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The non-zero non-linear susceptibility tensor components y2¢ (E°) which account for
frequency doubling of laser light in a naturally isotropic medium immersed in a DC electric
field E° are discussed. The conditions for extremal second harmonic generation (SHG)
are derived, which depend on £° and on the incident laser intensity but primarily on the
microstructure of the medium.With growing E°, the susceptibilities 522 (£°) increase for
cigar-like microsystems but decrease for disc-shaped ones, according to whether the
induced dipole helps or hinders the permanent dipole in reorienting the microsystem
along E°. Non-linear electronic distortion alone is insufficient for explaining the
anomalous experimental results.

Generally, upon the electrically induced anisotropy, an anisotropy self-induced by the
laser beam is superimposed, with optical axis along the propagation direction if the beam
is circularly polarised or unpolarised, or along the oscillation direction of the light vector
if it is linearly polarised.

Extremal anisotropy of the medium occurs at saturation of electric or optical
reorientation. This is experimentally inachievable in molecular substances even with very
strong fields but is easy to obtain in solutions of macromolecules or colloid particles,
where yet other opto-electronic processes intervene significantly.

1. Introduction

An externally applied DC electric field acts on an isotropic body in a manner to destroy its
natural symmetry. The body, thus deprived of its centre of inversion, gives rise to a doubling
of the oscillation frequency of a laser beam incident upon it [ 1, 2]]. This capability is maintained
as long as the DC field is applied. The effect, known as DC Electric Field-Induced Second
Harmonic Generation (ESHG), was first observed by Terhune et a/ [3] in calcite crystal and
studied in detail by Bjorkholm and Siegman [4]. The experiments revealed, moreover, a slight
amount of second harmonic generation in the absence of a DC electric field due to induced
electric quadrupolar polarisation and induced magnetic dipolar polarisation [2, 4]. Recently,
Mayer [5] observed radiation of a light wave with doubled frequency from dilute molecular
dipolar and non-dipolar substances placed in a DC electric field.

In this paper, we shall consider only frequency doubling of laser light in isotropic bodies
subjected to the action of a weak or strong DC electric field E°. In a not very strong field E°,
essentially two processes occur in a molecular, sufficiently dilute medium. One consists in a
non-linear distortion of the electron shells of the atoms or molecules. This is equivalent to
inducing in them an anisotropy which, then, causes an anisotropy of the medium as a whole
like that considered by Voigt [6] in his theory of the Kerr effect. This distortional effect,
obviously, is present to a larger or smaller degree in all matter. The other process takes place in
substances where the molecules possess permanent dipoles, and consists in a reorientation of
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these dipoles under the influence of the applied DC electric field. In this case, the partially
electrically-oriented molecules present an ordering, causing the medium to become anisotropic,
in accordance with Langevin’s theory [7]. Contrary to the non-linear distortional process, this
process of dipole reorientation in the DC electric field depends rather strongly on temperature
because of the deorienting thermal motion, which tends to re-establish the random distribu-
tion of molecular orientation as it existed in the absence of the DC field. Temperature-
dependent processes take place also in non-dipolar substances if the degree of condensation is
so considerable as to provide for the existence of strong fluctuating electric fields of molecular
quadrupoles or octupoles; these fields act on the neighbouring molecules, inducing dipoles in
them and thus causing them to undergo a reorientation by the DC electric field applied to the
dense medium [8]. The numerical evaluations of an earlier paper [8] show that, in polar
substances, the effect of molecular reorientation markedly predominates over that of non-linear
distortion of the electron shells.

If the applied DC electric field is very intense, all the electric dipoles of the medium tend to
align completely in the direction of the field. This leads to an ordered structure resembling a
quasi-crystalline structure. Such “‘saturation” of electric dipole reorientation {9] can give rise
to a considerable increase in second harmonic generation by strongly dipolar substances, like
solutions of macromolecules or of colloid particles [10].

In this paper, we shall show that the intensity of second harmonic generation depends not
only on saturation of reorientation of the permanent electric dipoles but also on saturation of
reorientation of the electric dipoles induced in electrically anisotropic molecules or particles.
In such systems, superposition of the two saturations can lead to a steep increase in SHG
intensity, as is the case for cigar-shaped molecules, or to a considerable decrease in SHG as in
systems with disc-like ones. We shall moreover show that intense laser light induces addition-
ally an optical birefringence in the medium and that this birefringence influences the SHG in
the presence of a weak electric field.

2. Theoretical Considerations
Beside the usual linear dipolar polarisation at frequency w, a sufficiently intense light wave with
electric vector E® oscillating at frequency @ will induce non-linear polarisations at double
frequency 2o, triple frequency 3w and, in general, at higher multiples of the fundamental
frequency @ [1, 2]. Since here our interest bears essentially on the dipole polarisation P
induced at frequency 2w (omitting higher multiples of w), we write its o-component in the
form [1]:

P,Qw) = 23 EPEY ¢))

where the quantities ¥2© = y,., (—2, ®, ) are components of the tensor of rank 3 of non-

linear susceptibility.

