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The non-linear susceptibility tensor y;(—w,w,,w, E°) is discussed for optical

mixing due to electrically induced processes of non-linear electronic distortion and
statistical fluctuation, reorientation and relaxation of permanent and induced molecular
electric multipoles, for isotropic optically active and inactive bodies in particular.
Suggestions are made for the observation of wave mixing and second harmonic
generation in new experimental set-ups devised to permit determinations of the
non-zero independent elements of 4,5 and 6 rank tensors of non-linear susceptibilities
and to yield more information on the microstructure of substances and their electro-
optical properties.

1. Introduction

DC electric-field-induced second harmonic generation (SHG) has been obtained in calcite
[1, 2], TGS crystal in the paraelectric phase [3], as well as in molecular substances [4]. Such
bodies naturally possess a centre of symmetry, and are in principle able to yield only SHG of
the quadrupolar type, of rather low intensity. An externally applied DC electric field E°
removes the centre of symmetry thus causing a rise in SHG intensity. The electric anisotropy
induced in isotropic bodies depends, in addition to the strength of the field E°, on its spatial
inhomogeneities. Although the non-linearities induced in a medium by the gradient (or higher
spatial inhomogeneities) of E° are generally insignificant, experimental conditions of observa-
tion can often be arranged so that the anisotropy due to the uniform field shall not intervene
directly [5]. Also, it has to be kept in mind that the action of a uniform electric field is differ-
ently apparent in isotropic optically inactive bodies and in those that are optically active, as the
latter have the property of generating summation frequencies [6, 7].

This paper is intended as a discussion of the mutual interaction of two laser waves propagat-
ing in a medium acted on by a strong DC electric field (or by an alternating electric field),
taking into consideration the spatial inhomogeneities (gradients of various order) of the
applied field. The problem is considered with sufficient generality to permit a formulation of
new feasible experimental situations in which matter is subject to non-linear cross-variations
dependent of the strength of the applied DC electric field and electromagnetic fields concomit-
antly. A phenomenological description of these processes is given together with their micro-
scopic interpretation on a classical level, bringing to the fore their more important distortional
and statistical-fluctuational mechanisms.

2. Optical Polarisation of the Second Order in the Presence of a DC Electric
Fieid

Two electromagnetic waves E“* and E“? oscillating at frequencies o, and w, induce in the
medium a polarisation of the second order at the frequency w; = w, + w, [8]:

Plws) = 1inE]ER* 6]
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where y% = xiju (—3, @y, @y), is the tensor of second-order non-linear susceptibility with
non-zero components only in bodies without a centre of inversion.

When a DC ¢lectric field E° acts on the medium, the polarisation (1) becomes a function of
E? and if non-linearity is moderate, one can write the expansion:

AUE) = 130) + XD + A5 umE Em +155mE i
+ XsilmnEloErgEg'*' ”iu}lzlmnElOEzn + %?ﬁdmnE?mn +... ’ (2)

x$52(0) being the susceptibility tensor at E° = 0 and the other tensors defining its successive
non-linear variations due to the DC field strength E, the field gradient E} = V,E , the gradient
of the field gradient E;;, = V,V,E} , and so forth.

Resorting to the semi-macroscopic method [9], one can represent the phenomenological
expansion (2), which is applicable to arbitrary media, in a form rendering apparent the micro-
structure of the medium (of volume V) as well as its thermodynamic state. We shall now
discuss, one by one, the terms of the expansion (2).

2.1. The Linear Variations Induced by a Uniform DC Electric Field
These are described by the tensor of rank 4:

Vi = {{Crnop> + B{BraaM )} LAy L2 Ly 3

where B = 1/kT and the brackets { ) stand for statistical averaging in the absence of external
fields; in the case of a spherical specimen of electric permittivity tensor ¢;; immersed in an
isotropic medium of dielectric constant ¢, we have

&1+ 2¢,0;;
L;‘}l ='—l—1'¥—1 . etc. (4)
e

If the specimen is isotropic and the induced anisotropy small, one has ¢, ; = €0;; (where J,;
is Kronecker’s unit symmetric tensor), and equation 4 yields: )

o, &7+ 2e, o1 s
ijl =T 5i.l=L loij‘ (4a)

