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Optical Second-Harmonic Generation by
Electrically Polarized Isotropic Media

STANISLAW KIELICH

Abstract—In relation to recent experiments, a quantitative
discussion of the microscopic mechanisms accounting for second-
harmonic generation (SHG) and harmonic mixing in isotropic
media immersed in a dc electric field is given, comprising the
temperature-independent effect of nonlinear electronic polariz-
ability and the temperature-dependent effect of reorientation of
permanent electric dipoles. It is shown that in the case of a very
strong dc electric field, when all the microsystems undergo complete
alignment in the direction of the field vector, these two mechanisms
attain saturation, raising considerably the intensity of SHG in the
case of prolate microsystems and lowering it in the case of oblate
ones. Electric saturation effects can take place in strongly dipolar
molecular substances but are especially intense in solutions of
macromolecules and colloid particles.

The discussion covers, moreover, the symmetry relations be-
tween the nonzero elements of the nonlinear susceptibility tensor
of the medium in weak as well as in strong electric fields, and the
application of these relations in determining the values of elements
of the tensors of second- and third-order polarizabilities of the
individual microsystems. A preliminary interpretation of the avail-
able experimental data is proposed, and new procedures of SHG

measurements are suggested.
A on by a de electric field, undergoes polarization,
thus becoming deprived of its center of inversion
and gaining the ability to generate the second harmonic
of light [1]. Such dc electric-field-induced second-harmonic
generation (SHG) was first observed by Terhune et al.
[2], [3] in the crystal calcite, which naturally possesses
a center of inversion. In these experiments, moreover,
SHG, in the absence of a dc electric field, was observed
because of the nonlinearity related to electric quadrupole
and magnetic dipole polarization [4]-[6]. Bjorkholm
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and Siegman [7] recently performed more accurate mea-
surements of the quadrupole-type SHG and electric-
field-induced SHG in calcite relative to the SHG obtained
in crystals of ADP [1].

Recently, Mayer [8] investigated SHG by fluids in
a de electric field. The effect was observed in nondipolar
substances such as H,, O,, and CCl,, as well as in the
dipolar substances CO, CHCI;, and other methyl and
ethyl halogenoderivatives. In nondipolar gases, in the
absence of interactions, SHG is related only to the non-
linear electronic polarizability of the molecules due to
the second power of the optical field strength E? and
the first power of the de electric field E°. On the other
hand, as shown by Mayer [8], in dipolar gases this tem-
perature-independent effect is accompanied by a tem-
perature-dependent effect due to reorientation of the
permanent molecular dipoles in the de electric field.
The temperature-dependent effect is also exhibited by
nondipolar substances if they are in condensed phase,
where the fluctuating electric fields of permanent molee-
ular quadrupoles and octupoles induce dipoles in neigh-
boring molecules, causing them to undergo reorientation
in an externally applied dc electric field [9]. In this way,
the natural symmetry of an isotropic body is destroyed
so that, while acted on by a dec electric field, it is able
to generate a second harmonic of light accessible to
experimental observation.

It is our aim here to propose a simple, classical molec-
ular theory of SHG in naturally isotropic media placed
in a de electric field. We shall give special attention to
the discussion of the symmetry relations existing between
the nonzero elements of the suseceptibility tensor in the
case of a weak dc electric field and, more particularly,
to the case of a strong dc field when all the molecules
of the medium become completely aligned in the field
vector direction. This phenomenon, referred to as electrie
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saturation, strongly increases the polarization optically
induced in the medium, especially in solutions of macro-
molecules or colloid particles, causing a very considerable
and easily observable intensity of SHG. The theory
provides a tentative, simple interpretation of the experi-
mental results of Mayer [8] and encourages new and
promising experiments in this domain of nonlinear optics.
Considerable attention will also be given to the cor-
responcdence between the macroscopic symmetry of the
electrically polarized, naturally isotropic medium, which
is of the type C.,, and the various point-group symmetries
of the individual microsystems.

Weax DC Evrecrric FieLp

The ¢ component of nonlinear electric dipole polariza-
tion P; induced in a medium by two electric fields E¢*
and Iy oscillating at frequencies w, and w,, respec-
tively, can be expressed as [1]

P:‘(wl + w2) = BX?:'!;“’E?‘E:' (1)

where the third-rank tensor x;3 “* defines the second-
order susceptibility in the electric dipole approximation
at frequency «w; + w,. One has 8 = 1 for w, = w, and
B8 = 2for w, # w, [3]. To avoid complicating the notation,
we refrain in (1) and in subsequent equations from
making explicit the spatial dependence by means of
the wave vectors k, and k,. Einstein’s summation con-
vention over pair-wise recurring indices j, k, - - - , labeling
the X, Y, Z axes of laboratory coordinates, is applied
throughout.