In the absence of external fields, the tensor y22 possesses non-zero components only in the
case of media which do not present a centre of inversion [2]. Now, when a naturally isotropic
medium is placed in a DC electric field (say, of field strength E®), it becomes deprived of its
centre of symmetry, so that its symmetry undergoes a degrading. This field-induced change in
symmetry leads to the non-vanishing of certain of the tensor components yZe which now
become functions of the field strength E°, consequently y2©(E®) [10]. Assuming the laser beam
to propagate along the z-axis of laboratory co-ordinates, and the DC electric field as applied
along the y-axis, equation 1 leads to the following expressions for mutually perpendicular
polarisation components at 2w [5, 10]:

P20, E) = 24 EDESES+ pAAED ESES

xxy'
P20, E9) = 2 EDELEL+ Y A EDEVE] . &)

The explicit form of the susceptibility tensor components y24(E3) depends in general on

the microstructure of the medium as well as on the field strength E°. For weak fields E°, they
are linear in E‘; in all media. For strong fields E°, they are rather involved; with the aim of
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simplifying these expressions we shall henceforth neglect the non-linear electronic dispersion,
as a result of which the tensor y22(E°) can be dealt with as symmetric in all its indices and our
problem reduces to a discussion of only two independent components [10]:

Han(ES) = X (ES) = 150( E3) and y3(E3) (2a)

We moreover assume for simplicity that the medium is so dilute that the microsystems (mole-
cules, macromolecules or particles having axially symmetric electric and geometrical structures
with respect to the molecular 3-axis) do not interact appreciably. The reorientation of perman-
ent electric dipoles p in the DC electric field component direction E‘; is thus given by the
dimensionless parameter

p = uESKT 3
whereas the reorientation of induced dipoles is given by the parameter
‘1=|°‘33—°‘11IE32/2kT > 4

o33 and o, being respectively the tensor components of linear polarisability parallel and
perpendicular to the symmetry axis of the microsystem.
The two parameters (equations 3, 4) enter the Maxwell-Boltzmann distribution function:

exp (pcosd+ g cos*d)

0y —
f(3,Ey) = )
fexp (pcos?+ g cos*H)dQ

which describes the degree of reorientation of the microsystems caused in the elementary body
angle dQ by the DC electric field ES. The angle ¢ is subtended by the symmetry axis (principal 3-
axis) of the microsystem and the direction of E‘;.

The sign “‘plus” in equation 5 has to be taken if the microsystems are cigar-like in shape thus
presenting positive electric anisotropy (a33—a;; > 0), whereas the sign “minus” refers to disc-
shaped microsystems (negative electric anisotropy, o33 —a;,<0).

With regard to an average number density p of microsystems in the medium, and in the
absence of molecular interactions, one can express the phenomenological non-linear suscepti-
bility tensor 22 E‘y’) in terms of molecular properties as follows [10]: -

H2OES) = %J(bfx+c§$yE3+ . ), E%dQ (6)

where b22 is the tensor of second-order non-linear polarisability of the microsystem induced
by the square of the optical field E®, whereas the tensor ¢22 defines the variation in b2¢ caused

otV
by the distortional effect of the first power of ES. Obvioflsly, the tensor h22 of rank 3 has
non-zero components in the case of microsystems which lack a centre of symmetry in their
ground state. Here, for instance, belong microsystems having symmetry of the point groups
C,, or Cy,. The tensor ¢22 of rank 4 has non-zero components for all molecular symmetries,
including atoms which are spherically symmetrical in their ground state. Since, for low
molecular symmetries, the number of mutually independent components of the tensors b2
and c2¢ , is quite considerable, we shall restrict our considerations to axially symmetric micro-

systems having symmetry of the point groups Cs, (e.g. NH;, CHCl;, CH;Cl, CH3I), C,,
(e.g. BrF;) and C,, (e.g. CO, HC], NCN, N,O).

2.1. Process of Electrical Pure Reorientation

To begin with, we shall assume that the DC electric field applied to the medium produces a pure
reorientation defined by the distribution function (equation 5). By this we mean a reorientation
of the microsystems unaccompanied by the distortional effect described by the second term of
equation 6, ¢2% ES. With this restriction and on the preceding assumptions, equations 5 and 6

yield (see Appendix):
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w p w w w (o]
Xazcxy(E(;)’)R = 3 {(b§33 - bfl 3)L(p,£9) —(b§33 - 3b%13)L3(P, s 4)} s

w p « w w
Xfyy(E(;)R = Z{3b1213L1(P’i‘1)+(b3233 —3b121 3)L3(P,i4)} > N

where L,(p,+q) and Ly(p,+q) are generalised Langevin functions [7] of odd order, of the
form [11]:
_p ef—e P
Lip,tq)=Fr t—m7—— >
(02D = 2 It 0)
_p(p’F6q)__pler+e?) (P F4g+dg’Ne’—e™?)

Li(p,+¢q) = 8
(Pt = g T T Ip g 1647 H(p, £ 4) ®)

The integrals:

2 123
I(p,iq)=%e>(p{$(f—q+q>H exp(+13)dt )]

1

are well adapted for numerical tabulation [12, 13]. The limits of integration are:
-, P
1 q 9 \/q

and

- p
l = — -
2 \/q 2\/4

The graphs of figs. 1 and 2 show the odd Langevin functions (equation 8) as functions of p
at values of ¢ = p*/nforn =1,4,9,16,2536,...., .

In cigar-shaped microsystems (positive anisotropy), the permanent electric dipoles and
induced electric dipoles tend to orient themselves in a concordant manner in the direction of the
DC field. As a result of this, with increasing DC field strength and parameter g, the values of
L(p,+q) and Ly(p, +¢) tend very steeply from O to the limiting value 1, which defines a state
of complete alignment of the microsystems in the direction of the DC electric field (electric
saturation of orientation). This is illustrated in the dashed curves of figs. 1 and 2.