M is the electric dipole moment of the medium in the absence of external fields; B3 and Cj3,
are tensors of its optical non-linear polarisability [9]. The first right hand term of equation 3
depends only weakly on the density and temperature of the medium and accounts chiefly for
the mechanism of non-linear electronic polarisability of the third order (spatial redistribution
of the atoms, molecules or ions is quite unimportant, making up 10 % at the most). The second
term of equation 3 depends directly on temperature; it is related not only with the distortional
process, which gives rise to electronic polarisability of the second order, but moreover with the
statistical process consisting of reorientation of permanent electric dipoles (if present) in the
DC electric field [4] or of reorientation of induced dipoles whose existence is due to fluctu-
ational microscopic fields of the electric multipoles of closest neighbours [9].

2.2, Quadratic Variations in a DC Electric Field
These are accounted for by the susceptibility tensor of rank 5:

2V tiium = {<Drgper+ 2B Cr3M,> + B(4B,,, 44>
+ B2 CAB, AM M )Y LS LALLOLY,  (5)

0j* pk

The first term expresses essentially the distortional process of non-linear electronic polaris-
ability. The subsequent, temperature-dependent terms stand in relation with statistical fluctu-
ations of the non-linear second-order polarisability A B{3; as well as fluctuations of the linear
polarisability 44, and of the squared dipole moment A(M xM}). In the microscopic picture,
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these terms give the mechanism of reorientation of the electric molecular dipoles and of the
molecular electric polarisability ellipsoids.

2.3. The Gradient of the DC Electric Field
This causes variations of the optical susceptibility described by the tensor

3VN%%m = {{Cm + B{BEQmd )L L1 L2LY (6)

involving, beside macroscopic parameters of the uniform electric field (4a), a parameter of the
field gradient (on neglecting anisotropy of the dielectric constant):

2e+3e,

5o M

0 _
o=
(4

Equation 6 contains, in addition to the first term accounting for the distortional effect, a
temperature-dependent term related moreover with the statistical effect of reorientation of

electric quadrupoles by the DC electric field gradient (Q;; is the electric quadrupole moment
tensor of the medium).

2.4. Higher Non-linearities -

These are defined by tensors of higher rank (upward of the fifth). The tensors, when written
out explicitly, are rather involved in form, and we refrain from adducing them here. The
respective terms become relevant at sufficiently high field strengths E° causing strong non-linear
electric distortion of the electronic shells of the microsystems (atoms, molecules, ions, macro-
molecules) and a considerable degree of reorientation of the latter with a tendency to complete
alignment of all the microsystems into the direction of the electric field vector which can lead to
electric saturation. These processes have been discussed by us elsewhere [10, 11], and we shall
not consider them further now.

3. Discussion and Final Remarks
Light generation at doubled frequency or summation frequency in the presence of a DC
electric field is of particular importance in isotropic bodies which, naturally, are unable to
produce these phenomena in the electric dipole approximation. For isotropic optically inactive
bodies, the expansion (2) yields in a linear approximation [10]:

Xf}i(Eo) = X?;yyaing'*-X?;xyéikE(}'{_Xy?s 6jkE? . (8)

xy

In various particular cases, well-defined symmetry relations [10, 11] exist between the three
mutually independent components which satisfying the relation [12]: Xxxyy + Xyxy T Lyxy
= Xyyyy- A glance at the form of equation 8 shows immediately that optical polarisation com-
ponents (1) exist when the waves are incident perpendicular to the direction of the DC elec-
tric field; this, in fact, was the situation in Mayer’s experiments [4] on molecular substances.

Giordmaine [6] was able to show that, in isotropic bodies, the asymmetric part of the tensor
xi7 has non-zero elements so that sum frequency generation can take place in the absence of
an external field [7]. In this case, the tensor xi7 depends quadratically on the DC uniform
electric field strength (the third term of the expansion (2)) and this dependence is described
by a fifth-rank tensor of the form of equation 5 whose non-zero elements are accessible to
experimental determination by wave mixing. One is easily convinced of this on considering the
simple situation when two laser beams propagate in the yz-plane at acute angles 8, and 0, to
the z-axis intersecting one another (fig. 1). If the wave conveying the field E®! is linearly
polarised with electric oscillations perpendicular to the yz-plane (thus parallel to the x-axis)
and if the other wave E“? oscillates in the propagation plane yz, the following polarisation
components (1) will be non-zero:

Py(wS) = X;’Q:E?‘Eg’z s
Pz(wS) = X?;yEﬁlE;oz ? (9)
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permitting the calculation of the resultant polarisation transverse to the propagation vector
k3 = k] + kz [7].