In the case of an isotropic body with a center of sym-
metry (in the absence of optical activity and external
fields) the components of the tensor x.;, vanish, and
in order to obtain wave-mixing processes or second-
harmonic generation one has to proceed in (1) to higher
(electric quadrupole, magnetic dipole, ete. [4]-[6]) ap-
proximations. However, we shall not consider these
higher order multipole processes [10] here, as we are
concerned with the interaction of two waves in a medium
immersed in an external de electric field E°. When acted
on by the field, the naturally isotropic medium polarizes
anisotropically, thus becoming deprived of its center
of symmetry. The situation that arises favors second-
harmonic generation and harmonics mixing. The polariza-
tion, (1), and consequently the susceptibility tensor
X:ix; NOW become functions of the electric field strength E°.
In a classical statistical-molecular approach, we can
express this by writing [11]

--11(2, E) de,
@

where p denotes the density of microsystems (atoms,
molecules, macromolecules, or colloid particles) whose
orientation @ with respect to the dc field vector E° is
given by the distribution function f(Q, E°). For simplicity,
mutual correlations between the microsystems are
neglected.

@i p 1twe 1 2
x”k+w.(E0 =Zf { :'uil: +CT,+w
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The third-rank tensor b3 “* defines the nonlinear
(second-order) polarizability of a microsystem at fre-
quency w; -+ w,. The variation of this tensor due to the
de electric field is given by the tensor ¢{}“*—the third-
order polarizability tensor [11]. In the case where the
microsystems have permanent electric dipole moments
m and where the dc electric field causing their orientation
is weak, the distribution function can be written in the
linear approximation [12]

o, By = i1+ e ma2) ®
where f, is the distribution function in the absence of
external fields, corresponding to entirely random ori-
entation of the microsystems.

By inserting (3) into (2) and averaging over all possible
orientations of mierosystems with respect to the laboratory
axes X, Y, Z, we obtain

“’l+”2(E0) = x:)zlv-:w’ 6iiE0 + szlwi’ BakE + X:J:xz';w’ 51kEn
4)

where §.; is Kronecker’s unit tensor having diagonal
elements equaling 1 and nondiagonal elements equaling 0.
The susceptibility elements are given as follows:

+wa i+ +
X:zlyyw = 120 {462aﬂg’ - Czéag. - c:éﬁ;’
1 wWwitwg Wit wa Wit wa
g (402" me — bupatms — bagsma) [
tws + + +
X = b {4cz;,as' — L — el
(4b‘232”’ asp Mg — 32}”’m5)}, 6
+ws + i+ +
X:zlsz = 120 {462;919:’ - Cz;ﬂg’ - c:éas,’
+ 1+
T (4boss *ma — bous ms — zﬂaw’mﬁ)}'

Obviously, (4) is a particularization of the case of
an isotropic body of the general phenomenological rela-
tionship

xii (E%) = xia B, (6)
where x¢it** is the third-order nonlinear susceptibility
tensor at frequency w, + w, for an arbitrary medium [4].

Hence, in a microscopic picture, the constants, (5),
appear as being the result of two processes: 1) a purely
distortional, temperature-independent mechanism, con-
sisting in third-order nonlinear electronic polarizability
(this mechanism is present in all molecular symmetries,
since the nonlinear polarizability tensor c23iy* has non-
zero elements even in the case of atoms in their funda-
mental state); 2) a mechanism, which in accordance

with Langevin’s theory [12], is of a statistical nature
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related to the reorientation of electric dipoles in a de
electric field, and depends rather strongly on temperature.

The expressions, (5), hold for microsystems of arbitrary
symmetry, and their further simplification can be achieved
by assuming a particular type of point-group symmetry,
e.g., Cy,, Cs,, ete. [11].

