctuations have to be considered distinctly from
fluctuations in number density and translational fluctuations. If the molecules present
the axial symmetry, the anisotropic scattering factor results, in place of (42), in the form
[8, 32]:

Foiw=pa*{K* (1 +J ) +a*(1 +28x* + 2 +Ex*) Jr +...}, (44)

with x=(a3—a,)/3a — a dimensionless anisotropy, and [3, 14]
JA=—;~ f (3cos?6—1)g(z)dv (45)

— a parameter of angular correlations between molecules the symmetry axes of which
subtend the angle 8. The angular correlation parameter of eq. (45) can be calculated theo-
retically for the different models of intermolecular interaction, or can be determined
from experimental data [12, 13, 23, 33], and is found to be positive for some liquids but
negative for others {23, 33]. This shows how angular correlations act to increase or lower
anisotropic scattering.

¢) Réle of molecular hyperpolarizabilities. Light scattering is moreover affected by
the molecular hyperpolarizability due to the molecular fields existing in dense media
[2, 3, 21]. Resorting to Onsager’s model, the processes of molecular hyperpolarizability
can be satisfactorily separated in a first approximation from the other statistical-corre-
lational processes, and one obtains [21, 29]:

Fi=pa’kThr(1+ A+ H; +...), (46)
Fains=pa2’cz(l +JA)(1 +Aanis+Hanis+ ) ’ (47)

where A4,; and A4,,, define contributions from fluctuations in anisotropy of the molecular
field, whereas H;, and H, .  are contributions from molecular hyperpolarizability. The
latter contributions have been calculated for dipolar [2, 3, 29] as well as quadrupolar
[21] molecules. Numerical evaluations performed in an earlier paper [29] led to partici-
pations of molecular field anisotropy ranging from 5 to 90 per cent in the case of CS,,
and to hyperpolarizability processes amounting to as much as 50 per cent (e. g. in toluene).
The hyperpolarizability effects can, too, be calculated by a molecular-statistical proce-
dure [32]. These effects raise the values of F;; and F,, if the optical anisotropy of the
molecules is positive but lower the values of F;; and F,,, if it is negative. The above-
-mentioned contributions, when taken into account jointly, lead to better agreement
between the theory and experiment [30 - 34]. However, this involves calculations that
are rather tedious. Nevertheless, we think that it may fully be worth the trouble to de-
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velop the statistical-molecular theories still further in regard of the high value of the in-
formation provided by them concerning the spatial structure of nearest neighbourhoods
in dense media [29, 33].

In Shakhparonov’s treatment of light scattering [5, 35], the right hand terms of egs. (39)

2 4
and (40) contain local field factors of the form (n ) , whereas according to Coumou

2 4
[27] isotropic scattering is defined by a factor of the form ( ) , but anisotropic scat-

2 2
tering by one of the form ( 3 ) as in our treatment (40). The difference between their

2 2
approach and ours resides, firstly, in the circumstance that our factor ( 3 ) does

not result (as is the case with them) from the assumption of a Lorentz local field but rather
from the well-known relationship between the mean macroscopic field within the medium
and the field ontside the medium yielding [21]:

3 2
I=<n2 +2> To- “48)

Secondly, in our previous papers [8, 21, 29, 32], account was taken — in addition
to fluctuations of the number density and of polarizability anisotropy — of other pro-
cesses, such as translational fluctuations, fluctuations of the anisotropy of molecular
fields, fluctuations of angular correlations, and hyperpolarizability processes. Now, ob-
viously, the contribution of each of these processes to isotropic light scattering is different

from its contribution to anisotropic scattering. All in all, though egs. (39) and (40) contain
2

2
n . . . o .
the same factor ( ) in both isotropic and anisotropic scattering, the other statistical-

-molecular processes will contribute to S;, and S,,;, differently by way of the factors Fi,
and F,,, in accordance with several simplest expressions (41)-(47) adduced
here. In the light of our considerations, the different local field corrections to the two
scatterings S;, and S,,;, as obtained by Coumou [27] appear fully justified.

In concluding this discussion we express the opinion that, in many cases, the theory
of light scattering in the Lorentz or Onsager local field approach can be applied with
a satisfactory degree of accuracy, though generally better agreement is achieved with the
Onsager-Scholte model. In order to obtain good agreement with experiment for a given
liquid, one has to resort to statistical-molecular theory taking into account the various
additional contributions lying beyond the scope of the formal approach of a mean local
field model. For liquids, the statistical-molecular theory at its present stage sets some
difficulties in the way of performing the calculations to the final results numerically; for
imperfect gases, however, this has been done by the method of virial coefficients [36].
It is to be regretted that as yet measurements of light scattering by gases in function
of pressure are not available.
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