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Summary. Third-harmonic light scattering by dense isotropic media is studied. Semi-macro-
scopically, a formula for the third-harmonic intensity component in the n direction is derived:
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where F3°, F22, and G2, are isotropic and anisotropic parts of the scattered light discussed on a mo-
lecular-statistical basis involving orientational and radial molecular correlations, With molecular
spatial redistribution and dispersional interactions taken into consideration, it is shown that isotro-
pically polarizable molecules can depolarize the scattered light.

1. INTRODUCTION

Recent measurements by Ward and New [1] on optical third-harmonic generation
in gases by a focussed laser beam incite us to work out a complete theory of third-harmonic
light scattering. Attention has already been given to the problem for the case of gases
consisting of atoms, isotropic molecules [2], or anisotropic molecules [3]. Here, we shall
discuss the role played in third-harmonic scattering by the molecular correlations active
in sufficiently dense media such as real gases and liquids. A similar discussion is available
for second-harmonic scattering, by a statistical and semi-macroscopic method [4, 5],
and shows the total intensity J*® scattered at frequency 2w to be separable into an in-
coherent part I22, accounting for scattering by isolated molecules [2] and a coherent
part 122 due to cooperative scattering of neighbouring molecules whose positions and
orientations are correlated [5].

We shall propose a general theory of third-harmonic scattering by dense media in
a semi-macroscopic approach separating the total scattered intensity I°° into an isotropic
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part I3, dependent on radial correlations and translational fluctuations only and an aniso
tropic part 129, dependent in general on angular correlations and translational-orienta
tional fluctuations. Some simpler models of isotropically polarizable molecules as wel
as axially symmetric anisotropically polarisable molecules, when the intervening para
meters of radial correlations Gy and of angular correlations J 4 are the same as in linea:
scattering of light at the fundamental frequency w [6], will be discussed. Also, formula-
will be derived for the depolarization ratios, and numerical evaluations of the order:
of magnitude of the effects will be made. It is shown that especially large third-harmoni.
scattering can be expected from solutions of macromolecules and colloid particles.

2. FORMAL THEORY

Consider a dense isotropic medium of scattering volume ¥ with N molecules, or
which a plane polarized laser beam with electric vector E®(t)=E, cos wt oscillating a:
frequency w is incident. If the incident intensity is sufficiently large, it will induce a non-
linear dipole moment M in the medium:

M¢= kgl ;IAaﬂl e O
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Excluding from our considerations dispersion and absorption, the k-harmonic com-
ponent of the dipole moment induced by E® can be written as follows:
k) O s N
41 (4]
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A2 . is the optical polarizability tensor of rank k+1. We have neglected in (2) smali
contributions from higher-order tensors.
From (2), we see that in the medium there can appear radiation at the funda-
mental frequency @, radiation with harmonic frequencies 2w, 3w, and higher.
Generally, for the wave zone, on the assumption that the incident wavelength A is
large as compared with intermolecular distances, the k-harmonic scattered light com-
ponent in the n direction is described by the following expression [2]:

1 dZM(km)d2M(kw) .
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where the unit vector n denotes an arbitrarily chosen direction of electric oscillations
in the scattered light, the symbol < Y: stands for averageing over the time, c is the
light velocity and I=E?/2 the incident beam intensity; f(z, I) is a statistical distribution
given by the Maxwell-Boltzmann function

__exp{—pU(z,D)}
fe.D= fexp{—BU(r,D)}dr

with f=1/kT, and U(r, I) is the total potential energy of the system at configuration <
in the presence of the laser beam I.

4,
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On expanding the right hand side of (4) in a power series in fU<1, we obtain

S D=f.00+ 3, 17D, ©
where
exp{—pU(z,0)}
fexp{—BU(z,0)} dx

is the distribution function in the absence of the beam I, and f\(z, I) are i-th order dis-
tribution functions in the presence of I.

Restrxctmg (5) to the first term only, eq. (3) with regard to (2) for k=3 on substituting
Af,":,z,, C,,M and averageing over the time, takes the form:

f(z,0)=

(6
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where we have introduced e, as the direction of oscillations of the electric vector com-
ponent E, in the incident light.