Assuming the light waves interacting in the medium
as propagating in the Z direction and the dc electric
field as applied perpendicularly in the Y direction, (1)
and (4) lead to the following polarization components:

Polor 4 w0) = Bx (E)EE + By (E)ES ES,
()

Pulon ) = B P EDED B + xos (DB ESr,
with

Xadu ) = X2 B, e () = xown By,
Xuir (B = xpin By, 8
Xoww ) = (T A ot X B,

Thus, in a lincar approximation in £°, the following

relation exists between the four susceptibility components
appearing in (7)

Xeaw IR) x5 F xok W) = xS ED), ()

and the microscopic theory yields quite generally

w1+wn w1t w, Wi+ wa 1
Xvvy (1{ = @{ aaﬂﬂ + caﬂa + caﬁBa + ﬁ
L B ML (10

In the ecase of second-harmonic generation, w, =
wy, = w, the tensors b2, and ¢24., are symmetric in the

indices 8 and v, and as a consequence we have from

#)-(6)

XIIV(E ) M/x(]ﬂ )
= 120 {3cuaﬂﬂ - czauéﬁa 17 (3 aaﬂmﬂ
i‘;ﬂma)}ESy
(11)
Xj:r(lj(zj = ()0 {anﬂﬁn - aaﬁﬂ + 71 (2baﬂ/3m

- bi‘iﬂmﬂ)}E&

If electron dispersion is negligibly small, the tensors
bisy and ¢4, can be dealt with as totally symmetrie,

and with regard to (9) and (10) we obtain the symmetry
relations [9], [13]:
X:z (E) = Xzyz(E) = Xuzx(E) = 3vay(E) (12)

with

XIIIHI(E) = —26 { iwaﬂﬁ + - kT bzau:xﬂmﬂ} L (13)
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When there is a very strong de electric field, the micro-
systems of the medium can undergo considerable align-
ment, and one is no longer justified in applying the
linear approximation (3) for the distribution function.
Generally speaking, not only the permanent electric
dipoles m undergo this orientation process; the dipoles
induced in the microsystems, if the latter are anisotropic
with different elements of their linear electric polariz-
ability tensor a,;, also become oriented in the de electric
field. The potential energy of a microsystem in the field
is [11]

u(Q, E°) = (14)

and for the case of axially symmetric microsystems the
Boltzmann distribution function is now given as

mE? — 3a,, B0,

exp (p cos ¢ = q cos” 9)
47® [ exp (p cos & = ¢ cos’ #) sind dy

1, Ey) = (15)
where ¢ is the angle subtended by the symmetry 3 axis
of the microsystem and the direction of the de¢ electric
field, assumed parallel to the laboratory Y axis. Above,
p and ¢ are dimensionless parameters of reorientation
of the dipole and the electric polarizability ellipsoid
of the microsystem

_ mby
p_kTy

Q33 — anl o
2kT v

(16)
q =

the plus sign in the exponents of (15) refers to micro-
systems having positive anisotropy az;; > ay; (e.g., the
molecules HCI, CH,Cl, CH,I), whereas the minus sign
applies to negative anisotropy as;; < a,, (e.g., CHCI,).

Dipolar Microsystems

Distribution functions in the form of (15) are applicable
to a great variety of dipolar molecules having symmetry
of the point groups C;, (e.g., NH,;, CHCl,, CH,I), C,,
(e.g., BrFy), Cy,, or C., (e.g., HCI, CO) for which we
obtain with regard to (2) and restricting ourselves to
the now essential term in the tensor b2

afy
x:zy(E ) = Il/i(E )
= _8l2 {(ba";a - b;;’l)Ll(py :l:q)
+ (Qbflw.'; + b:?{ul - b:::{)La(p: +q)},
yzz(E g {(bsza - Zbus + m)Ll(py :5:9) (17)
+ (Qb?;va + b;u - bgam:s)L:t(pv +9)},
Xym/(l70 {(2bf;‘,3 + bnl)Ll(p, :IZQ)

-+ (b333 2biyy — 311)L @, £91.

The foregoing expressions involve generalized Langevin
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functions which, with regard to (15), are defined as
follows:

Jo cos" & exp (p cos ¥ = g cos’ §) sin d d9
f7 exp (p cos ¥ = ¢ cos’ ) sin ¥ do

(18)

L.(p, £q) =

In particular, for strongly dipolar microsystems with
very low anisotropy (p > ¢), (18) yields the following
odd Langevin functions [14]:

L(p, 0)

I

cothp — 1 ,
P (19)

6
Ls(p, 0) = <1 + 55)&(17, 0) - -
Graphs of these functions are shown in Fig. 1.
In the case of nonnegligible anisotropy of the dipolar
microsystems (p # 0), (18) with ¢ ¢ 0 leads to