In the case of disc-like microsystems (negative anisotropy) the situation is entirely different.
Here with the permanent dipole moment p3 directed along the symmetry axis of the micro-
system, the polarisability as; along this axis will be less than the polarisability «,, perpendic-
ularly to it. Hence the torque acting on the permanent dipole will tend to orient the micro-
system into alignment with the DC electric field E°, while the torque on the induced dipole
will act in a manner to orient the microsystem perpendicularly to E°. In this way, a disc-like
microsystem is subject to two mutually orthogonal torques. With increasing field strengths E°,
the induced dipole parameter (equation 4) increases thus causing the microsystem to go over
from parallel orientation to perpendicular orientation with respect to the field E°, and the
Langevin functions L(p,—¢g) and L,(p,—gq) decrease in value correspondingly, tending
rapidly to zero as the parameter g of induced dipole reorientation grows (figs. 1 and 2, continu-
ous curves lying below the curve for g = 0).

2.2. Electric Distortional-Reorientational Cross-Process

In addition to reorientation of the microsystems, a DC electric field if sufficiently intense will
cause a distortion of their electron shells, which in our case will become apparent as a linear
variation of the tensor h2¢ given by the second term of the right hand side of the expansion
(equation 6). Since this distortional effect is in general coupled to the reorientation effect by
way of the distribution function of equation 5, we obtain finally in the absence of electronic
dispersion:
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X:Zc;’y b= 24{c1111+3cﬁ’33+(2c%‘1"11 15¢393343¢3933)Lo(p, £ 9)
=331 — 601133+C§(3"33)L4(PsiQ)}E3

{Cl 111 +2(3C%‘1033 _C%(ﬁ DLy(p,+9)

Ay (E)p =
63933+ ¢3533)La(p, = )} ES

+(citi— (10)
where the generalised Langevin functions are now of even order [11]
2 — -_— —_
P F2q eft+e? plef—e™?)
Ly(p,+q) = + - ,
(PED = G20 8 It )
p*+129(gFp?) , (" F6q+4q°)e"+e™?)  p(p”+4q° F10g)(e"—e™")
L4(P,i ) - 5/2 7/2 . (11)
164 164°"*1(p, £ 9) 32977 1(p, = q)
These functions are plotted against the reorientation parameters p and ¢ in figs. 3 and 4

In the absence of electric reorientation (p = g = 0), the even Langevin functions of equation
11 differ from zero and take the values L,(0, 0) = 1/3 and L,(0, 0) = 1/5; accordingly, the

expressions of equation 10 reduce to:

Xxxy(E Np = 180(353333+8C%(f’11+12C%?33)Eg

p w o w
nyy(Ey)D =50 (3c3%33+8cir + 120%133)E3 . (12)
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Figure 3 Generalised Langevin functions plotted vs. the parameter p. Dashed lines - - -~ L,(p, - g). Continuous
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Figure 4 Generalised Langevin functions plotted vs. the parameter p. Dashed lines - - - - L,(p, 1 q). Continuous
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The results expressed by equation 12 describe the already mentioned non-linear purely distor-
tional effect, which does not depend directly on temperature and is present in all matter,

including atomic gases.
The purely distortional effect depends linearly (within the present approximation) on the
field component E‘,’,. With regard to equation 2a, the susceptibility tensor components in

equation 12 fulfil the following symmetry relations [8, 10]:

P ED + 15 E) = x5 ES)

X2oAES)+ 120
2o(E9) . (13)

HalES) = 1ol ES) = 1y ES) = 31357
Returning to equations 7 and 10 we note that the symmetry relations of equation 13 are
fulfilled strictly only in an approximation linear in £°, but fail to hold generally in very strong
electric fields unless simplifying assumptions are made with respect to the molecular symmetry
of the tensors 2% and ¢2% . We shall proceed to do so further on.
In very strong electric fields, the distortional effect is modified by the effect of reorientation
of microsystems in accordance with formulae of equation 10. From graphs 3 and 4, the
Langevin functions are seen to grow steeply to saturation with growing E° for cigar-like
microsystems (dashed curves) and to decrease just as steeply to zero for disc-like ones (continu-
ous curves lying below the curves ¢ = 0). In contradiction of the previous case of section 2.1,
we have now to keep in mind that the reorientational process in accordance with the expressions
of equation 10 superimposes itself as a perturbation on the (in this case essential) distortional
process which, as seen from equation 12, takes place also in weak fields E° independently of

molecular reorientation.
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At p = 0, the expressions in equation 10 are applicable to non-dipolar, axially symmetric
microsystems of the point group symmetries D, (e.g. C¢Hg) and D, (H,, O,, CO,, CS, and
the like). Obviously, for such microsystems, which possess a centre of symmetry, the suscepti-
bility components of equation 7 vanish.