In the absence of the laser beam, all directions of the vectors e and n with respect
to laboratory axes XYZ (the frame is rigidly attached to the scattering centre) are equally
possible. The mean isotropic value of the product of unit vector components <x, nge.ese,
€,;6,0q is derived in [3], where it is also generally shown that (for r=2k, k>=2)

1
{ny, n,ze‘,:...ear>9=2m{[2k+l][l—(n )] 041030y .o+

+[3(n-€)* —1]0, 000, '} (8)
" with the tensor
qa1aza¢ ...a,-=5a1az 043 e ar+5a113 aazau oo Op +5‘11‘1r :1 0-12:13. &gaz? 2a,-+5axa,- aazag S O (9)
| Taking in (8) k=4 and inserting in (7), we find:
Isw"'lr?xa; Ir?:)ms (10)
and
I’ (3w
= F2°(n-e)?
nis =1y 4< ) (n-e)’, (11D
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where the quantities
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define respectively isotropic and anisotropic third-harmonic light scattering. The symbol
¢ ) in (12) stands for statistical averageing over molecular interactions with the distri-
bution function (6).

We assume in general that the tensor C2ps is symmetric in the last three indices B,
d.

Hence (12), with regard to (9), takes the form:

F 13:) <C¢a77 ppaa)
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Let the incident wave propagate in the Y-direction and observation be in the XY-
plane at an angle 8 to Y. When the incident beam oscillates in the plane vertical to XY,
the horizontal and vertical components of the scattered light are:

' e\
e

JE (14)
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where the upper left-hand index at I°° denotes the polarization of the incident light.
Along similar lines we get
) ST

hI3m H3a)=____ et 3 20F3w 3w 2‘9 ,
h 2880< ) { Fanis+( +13Gams)cos }

hI3w_ 3a) 13 30) 4F3a>
v = 960 anis *

We see that in the case of third-harmonic light scattering Krishnan’s reciprocity re-
lation H2?=V2® still holds.
For unpolarized incident light we obtain:

(15

K3
“Re=H3*=H3+H}* _2—%< ) {6F o +(20F 2°+13G3) cos® 8},
(16

=y = V3‘°+V3“’——Ii i‘i’ (20F3°+6F 3% +13G2%).
= h _2880 anis anis
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By (14 - 16), the depolarization ratios for the three polarizations of the incijent light
beam are:

H}® 3Fa,
D3¢n= an R 17
v T V3% T 20Fe3F 2% 1 13622, 17
A 3F2
Dam 3 = h - anis 18
(9= g 3F32 +(20F3%4+13G2%) cos? 8’ (18)
Hf;’“’ F22 +(20F3°+13G2%) cos 9
De()= e SFarit 074 13ur (19)
Vu =" 20Fh +6anls+l3Gnnis
When observation is carried out along the X-axis (3=90°) we have by egs (18 - 19):
6F3®
D3m= , D3w= anis (20)
* 20F3°+6F 2%, 4+ 13G22)
Hence by analogy to linear scattering we obtain the following relations:
D 3o
D3m \9 = ’ >
» ) D3 4(1=D3)cos? $
3o 30 1- D3£0 3o 3w 2
D*(®)=D°| 1 +——— $3a €0 29)= Dsm{2Dv +(1~-D")cos? 9}, (21)
so_ 2D0°
*1+D3®

3. MOLECULAR-STATISTICAL THEORY

For our further discussion, it is convenient to relate the tensor cie «fys Characterizing
the medium to the hyperpolarizability tensor of the molecule cam.
We have, with satisfactory accuracy, in the absence of molecular fields,

N
3 3
CH = )jlca;;gp’. (22)
p =

In this approximation, we can consider the tensor C:,;‘;a as totally symmetric. This
is true for inactive molecules beyond dispersion and absorption.
Then eqgs. (13) transform to:

m ) 1 (0]
Fir=——-«C}
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We first proceed to consider the general case of arbitrarily symmetric molecules, for
which by (22) we have, to within pairwise correlations,

30_P 30 3
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wherein p=N/V is the number density of molecules. The integral parameters describe
angular pairwise correlations of molecules, irrespective of their symmetry class (excluding
isotropically polarizable molecules).