If the DC electric field is uniform and acts along the y-axis (fig. 1a), the tensor elements 1
of equation 9 are subject to the following quadratic variations (see Appendix):

010
Oxyez = XyizyyESES »
5)(?,;", = X(zu;ynygE(; > (10)
and we get, in the absence of optical dispersion,

w3
ijk

X;D;yyy = _X;)J?zyy . (10a)

If the waves propagate in the presence of a field gradient, as shown in fig. b, where
E) = — Ej,, we obtain instead of (10), on neglecting dispersion,

BX;OJ?y = _6wa;z =1 ;,xsyny;’y . (11)

Quite similarly, proceeding from equations 1 and 2, one can analyse various experimental
wave mixing situations involving yet other configurations between the DC electric field vector,
the propagation directions of the waves, and the oscillation directions of their electric fields,
leading to the determination of the other non-zero elements of the tensors (5) and (6).

A closer analysis based on equations 1 and 2 shows that wave generation and mixing
processes are accompanied by self-induction of optical birefringence in the medium, with
optical axis parallel to the electric vector oscillations in the case of linearly polarised waves, and
parallel to the propagation direction in that of circularly polarised or unpolarised waves. In
isotropic optically inactive bodies, self-induced optical birefringence accompanies SHG only if
a weak DC electric field is operative [11]. On the other hand, in isotropic optically active ones,
ware mixing processes [7] are accompanied by self-induced optical anisotropies even in the
absence of a DC electric field, in accordance with the equation:

215 15 1) = Lijum(EP B + EPE, )+ (12)

Quite obviously, the optical anisotropies due to beams of intensities /; and 7, arise by processes
of non-linear distortion, optical reorientation of molecular polarisability ellipsoids, and
molecular correlations and redistribution [9, 11].

The expressions (3), (5) and (6) provide a basis for studies, in isotropic (optically active and
inactive) bodies, of not only the distortional effects consisting of non-linear distortion of
electron shells by the simultaneous action of electromagnetic fields and a DC electric field, but
moreover of the statistical-fluctuational processes related with the electric properties of the
microsystems. This information is indeed available because each of the macroscopic tensors
M, Qi Aij--... can be expressed in terms of properties of the individual microsystems; thus
e.g. the total electric dipole moment in the absence of external fields in general can be expressed
as follows for a medium consisting of N microsystems [9].

N
M; = ZI{#?’) +UPFP +IBRFPFP+ 1y RFPFPFP 1) (13)
o=

J

with p(P) the dipole moment of the pth microsystem, o,{7) the tensor of its linear electric polaris-
ability, B, ) etc. tensors of its non-linear electric polarisability and F (P the electric field
effectively acting on it owing to the presence of the electric multipoles of the surrounding N-1

microsystems [13]. The electric polarisability tensor of the medium is
N
Ay= 3 (o +BRFP T HRFPFP +.. ). (14
o

Expansions similar to that of equations 13 and 14 can be written for the other, already men-
tioned, tensors of higher rank [13].

In sufficiently dense substances, microscopic electric fields exist even in the absence of an
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external field; accordingly, their fluctuations give rise to a number of statistical processes,
which can variously modify the non-linear optical processes studied here. Insight into the part
played by them with regard to non-linear processes of electronic distortion should be available
from a closer investigation of processes of wave generation and mixing as a function of tem-
perature, pressure and concentration.