4

- P _e—e”
L, 20 = F50 * 17T, =9
_ p(p F 69 _plt+e?) (20)
L3(p7 :i:Q) - :F 8q3 8(13/21(17Y :l:q)
L @ F 40+ 40 — )
8¢""I(p, £9) ’
where we have introduced the integrals
1 VTsp/2V3
I(p’ :‘:q) — _6$[(p’/4a)+al/ ett' dt. (21)
—Vaxp/2Ve

These integrals can be represented in tabulated form [15].
In the case of a not very strong electric field, (20)
yields in a satisfactory approximation

P _ P J
L, +q9 = 3 43 * + - )
Lip, g = £~ o= P04

Restricting these expansions to the term linear in the
electric field strength, the susceptibilities (17) reduce to

I U

X::xv( = 6—OI—C_T (b333 + 3b?;ﬂ3 - bgfl)ES,

pMs

Xuzz(b ) = 60kT (b‘HB

2bits + 4bsi)Ey, (23)

XeEY) = g (3B + 4bi%s + 2000 E.
One notes immediately that the preceding approximation
implies the relation

2Xzzy Eg) + Xyzz(EO) - quy(Eg)r

being a particular case of the relation (9) for w; = w, = @
when x2¢(E%) = x.:(EJ). Obviously, the expressions
(23) result immediately from the general expressions
(10) and (11) on the assumption that the microsystems

(24)
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Graph showing odd Langevin functions (19) versus the
dipole reorientation parameter p = m3;E,°/kT.

Fig. 1.

have symmetry of the point group Cs,. In the absence
of electronic dispersion, the symmetry relation (12) is
moreover fulfilled, with

pMs
20T

nyy(E) = (b333 + 2b113 ES- (25)

In the case of a very strong dc electric field, the sus-
ceptibilities (17) do not in general fulfill the symmetry
relations (12) and (24). In the limiting case of dipoles
completely aligned in the direction of the field Ej, the
Langevin functions (19) tend to unity with p tending
to infinity, and as a consequence the expressions (17)

reduce to the following simple results:

Xzzu(EO) = — 1131

XH:z(Ez) bg‘lﬂl ’ (26)

Xovu(EY)

b333

The physical meaning of (26) is that, in the state of
electric saturation, the macroscopic symmetry of the
susceptibility tensor (of the medium as a whole) becomes
identical with the symmetry of the relevant elements
of the tensor b%3, of the microsystem.

With regard to (17) and (26) we note that the macro-
scopic symmetry relations (12) and (24) can also be
fulfilled, in a strong de electric field, if the following
microscopic symmetry relation holds:

3bf;’3 = 3b§;’1 = g::s (27)

Equations (17) with (23)—(27) provide a direct method
of determining the values of elements of the tensor b3,

for dipolar molecules presenting various symmetries.

Centrosymmetric Microsystems

In microsystems having a center of symmetry when
in their ground state, all elements of the tensor b%j,
vanish. In dealing with the expansion (2), one has now
to take the second, distortional term which, under the
influence of a strong de electric field is subject to new
variations due to the effect of reorientation of the polariz-

ability ellipsoid. Considering only microsystems of point-
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group symmetry Dy, (e.g., CeHe) and D., (e.g., Hy, Os,
CO,, C8,;, C,H,), where the distribution function of

(15) at p = 0 is valid, we obtain, in the absence of elec-
tronic¢ dispersion,
Xewo(B) = () = xia(ES)
= 2 leitu + 3
+ (26 — 15¢ih + Beise) La(=£q)
— 3@ — Gt + LB, &

qu(EO) = {Cn -+ 2<301133 - C?ﬂl)Lz(:{:Q)

+ (612;)11 — 60??33 + C§;33)L4(:|:Q)}E2-

Above, by the general definition (18), the even Langevin
functions for p = 0 are expressed as follows [16]:

. 1 1

Ly(+q) = :!:2q17m - Gy )
2q F 3 3

Lixq = i4_q3%____.1 ) + yyel

These functions are plotted in Fig. 2.
In the case of not very considerable reorientation
(g < 1), the functions (29) can be expanded as follows:

1 4g 8¢ __ 16¢

L9 =3+ 35+ 945 F 1175 T (30)
1 16q 324"
Li+g) = ¢ 105 T 157 Thl9m5 T

and the susceptibilities of (28) can be expressed to within
the third power of the field strength as

szy(F) 2“’(1 + TFKMQ)E
(31
Xuyu(E ) £ C2w(1 =+ T%szq)Eg,
where the parameters
¢ = (302333 + 8t + 1201133)/15, 32)