Furthermore, we have the parameter {6]

=2

GRV

JJ (£, , 1) — gV (xp) 8(e) ] drp (25)
determining molecular correlations of the radial kind. g'¥(z,), g¥(z,, ,) denote one-
and two-molecule correlation functions respectively and 7, 7, are variables defining
the positions and orientations of molecules p and gq.

The factor 1+Gy can be represented in the thermodynamical form due to Smolu-
chowski [7] and Einstein [8] in their theory of linear light scattering

14+ Gr=pkTBy. (26)

(fr is the isothermal compressibility coefficient).
In the absence of molecular interactions, the angular correlation parameters always
vanish and pkTfr tends to unity.

Our considerations have hitherto been of an entirely general nature and can now be
particularized for various molecules,

a. Isotropic — polarizable molecules. For isotropic molecules, the hyperpo-

larizability tensor cfﬂ“;,, can be written as follows:

1
c:ﬁyﬁ = —3. Cin aaﬂyﬁ s (27)

where, according to (9),
0:1[376 = 5aﬂ 6)’6 + 5«7 5ﬁ§ + 5¢5 éﬂy N

and ¢y, =c>5,/5 is the mean hyperpolarizability.
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From (24) with (26), we get
F*=c},0°kTBr, Fan=Gams=0, (28)
and the depolarization ratios (17 - 19) become:
D¥*=D*=0, D3*(8)=cos’9. (29)

In this approximation, when the incident beam is plane polarized, atoms or isotropic
molecules do not depolarize the scattered light. For unpolarized incident light, the depo-
larization of third-harmonic scattered light is just the same as that of linearly scattered
tight: D3°(8)=D2(S) [6].

b. Anisotropically polarizable molecules. For such molecules possessing the
axial symmetry e. g. about their 3-axis we have in the absence of nonlinear dispersion [91:

3P s =430 {Oupys + 35 [3(0up Ky kst day kg s+ 30)
+ 5¢6 kﬂ ky + 5;‘37 koks+ 51’6 ke kv + 576 ky ku) - 2%370]} s

where k, is the « — component of a unit vector along the axis of symmetry of the molecule,
and the quantities

30 3o o 30
c _c3333 2111 €3333—C1111
30 ™ s =
3 3¢aq

define respectively the mean optical hyperpolarizability and its anisotropy.
By (30), egs. (24) take the form

F?;o:C%wpszﬁT >

31
Faan?s= G::i)s= ng sz +J),
with [6]
JA:Z—pI;J‘J’ [3cos?8,,—1] gDz, 7 dr,dr, (32)

denoting the angular correlations parameter of the axially symmetric molecules. 8, is
the angle between the symmetry axes of molecules p and g.

The parameter J, given by (32) is well-known from the theories of linear light scat-
tering and optical birefringence of liquids the molecules of which are axially symmetric
[6, 10].

In general, the parameter J, can take positive and negative values. This means that
the assemblages of interacting molecules can enbance or weaken the scattered light intensity
(e. g. for CsHg molecules, the parameter estimated from linear scattering and birefringence
data is: J,= —(0.18+-0.5) [11]). The depolarization ratios (17 - 19) are, in this case

Do 32(1+J,) 53
v T 20pkTBr+16K2(14+J,)
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32 (1+J
D;*(8)= 2 ety 2 7q’ 34)
3k2(1+J )+ [20pk TB, + 1312 (1 +J 4)]cos? 9
6x2(1 20pkTBy+ 1312 (1 2
Dzm(9)= 'Cc( +JA)+[ P ﬂT"}' Kc( +JA)]COS 19 ) (35)

20pkTBr+19x2(1+J )

In the absence of angular molecular interactions, the parameter J 4 vanishes. Indeed,
¢. g. in rarefied gases, the scattering molecules can assume all possible configurations
with identical probability. In this case g9, 1)=072, Q= do,=[dw,, and we have