Moreover, equations 3, 5 and 6 permit studies of the relations existing between the macro-
scopic symmetry of bodies and the symmetries of their microsystems. This is all the more
feasible as at present we know methods for determining the non-zero components of some of
the higher-rank tensors intervening here (up to rank 5 and 6 inclusive) for all point groups of
microsystems [14] as well as for all crystallographical classes [15]. In particular the tensor
Xi3um » Which has 243 components, reduces the number of its non-zero components to 60 in the
case of the regular (cubic) system; 20 of them are mutually independent for class 23, 10 of
them for classes 432 and 43m, and 6 for an isotropic optically active body (see Appendix). A
further reduction in number of independent tensor components results by Kleinman’s sym-
metry conjecture [8]. Tables of components of the tensors of rank 5 and 6 occurring in the
expansion (2) prepared at this Institute and covering all crystallographical classes will be
published separately [16].

By applying an alternating electric field of oscillation frequency well below the optical range
(in place of a DC field), one will obtain the possibility of studying the contribution to wave
mixing from processes of Debye molecular relaxation [9].

We hope that the preceding analysis (it was not our intention to deal more closely with the
technicalities) may have shown convincingly that experimenters have here at their disposal new
possibilities of investigating the DC electric field induced generation of double, sum and
difference frequencies with the aim of determining tensor elements not only of rank 4 but also of
ranks 5 and 6 describing non-linear processes of higher orders. The non-linear processes
suggested here can be advantageously studied in macromolecular and colloid solutions [11],
liquid crystals [17], weakly non-linear crystals [18], as well as various other unbounded
random media [19].

Appendix
For isotropic optically active bodies we have by equation 1 three polarisation components in
the presence of a DC electric field :

Po(@s, E%) = (25, (EO) B E2* + yo(E)EV ES?
Py(w3, E°) = yya(EO)ED E* + yp2(E)ES E2*
P (w3, E°) = (23 (EE2'EY* + (2 (E))ESES?
In the absence of an electric field we have [6]
Xayz = Xyox = Aoy = — Xty = —Xyie = — X% »
whereas in the presence of the gradient of a DC electric field we have:
KAVE®) = APES, — A3°E) + ASED,
KAVE®) = — APED + AS°E), — ASES,
132(VE®) = ADEy, + APES, — ASED,
12(VE®) = APE), — A2EL, + ASEY,
1e(VE®) = APEL, — ASES, + ASES,
1A VE®) = — APES, + ASES, — AED,,

where the constants 4,, 4,, 4, are given in terms of the appropriate tensor components (6).
The preceding expressions remain unchanged in form on expressing the constants 4,, 4,, 4,
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in terms of relevant tensor components (5), and the field gradient components E2 .. ... n
terms of the respective squared components of the uniform field E2 E2, . ... .

For the case of an isotropic body, the non-zero elements of tensors of higher ranks can be
founa by the method of statistical averaging with equal probability over all possible orienta-
tions of the co-ordinate axes [14, 20]. This procedure leads to the following expression for the
elements of an arbitrary tensor of rank 5

Yijiam = X €180 + X571 10m + 15761 im0
S(5),
+ 180600 ju + XS Bukn® 1 X8 Em e+ 158 i
+ 1878 1m0t + 18V 1m0 it + X 06 kmS; i
where the constants (%, . . ., 4%} are defined in a manner to form an orthonormal set of six
linearly independent invariants [14, 20]. (It may be worth a reminder that ¢, is the Levi-Civita
antisymmetric unit tensor; its elements equal 1 for different indices 7, j, k following one another
in cyclic order, or are equal to — 1 if the indices i, j, k¥ occur in anticyclic order, say i, k, j, or

become 0 if any two indices are the same, e.g. for i, i, k.)

Similarly, in the general case, an arbitrary isotropic tensor of rank 6 can be written in the
form

s=1

5
6 o
Xijklmn - X.(v )5ij()klémn ’

s=1
where summation extends over the 15 independent tensor elements ¥{®, . . . ¥&) which result
on performing the complete set of permutations of the indices i, j, k, I, m, n in the product
010510 m, of unit tensors [20].

A reduction in number of the 15 constants 3(®), . . . 48 will result in various cases from the
type of symmetry of the tensor y;;im,; when the latter is totally symmetric (symmetric in all 6

indices) this reduction can lead to two comstants, or even to one [21] (on neglecting electronic
dispersion and absorption).