2.3. Optical Reorientation Process

The polarisability ellipsoids of microsystems also undergo reorientation in the electric field of
laser light. Even optical saturation can be achieved, if the laser beam is sufficiently intense
[14, 15]. From our previous considerations, it is obvious that optical reorientation can
influence the susceptibility tensor components y22 in isotropic bodies only in the presence of a
DC electric field, At optical frequencies there is no reorientation of permanent dipoles, and
only reorientation of induced dipoles given by a parameter analogous to equation 4 takes
place:

qy = |ag’3—a(io1 lIy/sz . (4a)

Above, I, = E?E; /2 is the intensity of laser light linearly polarised with electric oscillations
along the direction of the DC electric field component E‘;. However, in this case, considering
equation 2, we shall be measuring only the second part of the polarisation y-component:

P20, E9) = 2EQECE? . (14)

In the Langevin functions of equations 7 and 10 for the component Xﬁy“y’(E‘;), the parameter
g% of equation 4a, accounting for optical orientation in light of intensity /,, has now to be added
to the parameter ¢ of induced dipole reorientation. One sees that this superposition of optical
orientation upon electric orientation still further raises the polarisation values of equation 14
for cigar-like microsystems and lowers them for disc-like ones.

When carrying out experimental work, one is usually concerned with avoiding electric
breakdown, so that too strong DC electric fields cannot be applied. This sets a limit to the
degree of electric reorientation achievable in molecular liquids, which has necessarily to
remain at a low level, and one is justified in restricting accuracy to a linear dependence of 322
on E‘;. This limitation need not in general apply to experiments with the electric field of laser
light, where a high degree of molecular alignment, or even optical saturation [14], can be
achieved before breakdown occurs. Obviously, in this case when calculating the distribution
function of equation 5, one has to take into account the state of polarisation of the laser beam.
Thus, if the beam propagating along the z-axis is circularly polarised, the susceptibility
components fulfil the relations in equation 13, the two contributions now being of the form:

XYJ’.V

_PH3

X;Zc;)y E(,\):)R KT {b113 b33, +2(b1 s — b353)Lo(F 42) +(b35,—3b173) Lu(F 4 )}E (15)

Xﬁi’yE(;)u 288{2501111 30c3913+9¢3933 + 2(42¢1%13 — 51011 —9¢3533)La(F q2)

+9(ci711—6¢1%13+ 3533 L FAIES (16)
where the even Langevin functions are given by [15]:
1
L(F9) = t55F 57"
2027 2/ 1(Fq?)
T = 1 {3_ 24°+3 }
AF4) = 2002 \/qg’z(+qg’) (17)
with
—
I(Fq2)=exp(tq? )j 9 exp(Ft?H)de . (18)
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It is readily seen that the functions in equation 17 and integrals in equation 18 result respectively
from equations 11 and 9 ,on puttingp = Oandg = —q ; this last parameter has now to be
replaced by

q¢ = |ags—af; |+ +1-)/4KT (4b)

where I and I_ are intensities of laser light for the two senses of circular polarisation.

In equations 15 to 18, in the situation now under consideration, the upper sign “minus” is
relevant for cigar-like microsystems and the lower sign “plus” for disc-like ones. This inversion
of the signs is due to the fact that in the case of circularly polarised light the microsystems tend
to orient themselves with their symmetry axis in the direction of propagation of the light beam,
which is identical with the direction of the induced optical axis of the medium. Cigar-shaped
microsystems tend to align themselves with their long axis, which is the symmetry axis,
perpendicular to the plane of oscillations of the light wave; in this way, the short axes of the
microsystems come to lie in the plane of oscillations; as a result, the reorientation functions
L,(—q®) and L,(—q¥) decrease to zero at saturation (complete orientation). With disc-like
microsystems the situation is the inverse: the long axes lie in the oscillation plane, whereas the
short symmetry axis tends to be parallel to the propagation direction; the reorientation func-
tions L,(+ ¢%) and L,(+ ¢) increase and tend to unity at saturation.

The preceding considerations together with formulae of equations 15 to 18 remain valid
in the case of natural (unpolarised) light incident on the medium along the z-axis. Obviously, in
equation 4b, I, +1_ has to be replaced by I, = I, +1,.

If the light beam incident on the medium is linearly polarised with oscillations parallel to the
direction of the DC electric field component ES, then with regard to equation 2 we measure
only the susceptibility component y2%(E$) which is of the form:

o pﬂ W w W « w
Tn(ES) = Gop 3bits La(£ )+ (b33, = 3bi 1) La( 4, (19)

with g3 given by equation 4a.
Conversely, if the linearly polarised light oscillations are perpendicular to the DC field

component E‘; (i.e. are parallel to the laboratory x-axis), we measure, with regard to equation 2,
solely the component:

Xfxx(E(;) = Sk;{b%m"'(b%ss‘4bf13)L2(iqx)“(b§33"3b%13)L4(iqx)}Eg (20)

with ¢, defined by equation 4a on replacing /, by I..

3. Applications and Discussion

3.1. Macroscopic and Microscopic Symmetry Relations

As long as reorientation of the microsystems in the DC electric field is not excessive (p<1,
g <1), the Langevin functions of equations 8 and 11 can be expressed with sufficient accuracy
as follows:

Ll(p,iq)=l3—’—i—;i44—p5‘1+..
Lz(%i‘])=%+£j—?i%+

IR W 4.
L4(p,iq)=§+%i%+“
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On inserting the above expansions into equations 7 and 10, the symmetry relations of equation
13 are fulfilled in an approximation linear in EY, the contribution due to the distortional effect
alone being given by equation 12 and the contribution due to the process of dipole reorientation
by:
(o] , PU3 @ [
Xazcxy(E(;)R = %X,Z»yy(E?:)R = m(b§33+2bf13)E3 . (21
In the case of complete alignment of all microsystems along the field direction (p— o,
g— 0, if the field is intense or the dipole moments and polarisabilities of the microsystems are
considerable), the Langevin functions (equations 8 and 11) tend rapidly to unity for positive
anisotropy, and equations 7 and 10 reduce to:

® p [ 20
X;Zcxy(Eg) = Z(b%m + CmsE‘;) s

w p w (2]
Lo (ES) = Z(bgss“l'C%sasE(;) . (22a)
For disc-shaped microsystems at complete alignment, the Langevin functions of equations 8
and 11 tend to zero, as a result of which the components of equation 7 vanish and the compon-
ents of equation 10 reduce to:

w p w w
X)Zcxy Eg)z) = 2_4(C3111 +3Cf133)E3 ’

o P 20
Towy(ES)p = Z 1 ES - (22b)
Were we to postulate the fulfilment of the macroscopic symmetry relations (equation 13) in
the two cases of equations 22a and 22b, the following microscopic relations would have to hold

for the individual microsystems:
b3%s = 3bi7s , (23)

20 2w . 2w
3333 = €171 = 31133 - (24)

It may be worth mentioning that the symmetry relations of equation 24 are strictly fulfilled
only with regard to the spherical symmetry, for example, atoms in their ground state in the
absence of electron dispersion and absorption.

As we have seen, Bloembergen’s symmetry relations [8, 10] which we have adduced here
for the non-linear susceptibility tensor components Xf,“;(E‘;) in the form of equation 13, are
fulfilled strictly in an approximation linear in E° only if electron dispersion is neglected. These
relations have been confirmed experimentally by Mayer* in ethyl bromide. For very strong
DC fields, the symmetry relations of equation 13 are in general not fulfilled.

For the case of electric saturation, the expressions of equation 22 suggest that the symmetry
of the electro-optical properties of the individual microsystem becomes identical with the
macroscopic symmetry of the isotropic medium as a whole which, in the presence of the DC
field, is endowed with symmetry of the type C.,,. This is a rather obvious conclusion, as indeed
with all the microsystems in alignment along the field direction the properties of the body asa
whole have to coincide with those of the microsystems. In accordance with equations 7 and 10
as well as 15 and 16 any deviations from the state of ordering (equation 22) are of a statistical
nature and can be a source of information relating to the non-linear electro-optical properties
of individual microsystems.

3.2. The Réle of Induced Electric and Optical Birefringence
If, for asymmetrical microsystems, one assumes the relation of equation 23 but replaces the
relation of equation 24 by

*Private communications of 3 September and 15 October, 1968.
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C1133 = 6(01111+03333) (25)

equations 7 and 10 reduce to the form:
Xyzyu;(E )R - 3Xxxy(E )R == 333L1(Pa+Q) s (26)
nyy(Ey)D = 3Xxxy(Eo)D = {03333 + 26%?1 1+ 2(05?33 - Cf‘ﬁ DP(p, + Q)}Eg . 27

Equation 27 involves the reorientation function [12, 13]

&(p,£q) = 3Ly(p,t )3 (28)
which defines the well-known Kerr effect in a strong DC electric field:

2n
mphL = p(as3 —a?)P(p, £ q) (29)

where 7 is the refractive index of the medium in the absence of an electric field and n; = n,,
n, = n, the indices for light vector oscillations parallel and pependicular to the DCfield vector
ES.

One sees that, with the symmetry relation of equation 23, the reorientational contribution
(equation 26) to the non-linear optical susceptibility is isotropic and its dependence on the DC
electric field strength is defined by the Langevin function L,(p, F¢) i.e. in analogy with electric
saturation of the static polarisation of dipolar gases in Debye’s well-known theory of dielectrics
[9]. The assumption of the symmetry relation of equation 25 causes the distortional contribu-
tion (equation 27) to split into an isotropic part ¢3%,; +2¢3%, , independent of the reorientation
process, and an anisotropic part related to the process of molecular reorientation, in the same
way as the optical birefringence of the medium (equation 29) induced by a DC electric field.
The shape of the reorientation function (equation 28) is shown in fig. 5; one notes that in the
case of cigar-like microsystems (positive anisotropy) the function ®(p,+¢) tends upward to the
limiting value 1 with growing field strength and growing ¢, whereas in the case of disc-like
microsystems (negative anisotropy) the function @(p, —q) decreases with growing field strength,
exhibiting a reversal of sign at a well-defined value of the parameter ¢ and tending to the value
—1 at saturation.

Let us moreover consider the case when the DC electric field is not very strong whereas the
electric field of the laser beam is very intense and, causing optical reorientation of the micro-
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Figure 5 Birefringence functions ®(p, + q). Above the continuous bold face type curve ®(p, 0) lie the dashed
type curves D(p, + q) for cigar-shaped microsystems; and below lie the continuous line curves ®(p, — q)
for disc-like microsystems.
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Figure 6 Birefringence functions frominduced dipole reorientation alone: ®(+ q) for cigar-like microsystems,
D(— q) for disc-like ones.

systems, modifies their non-linear susceptibilities as seen, e.g. from equations 15 and 16. Let us
furthermore restrict our considerations to the reorientational contribution (equation 15)
which, with regard to equation 23, reduces to the form:

Pbusﬂa

where &(F q®) is the reorientation function of microsystems in the electric field of circularly
polarised laser light defined by equation 28 for p = O and g = —¢%.