N
JA=2—Q§ff[3coszf)pq—l] dw,dw,=0, (36)

where @, and w, are variables determining the orientation of molecules p and g¢.
Thus, eqgs. (31) reduce to

Fi’=pclo, F38,=G32 =pck, x2, (37

and the depolarization ratios become

3k? ,
3o e (38)
*20+16x2 ¢
332
D®(9) = < , (39)
»(9) 3k2+(20+13x%) cos
612 +(20+13x2) cos? 9
Do(g)= e + 20+ Brcjcosd (40)
20+ 19x

It is of much interest here to draw attention to the likeness between the depolarization
ratio (33) and D? — the depolarization ratio of linearly scattered light:
® 3K§ (l +J A)
* SpkTBr+4k2(14J )

(x, denoting the anisotropy of linear polarizability of the axially symmetric molecules).
We easily find the simple relation:

(41)

D}*( 3—4D°
=4 s <3‘:155“) - “2

One can determine directly (knowing ,) from experiments by measurements of depola-
rization ratios of third-harmonic and linearly scattered light only. The last formula circum-
vents the difficulties of evaluating the parameter J, from other experimental data.

With the aim of more exact calculations, we shall now consider the effect of molecular
spatial redistribution [6, 12] on third-harmonic light scattering in dense media.

By Eq. (1),

q a3M3w

C3e =<__L _> ) (43)
W \OEs 0E? 0EY ),
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N
Also M=} m", where m® is the electric dipole moment of the p-th molecule immersed
r=1

in the medium and in general subjected to the laser field E® and a molecular field F [6].
Eq. (43) now becomes:

N 83 m3eP)
Capo= %, ( Taﬁ) :
p=1 aEp aEy 5E6 0 (44)
The dipole moment induced in the p-th molecule at frequency 3w is:
mJ*P =3c;pP(Eg + FP)(EC + FP)(Eg + FP) +.... (45)

F® js the molecular field additionally acting on the p-th molecule due to the N-1 mo-
lecules in the presence of E®. This field can be accounted for by Kirkwood’s method [12].
In a linear approximation, we write [6]:

N N N

FP=F{)— ¥ T$PapPE?+ ¥ Y TYPaPOT@a2WES (46)
=1 g=1lr=1
:#P q#pregq

with F® denoting the a-component of the molecular field acting on the p-th molecule
in the absence of the laser beam, and

n;q =—r ;45(3 YpgeTpap =T ﬁq 0p) (47)

the dipole-dipole interaction tensor of molecules p and g (distant by r,,) which is non-
zero for p#¢ and equal to zero for p=g. a%P is the linear polarizability tensor of the p-th
molecule,

Neglecting higher-order hyperpolarizabilities in the expansion (45), we have with re-

gard to (44):
N o ) F(p) 0 F(p) ;) Fap)
Cg;;;'& = p;l c:mlp) (Jeﬁ + ﬁf) (Jm’ + O_E,’;‘;) (615 + _a'E”zj) . (48)

From the above expansion we see that the tensor Cfﬂ“;,, 1s symmetric in the indices f, y,
d only, but that ¢, is still totally symmetric.

a. Isotropically polarizable molecules. On inserting (48) in (11), we get for
such molecules by (27) with satisfactory accuracy:

1 N N lald OF@® IF® g F) OF@® gF@
Fio=— %15 +15( = ) pg( e T T Ofa )
) 15V<,§14=21 P 0E?  OE? OEy OEy OE; OEj

5 OFP oFY oF® oFp OF®P oF®
0E? OE; ' OE® OEY 3E? QEZ |/’

po 13 s =i<§ y cdaggo [3 0% OF 0K OFP)\ (49)
BT oy NS ST U GEy GEY GER OEy
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Putting in (46) ag3=a,0,, (where a,=a2/3 is the mean linear polarizability), inserting
in (49), and restricting calculations to pairwise interactions only, we obtain to within 4 the
result:

Fy’=c}, p*kTB.{1+0(a2)],
3 P ﬂT[ ( w)] (50)

13
F3$s=5503$s=4paf, IO+,

where 0(a?), calculated with the assumption that fluctuations of the density are inde-
pendent of translational fluctuations, is:

96
0(a%)~ alJ®+ ... 51
(az) SpkT B, ok (51)
J) denotes the radial correlation parameter [10]:
JR=24r, > =8np [ rit g (rp) dry,. (52)

Generally, numerical calculations of {r,g"> for n>4 can be performed in Kirkwood’s
approximation [12], yielding [13]:

drnp [m\22
PR —13 , (53
T n—3 <6v> )
where v is the volume of the molecule.
From (50), it results that there can appear an insignificant depolarization of third-har-
monic scattered light even if the scattering medium consists of isotropic molecules:
30 3a5J%

D= .
" 5pkTBr[1+0(a2)]+36a2J

(54)

This is a direct consequence of the fact that the assemblages of interacting atoms or
isotropic molecules behave as optically anisotropic elements which then cause anisotro-
pic light scattering. The depolarization ratio is moreover temperature-dependent since
TR =J (T).

b. Anisotropically polarizable molecules. By (A.1-A.3) (see Appendix),
Eq. (30), and taking for axially symmetric molecules Uy =04 0pp+a, K, (3k,ky— ,),

@ +24% o az3—asy. . :
where aa,=(9—3—~3il is the mean polarizability and Ka=-%——1—11ts anisotropy, we obtain:
aOJ
Fi’=c3, p*kThe[1+0(al)],
Fonte= 0 p[K2(1+J ) +4a5 IO +..)], (55)

Gt = p [K2(1+T ) +22a2 JE(1 .1,

where we have neglected in terms with J$ small contributions from the anisotropies x
and x,.
Thus, the depolarization ratio D)® can be written in this approximation as:
3[k2(1+J ) +4a2 Q]
SokThr[1+0(a2)] +4[x2(1+J ) +9a2 I

a

D=} (56)
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It is important, moreover, that we can evaluate the parameter J& not only by theore-
tical approximation (53) but also from depolarization ratios of linearly scattered
light or electric, magnetic and optical birefringence data [6, 10, 13] and from molecular
polarization or refraction [12)].

In condensed media, the molecules polarize one another by way of their intrinsic micros-

copic fields Fo, even though no external field may be acting on the medium.
Considering in (45) higher-order polarizabilities, by (44) we additionally obtain;

N
3 3 3 3
Cls= Zl<c¢;;?’+d,:;¥:’ F+3el® FOF 1), (57)
p =

If the molecule possesses a centre of inversion, all components of the hyperpolariza-
bility tensor d,,,s. vanish and so does the first contribution due to the linear field F, in
this case.

Therefore for centrosymmetric molecules, we have:

N
3 3 3
Camo= Y. (i +3e20®) FOFD), (58)
p=1

where = 3. F@? is the electric field induced at the centre of the p-th molecule by all
a#p
the other molecules of the medium and related with London’s dispersion forces.

The tensor e,g,s,, for spherical symmetry can be written as follows [14]:
e:ﬁ;de:;: % €30 Uaﬂyém (59)
with e;,, denoting a mean hyperpolarizability of the fifth order.
Inserting (59) into (58), we have by (27), from (23), for the anisotropic parts:

2 N N
oA Zlei“’ei“’{3 (FEFS) (FRFG) —(FRFE) (FOFI> . (60)
p=1q=

30 _ 30 _
nnls"‘Ganis_

We further have for two atoms interacting with London’s dispersion forces [15]:

th vv
1 ®, o —
a‘,‘,’Fgﬂ"’Fﬁ,’;’ = a;’Fﬁ,“;’)FS’;’) =ﬁ apag rpqs(3r,,qa Tpgs + rjq Oup)s (61)
P q
hv, and hv, being energies characteristic of the atoms p and g, respectively.
Assuming that v,=v,, one obtains from (60) for pairwise atomic interactions
30 0 _ P 5, 2, 12
aniszGanis':__— a, e3w(hv) <rpq >, (62)
392
where (r,.'?> is determined by (53) for n=12.
From (62), we see that in this case atoms interacting with London dispersional forces
also depolarize the third-harmonic scattered light, like in linear scattering [16].
All in all, the depolarization of third-harmonic light scattered by atoms or isotropic
molecules arises from two mechanisms: firstly molecular redistribution (54) and, second,
molecular interactions with forces of the dispersional kind.
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4. DISCUSSION

We shall now perform some simple numerical evaluations, which will reveal the order
of magnitude of the various above-considered effects of molecular interaction.