The preceding considerations show that it is feasible to choose the geometrical conditions
(as done with regard to other materials in the absence of an electric field [7, 18]) in a manner
to be able to observe wave mixing processes (transverse polarisation component) in the presence
of a uniform field or field gradient (see fig. 1).

%
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(a) {b)
Figure 1 (a) Permanent electric molecular dipoles undergo an orientation in the uniform electric fleld E°: at
electric saturation all the dipoles of the medium are aligned along thelines of force of the field (y-axis). (b) Perma-
nent electric molecular quadrupoles undergo an orientation by the electric field gradient ES, = — Ey’; produced
in the medium by a four-wire capacitor (the conducting wires run parallel to the z-axis, which is the axis of the
capacitor).

The propagation directions k, and k, of the two mutually intersecting laser beams lie in the yz-plane. The
directions in which their electric vectors E“1 and E“2 oscillate are not visualised. The preceding experimental
set-up is intended as one example resulting from the general theory. Hinging on various possible requirements,
as they may occur to the experimenter, configurations of E° k,, k, E“ and E“2 can suggest themselves for
consideration as promising. However, it was not our aim to give these technicalities a closer treatment here.

10



FREQUENCY MIXING OF LASER WAVES

R
1

2
3.
4

= Y.

10.
11.
12,
13.
14.
1.
16.

17.
18.
19.
20.

21.

eferences

. R. W.TERHUNE, P. D. MAKER, and C. M. SAVAGE, Phys. Rev. Letts. 8 (1962) 404-406.

. J.E.BJORKHOLM and A. E, SIEGMAN, Phys. Rev. 154 (1967) 851-860.

V. S.SUVOROV and A. S. SONIN, Zh. Eksperim. i Teor. Fiz. 54 (1968) 1044-1050.

. G.MAYER, C.R. Acad. Sci. Paris 267B (1968) 54-57; G. HAUCHECORNE, F. KERHERVE, and G. MAYER,
J. Physique, Paris 31 (1970), in press.

. S. KIELICH, Physica 29 (1963) 938-947; Acta Phys. Polon. 30 (1966) 851-876.

. J. A. GIORDMAINE, Phys. Rev. 138 (1965) A 1599-1606.

. P. M. RENTZEPIS, J. A. GIORDMAINE, and K. W. WECHT, Phys. Rev. Letts. 16 (1966) 792-794; 5. A.
GIORDMAINE and P. M. RENTZEPIS, J. Chimie Phvsique (1977} 215-221.

. N. BLOEMBERGEN, “Nonlinear Optics” ‘W. A Peyainim, New York, 1965).

. S. KIELICH, Acta Phys. Polon. A37 (1970) 205-219.

Idem, IEEE J. Quantum Electr. QE-5 (1969) 562-568.

Idem, Opto-electronics 2 (1970) 5-20.

P. N. BUTCHER, “Nonlinear Optical Phenomena” (Columbus, Ohio State University Press, 1965).

S. KIELICH, J. Chem. Phys. 46 (1967) 4090-4099; J. Physique 29 (1968) 619-630 and references therein.

L.L.BOYLE, Int. J. Quantum Chem. 3 (1969) 231-243; 4 (1970) 413-425.

F. G. FUMI, Nuovo Cimento 9 (1952) 739-756; r. FIESCHT and F. G. FUMI, ibid 10 (1953) 865-882.

T.BANCEWICZ, S. KIELICH, 2. 02GO, W. PIECZYNSKI, and R. ZAWODNY, Bull. Soc. Amis. Lettres

Poznan, Sér. B 22 (1969/70, in press).

L.S. GOLDBERG and J. M. SCHNUR, Radio and Electronic Engineer 39 (1970) 279-285.

M. TAKATSUJI, Japan J. Appl. Phys. 5 (1966) 389-400.

I. FREUND and 1. KOPF, Phys. Rev. Letts. 24 (1970) 1017-1021.

S. KIELICH, Acta Phys. Polonica 20 (1961) 433-445; 31 (1967) 929-953; Bull. Soc. Amis. Sci. Lettres Poznan,

Sér B 21 (1968/69) 47-55.

Idem, Bull. Soc. Amis. Sci. Lettres Poznan, Sér B 16 (1960/61) 69-80.

11