The function &(+4®) defines the non-linear change in angle of optical rotation @ in op-
tically active substances due to intense circularly polarised laser light [16]:

O—0, (2953—9g7 —9g32)

=56 o o (T4 (31)
O, 2(g?1+9%2+933) 9)

where @, is the angle of rotation of the polarisation plane in the absence of the intense laser
beam, and g¢,, g%,, g%, are principal values of the tensor g2, of natural gyration.

With regard to the properties of the function ®(+¢q) plotted in fig. 6, we see that optical
reorientation entails a rise in the non-linear susceptibility (equation 30) in the case of cigar-like
microsystems but causes it to fall to zero in the case of disc-like ones.

Similarly, for the cases of linearly polarised light with oscillations parallel to the DC field

(y-axis)

® be‘fslls
Xiyy E(J)J)R = aKT

{1+20(+99)}ES (32)
and oscillations perpendicular to ES (x-axis), equations 19 and 20 yield

2B = 220 (1 g1 g2} ES (33
The reorientation functions &(+g¢3) and &(+¢%) of equations 32 and 33, which are plotted
in fig. 6, describe the optical blrefrmgence induced in the medium by intense linearly polarised
laser light. Optically induced birefringence is defined by equation 29 with p = 0 and g= q;’;
as hitherto, it has been observed in molecular liquids [17] in an approximation linear in ¢ as

the optical Kerr effect.
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We thus see that in the case of molecules with positive anisotropy, when optical reorientation
increases the susceptibility (equation 32) grows most steeply, the susceptibility (equation 30)
less steeply, whereas the susceptibility (equation 33) decreases to zero. This relationship is ap-
parent (except for the component in equation 33) in Mayer’s [5] measurements on the dipolar
substances CH,1, C,H;lI and C,H;Br. However, at field strengths ES close to breakdown, the
same substances exhibited a very steep rise in SHG power not observed by Mayer in other
dipolar (CO, CHCl;) and non-dipolar (H,, O,, CH,, CCl,) substances. So we ask: to what
extent is one justified in attributing this anomalous increase in SHG to the increase in reorient-
ation of the microsystems, and to what extent may it rather be due to other mechanisms, not
considered here?

3.3. Application to Molecular Substances

Available data are as yet too scanty for making an extensive comparative analysis of the
theoretical results against the background of experiment. Clearly, one can hardly hope to
achieve electric or optical saturation (complete molecular alignment) in molecular gases or
liquids without incurring dielectric or optical breakdown. In the dipolar substances studied by
Mayer, the electric reorientation parameters were, at the best, of the order p = 1072 E%* and
g=10"° E;’Z; accordingly, as seen from the curves of figs. 1-5, one would have to resort to a
very strong DC electric field upward of 10° e.s.u. (3 x 10’v/m) in order to achieve an onset of
saturation. In this situation, optical alignment of the molecules or even some degree of optical
saturation seems a more feasible proposition (in Mayer’s work [5], the laser field strength E®
amounted to 5 x 10° e.s.u.). Indeed, one should take into consideration that the values of pand ¢
can moreover be subject to an enhancement owing to the fact that molecules in their excited
states (into which state they go as a result of applying a strong field) generally possess much
larger dipole moments and polarisabilities than when in their ground state.

Existing experimental results on ESHG do not as yet permit a. quantitative decision as to
which of the microscopic processes under consideration by us, namely non-linear electronic
distortion or molecular reorientation, plays the chief part. But it may well be reorientation,
considering that Mayer [5] observed the anomalous increase in ESHG with growing DC
electric field in CH,I, C,H;I and C,H;Br, the molecules of which have large dipole moments
of about 2 Debyes and positive anisotropy of their electric and optical polarisabilities. But
he failed to observe a rise in SHG signal in chloroform and other weakly dipolar and non-
dipolar substances. This, in the light of the present theory, was most probably due to the
circumstance that CHCI; has a smaller dipole moment,about 1 D, and a negative anisotropy
of polarisability leading, with regard to the curves of figs. 1-5, to a decrease of the non-linear
susceptibilities and thus of ES HG. Numerical evaluations [8] show that in dipolar substances
the process of molecular reorientation predominates markedly compared to non-linear elec-
tronic distortion. A final decision can be expected from ESHG investigations as a function of
temperature, of concentration or of an applied AC electric field frequency.

In condensed substances, the non-linear optical susceptibility is modified by various molecu-
lar correlations such as molecular redistribution {18-207, angular correlations between aniso-
tropic molecules [18, 217, as well as the local field and its anisotropy [18]. These factors can
either enhance or hinder the process of electric reorientation according to the structure of the
molecules and the degree of condensation of the substance. Molecular redistribution is of
considerable importance to non-linear processes, since it gives rise to molecular anisotropy
even if the interacting molecules are nearly spherical, like CCl, [18, 19]; in this case (in dense
phases) only correlations of the radial type occur, causing the molecules to re-group giving rise
transitorily to pairwise, triple and larger assemblages, which then undergo reorientation in the
externally applied electric field. When this process is taken into account in the calculations, the
reorientation parameter (equation 4) is found to be non-zero even if the molecules are isotropic
in their ground state. This is most readily demonstrable on the basis of Silberstein’s polaris-
ability theory [22], according to which the effective anisotropy of a pair of mutually interacting
isotropic molecules, having the same polarisability « in their ground state, at mean mutual
distance d is:
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20t 20 602
a33—a11 = 2a - a a3 —dg‘ . (34)
1—? 1+-d—3