Let us begin by the effect of spatial molecular redistribution on the component pie
(14) of light scattered by isotropically polarizable molecules.

The intensity ratio k, calculated from (50) and (28) is:

96a J &
SpkTfr -

In argon at 84,4°K, J$&=8.4-10*5 cm™¢, p=21.3-10>! cm~3, fr=204-10""2 e. 5. u.
whereas a,=1.63-10"2¢ cm?, whence we get k,~10.5. This leads to conclude directly
that radial interactions yield a contribution which raises the scattered component yie
by 950 per cent.

This contribution moreover causes a modification in the scattering of light by atoms
and isotropic molecules. In fact, an anisotropic component appears. Let us compare, for
such scatterers, the effects of molecular redistribution and of dispersional interactions
by calculating the ratio of components H3® (14) given by egs. (62) and (50):

k1=1+

(W) [esa) T
271568 \c3o) IO

With regard to (53) at n=6, n=12 and pv=0.6, this expression goes over into:

2
ky~2.9- 10" 5(nphy)? (‘—’i‘i’> :
Cin,

Taking the values p~1022 cm™3, Av=x1071*¢.5. 1., €3, = 1073%¢.5. 1., €3, 10748e.s. u,,
which are typical for liquids, we obtain k,~107°, Thus, translational fluctuations are
a decisive factor in the production of an anisotropic component in light scattering by atoms
and isotropic molecules.

Similarly, we shall discuss the problem for anisotropic molecules having the axial sym-
metry.

By egs. (55) and (31), we obtain for the component H2® (14) the ratio:

4alJQ
SRR
Let us moreover assume that x.=x,. For benzene molecules, we have in particular:
a,=10.32-10"2¢ cm?, k?=3.58-10"2, J,=—0,25 [11] and p=6.74-10>! cm™>. These
data, by (52 - 53) at pp=0,6 yield J&=1.56-10* cm ~°. As a result, we get k3 ~2.3. Thus,
the effect of molecular redistribution raises the anisotropic component by 130 per cent.
Taking moreover fr=95-10732 e.s.u., we calculate from (56) D3*~0,08, whereas
the depolarization calculated from (42) for .=k, is Dy®=zDy =0,07 (D;=0.266 [17]).
These values are by one order of magnitude larger than the value obtained in the ,,ga:
approximation” [3].
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Let us consider the values of the ratio of the component H;® of third-harmonically
scattered light and the component Hy of light linearly scattered by axially symmetric
molecules. This will give us an answer as to whether the phenomenon is accessible to
observation.

Quite generally, we have:

HZ® 9c§m{x§(1 +JA)+4af,J§f)} )
H? ~ 64a2{k2(1+J ) +a%JP}

Hence, for weakly anisotropic molecules, we obtain:

H3m~-9_ f3a 212
H® 16\ a, )
In chloroform, ¢ (—, @, —w, w)=43c(—30, 0, ®, W)=5-10"3¢e.s.u. [10], a,=8.32 x

% 10724 ¢cm?®, and we obtain H2°[H®~2:1072* I, e
For strongly anisotropic molecules, we resort to the general formula for 2

In nitrobenzene, c;,=25.5-1073% e.s.u. [10], a,=12.92:1072* cm?, ki=x7=0.05,

J,=125 [18], J©=1.26-10* cm"®, leading to the result: H,®/H; ~1072]%,

An especially strong effect of third-harmonic light scattering should take place in
solutions of macromolecules.

The order of magnitude of the nonlinear polarizability can be determined from Kerr’s
effect; on assuming that the effect due to nonlinear polarizability ¢(—w, @, 0, 0)=75C30
constitutes 1 per cent of the effect of orientation of anisotropic molecules (a,x,)*/kT,
we can write:

@okd? | -2_(@5—af)’

1072,
kT 4SkT

Cup=

For the macromolecules of fibrinogen we have a3;—a?,=1.2-107*7 cm?, for collagen
3,107 15 em3, for TMV (tobacco mosaic virus) 3.3-107 14 cm?, and for DNA 1.4-107** cm?
(references data for 20°C {19]).

With these data, we obtain the following results: fibrinogen ¢;,=9.5-10"22 es.u,,
collagen 5.3-10719 e.s.u., TMV 7.2:10717 es.u,, DNA 1.2-1071? es.u.

On neglecting both angular and radial correlations, we get from the general formula

for anisotropic molecules:
Hﬁ“’:_g LAY 2
Hy 64\ a,

One can assume a,, of order 107!* cm? for collagen and DNA, 107'° cm?® for fibrinogen,
and 10713 cm?® for TMV.

These data yield ratios of H.*/HP~7:10"28I% for TMV, ~4-107%* for collagen,
~107°12 for DNA, and ~107*3J? for fibrinogen.

The present theory is easily extended to the case of inelastic frequency-broadened
third-harmonic scattering, taking into account also the collision-induced light scattering
recently studied in linear scattering [20]. Also, spectral width can be included, as done
recently by Maker [21] for the case of elastic second-harmonic light scattering.
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APPENDIX

We shall now discuss molecular redistribution in the case of arbitrarily symmetri
molecules,

Inserting (46) in (48) and restricting calculations to pairwise interactions only, w
obtain from (13) to within a>:

p’kTp;
25

Fi= {C:au«:y ﬂﬂ66+25 0(a’ )}, (4.1

where 0(a?) calculated with the assumption that density fluctuations are independent o
translational fluctuations is:

(6)
0 (ai) m [3 (21%577 2808+ 8503:;y Cpm) aet] aen + (39Capyy apao 58caaw Cﬁﬁaa) +

+ a5 ap +478c22, can, g +63c o cam al a]+ ..,

30 .3 3
Foi anis ™ 189 {locaﬂya Caﬂy& + 30:1;;0)'7 Ca;:ié 3ca:~;7 Cm{fas +

p 3 3a(qg) 3 3 30(p) 3o(g)y (2
+7”(10c¢§;%”’ Capyg) 33D €30 — 3e3eip) c3alary ol Xz, 1) de,dr,+

(6)
+ 2og L7 (3326¢5, ¢+ 303¢y, e — 601¢22, c3,) %, s +

+(=1554c355 ¢35 +2163¢2 ¢ ¢ﬁ55+204801awcm,6,,) agam+
+2(7000¢;35,, 2. +4200¢35), 3, — ST17C38, €3%,) a al +
+112(5c,,£,,§ad,+cmz ag)con am, ~4200c2;,c2%5a o8 Gy +

+602103:;,£c,?§},,a8ya,,5]}.+... , (4.2

3&)__

anis = 1365 {locaﬁya Crzﬂy& + ’Scaﬂyy aﬂéé 27caa}'y c[iﬂéé +

3 3 3 3 3a( 3 2
3 J f (0GP o+ TSe P e 35 = 27300 6300 ¢, 1) dey dr, +
(6)

700

[7(2930c5535 cagys+ 11679¢55,, c3ing— ST85¢28, ¢3y) a2 a® +

+(— 1470055, s — 46416055, €205+ 18092¢38 c30.) a? al +

+2(7000c.5), cagy. +21000c, ¢33, — 2848132 3% ) a% a® +

+ 560 (cﬂe,,‘5 ag+ 101cﬁﬂ6£ en) cm, mt 63000c2,‘,’ 1y Cacas Ao oy +

+75573c3 0. commmat as ]} + ..., (4.3
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where, for simplicity of the final resuits, we have performed in quadratic brackets an
averageing over all possible molecular orientations. We have to average the products
of four and six directional cosines. The general result of this procedure is given in [22].
The Egs (A.1 - A.3) are quite general and can be particularized for molecules of any
kind.
From (A.1 - A.3) by (27) and aj3=a,,d,,, we can also obtain the result (51) for isotropic
molecules.
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