Assuming this approximation is sufficiently good for liquids of nearly symmetric molecules,
and with regard to equation 29, we obtain:

12mpa? (n?+2\?
ny—ng= 7<T> ?(q,) (35)

a result which shows that these media are apt to exhibit induced birefringence, like that
observed in CCl, when using either a DC or laser electric field [17]. From equations 4 and 34,
the electric reorientation parameter for symmetric molecules, assuming a Lorentz local field
in the medium of dielectric constant &, is:

qs = o*(e+2)X(ES)*[3d°k T (40)
whereas in considering optical reorientation one has to put ¢ = n* and to replace (E‘;)2 by 7, or
I./2 (the intensity of linearly or circularly polarised light, respectively, cf. equations 4a and 4b).
Thus, for liquid CCl,, equation 4cimmediately yields g, = 2 x 10~ 1°E9*, which is areorientation
parameter of nearly the same order as for isolated anisotropic molecules.

Molecular redistribution, of course, also plays an essential rdle in liquids consisting of
anisotropic molecules. The calculations are, however, quite involved and can be performed to
the end in an approximation linear in ¢ (cf. references 18-20).

These various collective processes can lead to phase transitions from a system of partially
aligned molecules to a quasi-crystalline phase with a higher degree of ordering [21]. As a result,
all internal and external factors co-operating, the naturally isotropic medium can produce
enough optical non-linearity and anisotropicity for a considerable enhancement of SHG.

3.4. Application to Macromolecular Substances

The theory proposed in section 3 can be applied to macromolecules in solution or colloid
particles in suspension. The microsystems have to be assumed as rigid, and the solutions as
sufficiently dilute to exclude interactions between the macromolecules or particles and
between them and the solvent, which is assumed to be isotropic, of electric permittivity &,.
For electrically anisotropic microsystems with electric permittivity ¢, parallel to the symmetry
axis and ¢, = &, perpendicular to it, the difference between principal electric polarisabilities of
the microsystem is [23]:

V(3 —&1)80 +(81 —€o)(e3 —80)(A41 — 45)
An [eo+(e1—€0)A; (60 +(e5—0)As]
where V is its volume, whereas its geometrical shape is defined by the parameters A, and A4;,
with 24, + A; = 1. The first term of equation 36, namely (g3 —¢,)g,, accounts for the aniso-
tropy of the electric properties of the microsystem. The second term, which is proportional to
A, —A,, describes the anisotropy of its shape. Putting &, = n2, ¢, = n? and &¢; = n} in
equation 36, one obtains an expression for the anisotropy of optical polarisability of the
macromolecule or particle.

In the class of synthetic polypeptides, the most often studied are macromolecules of poly-y-
benzyl-L-glutamate [12] in the shape of long cylinders presenting large dipole moments of the
order of 103 Debyes and a large positive anisotropy of electric polarisability ~ 10~ '8 cm?. For
such macromolecules, the reorientation parameters (equations 3 and 4) amount respectively
to p = 0.1 E and ¢ = 107> E?, which means that reorientation of the permanent dipoles
predominates over reorientation of induced dipoles, and electric saturation can set in already at
E > 100 e.s.u. As an example of disc-shaped particles, we mention bentonite suspensions,
where p = 0.5 E and ¢ = 0.7 E? [13]. Here, ¢/p?> > 1 and with growing field strength the
reorientation of induced dipoles rapidly becomes predominant. At electric saturation, which
sets in already at a field of E > 10 e.s.u., this reorientation brings the particles into alignhment
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with their short axis parallel to E, causing the Langevin curves to fall steeply to zero. Similarly
high saturation of electric orientation can be caused in solutions of collagen or Tobacco Mosaic
Virus [12] as well as other biomacromolecules or colloid particles.

When working with laser light, it is essential that the pulse duration shall exceed 10™# sec
in order that the macromolecule or colloid particle can undergo an optical reorientation. This
gives rise additionally to an optical anisotropy of the medium which, with regard to equations
30, 32 and 33, can contribute to raise or reduce the non-linear susceptibilities. One is readily
convinced of the adequacy of intermediate power continuously operating gas lasers for the
study of systems like these.

The preceding considerations prove that media in which the microsystems are cigar-like
macromolecules or colloid particles permit the electric and optical induction of considerable
non-linearities, entailing a strong increase in SHG intensity with growing DC electric field
strength or, if a gas laser is used, with growing intensity of the light beam. The high optical
non-linearity, including saturation* of such systems promises to be useful in various branches
of opto-electronics. Also, experimental work in this direction will surely provide us with much
new information concerning the non-linear properties of biomolecules, viruses and colloid
particles.-

When discussing the laser beam variant in a quantum-mechanical approach, the magnetic
vector of the wave may well prove worth considering, inasmuch as the magnetic field of a laser
beam easily attains intensities which are by no means irrelevant to the states of microsystems
like those dealt with here. This, however, would exceed the space of our paper.
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Appendix

A system of weakly interacting microsystems at thermodynamical equilibrium at temperature
T in the presence of an external field E is described by a Maxwell-Boltzmann distribution
function of the form:

exp{—pu(Q,E)}
Jexp {—pu(Q,E)}dQ

where f = 1/kT and the potential energy of any individual microsystem is, with an accuracy to
the square of the field E, of the form:

u(Q,E) = u(0)— p,E, — 3o, .E,E.— ... (A2)

f(Q,E) = (A1)

The transformation of dipole moment components and polarisability tensor components
from macroscopic laboratory co-ordinates x, y, z (indices o, 1) to microsystem co-ordinates
1, 2, 3 (indices a, B) is of the form:

He = Coully » Ugr = Ca-actﬁaaﬂ . (A3)
In the case when the two co-ordinate systems are Cartesian (rectangular), the transformation
coefficients c,, have the meaning of cosines of the angles between axes o and a. These coeflicients
fulfil the orthonormality conditions ¢,,c,, = d,, and ¢,,c,5 = J,5, Where §,, is the Kronecker
unit tensor.
For microsystems which are symmetrical with respect to their 3-axis, the energy equation A2
with regard to equation A3 can be written in the form:

M(Q, E) = M(O) - .u3co'3Eo' - %(0633 —% 1)(ca-36r3 - %5o‘t)Eo’Et (A4)
where u, is the dipole moment component along the symmetry 3-axis and ¢34, o, are the
polarisability tensor components respectively parallel and perpendicular to the 3-axis.

*Complete electric saturation in solutions of poly-y-benzyl-L-glutamate has been observed in Kerr effect [12]
and, recently, in measurements of non-linear variations in dielectric permittivity [25].
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Performing a transformation similar to equation A3 on the symmetric tensors of non-linear
polarisability b2¢ and ¢2° of equation 6, we obtain for axially-symmetric molecules [24]:

oty atvp
bgra\: = (b333 3b%({)3)ct73ct3cv3+bftll)S(ca'Sérv+cr35va+cv35m‘) (AS)

oonp = (€191 = 6c1733+3333)C03€:3603€,3 + 3¢ 933 — 1911)(€0 36300, + €:3€,30 56
+ cv3cp350'r + cr3cp35av + cp3ca-36rv + ('a-3cv3opt) + 31_("%({)1 1(5at6vp + 5av51p + 5ap51v) . (A6)

Let the DC electric field be applied along the y-axis and let it subtend the angle & with the
symmetry 3-axis of the microsystem. We have ¢,; = sind sing and ¢,; = cos? and by
equations 6 and A5 the non-linear susceptibility components become:

Xxxy(EO) = Xxyx(Eo) = nyx (})1) = B\f{bf({g COSl9‘+(b§gJ3 113) cos? Slnzﬁ SInzd)}t(& Ey)dQ

Ao (E9) = f{3bf?3 cosd+(b355—3bi{s) cos’HH (P, EDHdQ. (A7)

Since in the present case, with regard to equations Al and A4, the distribution function is of
the form of equation 5 independent of the azimuth ¢, we are directly justified in performing
an averaging in equation A7 over all values of the angle ¢ ; this yields the result of equation 7,
since the Langevin functions of order # are defined as follows:

j cos"$exp(pcosd + g cos? #)sinddd

L(p,tq)= (A8)
j exp(pcosd + gcos? §)sindd
0
and can quite generally be expressed as [11]:
(P Iz
— + n
cxp { g™ 172 ) exp(12)dt (A9)
L(p,+q) = 3 2q
2qn/ I(P,iQ) I

where [, = —\/Eip/Z\/q_ , and
L =g+ p/2Vq

Similarly, resorting to equations 5, 6 and A6, we come to equation 10,

In cases when the DC electric field E° is weak and the oscillating field E® of the light wave
intense, the distribution function with regard to equations Al and A4 can be represented in an
approximation linear in E{ as:

ﬁ [ ol
(1+pcys)exp {5 (033 —011)C,3C 3 CEFED,

f(H,E) = (A10)

jeXP {‘g (033 =1 1)C,363CEGED, } dQ

where the brackets (), symbolise time-averaging over the oscillation period of the light wave
vector.
In the case of light circularly polarised with electric vector amplitudes

= (ES+IEDIN2 (Al1)

for the two senses of circular polarisation, it is convenient to assume the symmetry 3-axis of the
microsystem as forming an angle & with the laboratory z-axis (propagation direction). This
yields, as usual
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3 = sindcosd , c,;3 =sindsing , c,3 = cosd (A12)
so that the distribution function in equation A10 can be written in the form:
(1+ psindsing) exp ( F g€ cos?H)
f(‘?’ ¢a E) = Pr 2=z
J J exp (F g% cos?9) sind dd d¢
0oJo

since by equation A1l we have (EZE?), = (EVE}), = (I, +1_)/2 and {(EJEy>, =0 .

With the transformation (equation A12) and the distribution function in the form of
equation A13, we get by equations 6, A5 and A6 the equations 15 and 16.

Similarly, in the case of linearly polarised light we adopt a procedure which ensures that the
exponential factors in the distribution function (equation A10) shall not depend on the
azimuth angles but solely on the angle &. As a result, we obtain with regard to equations 6 and
A5, for oscillations respectively parallel and perpendicular to the DC field component E ‘;
equations 19 and 20, and as expressions for the distortional effect:

(A13)

w p (] w (] W’ w 0 w [h)
X)zzyy(E())l) =3 {ci11 +2(3Cf133_0%111)L2(iqy)+(c%111 “60%133+C§333)L4(i4y )}E(,)» , (Al4)

w p w w W w w
Xfxx E‘;) = 2—4{031114'3&133 +(203111—150%133+3C§333)L2(i‘1)
_3(C%?11_603?33+C§?33)L4(i‘1$)}Eg . (A15)
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