K¢ = 2(3chms — 4Acitin + 3¢i1ss)/21¢*

denote, respectively, the mean value and the anisotropy
of the nonlinear polarizability of the microsystem {11].
It is apparent from (28) and (31) that the symmetry
relations (12) and (24) are fulfilled only in the absence
of reorientation (¢ = 0), ie., when one deals with a
purely distortional effect of nonlinear electronic polariz-
ability
BB = xmly) = §¢UE. (33)
At electric saturation (¢ — ), one has in the case
of prolate microsystems (positive anisotropy, such as
CS,) Ly(4+q) = Ls(+q) = 1, and the formulas, (28),
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Fig. 2. Graph showing even Langevin functions (20) versus the
pfxmmeter of reorientation of the electric polarizability ellipsoid,
= (ass — an)E,2*/2kT, for prolate mclecules (posntwe aniso-
tropy) as well as oblate molecules (negative anisotropy).

lead to
X:r:ry(E) = 161133E2v
(34)
X (F) £ Cig}m H,
yyy 4 )

whereas in the case of oblate microsystems (negative

anisotropy, such as CHg) L.(—¢q) = L.(—¢) = 0, and
formulas (28) yield
o) = 57 (@ia + 3eii) By
(35)
m(ES) =£ ('f;nqu

If, at electric saturation, one postulates that the macro-
scopic symmetry relations (12) and (24) shall be ful-
filled, (34) and (35) lead to the following obvious relations
for the microscopic symmetry in the absence of electronic
dispersion:

(36)

Similar relations hold quite strictly for atoms in a very
strong de electric field [11].

20 20 20
3Citsa = Ciin = Ca3aae

DiscussioN AND CONCLUSIONS

Mayer’s measurements [8] prove that in nondipolar
gases (H,, O,, CH,, CCl,) and certain dipolar gases
(CO, CHCIl;) the second-harmonic generation power
measured at frequency 20 and fixed values of E* is a
quadratic function of the dec electric field strength E°
in agreement with the formulas (7), (23), and (31).
However, in the case of dipolar gases, these measurements
failed to decide which microscopic mechanism, non-
linear distortion (31) or molecular reorientation (23),
played the predominant part. Numerical evaluations [9]
point to a predominant role of reorientation of the dipoles
over the distortional effect at usual temperatures. A
final decision can be hoped for from new measurements
of SHG as a function of temperature or of the oscillation
frequency of the laser light or applied ac electric field [9].
In nondivolar gases in the absence of molecular cor-
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relations where, by (31), only the electronic distortion
effect can occur, the theoretical calculations [9] are in
satisfactory agreement with the experimental data [8].

Mayer found anomalous effects in certain dipolar
substances such as CH;I, C,H,I, and C,H;Br [S]. Namely,
in not excessively strong dc electric fields, the SHG
power IT,, increased, as in other gases, with the square
of the field strength E°, whereas at field strengths near
the breakdown threshold a steep increase in I,, occurred.
Significantly, these anomalics were by no means re-
stricted to the three above-mentioned gases, whose
molecules in the ground state have quite large dipole
moments (1.62, 1.91, and 2.03 in 107" 1SU-cm, respec-
tively) and positive anisotropy of polarizability (thus,
in CH,I, @33 — a;; = 2.15 X 107*" em®). One is inclined
to attribute this anomaly to a mechanism consisting
in a high degree of alignment of the dipoles in the di-
rection of the dec electric field. Morcover, as is obvious
from (20)-(22), in the case of dipolar molecules with
positive anisotropy, dipole alignment is enhanced by
reorientation of the polarizability ellipsoids. This latter
type of rcorientation takes place not only under the
influence of the de electric ficld, but essentially in the
field of an intense laser beam able to cause even optical
saturation [16]-{18]. Conditions favoring the super-
position of these two cooperating processes can lead to
the steep increase in IT,, observed experimentally by
Mayer [8].

From the point of view of the simple theory proposed
here, the experimental absence of an anomalous rise
in II, in the case of chloroform is easily explained. The
dipole moment of the chloroform molecule is one-half
that of C,H;I and, moreover, its anisotropy of polariz-
ability is negative, as; — a;;, = —2.33 X 107** em®
The expressions (20)—(22) and Fig. 2 show that for mole-
cules with negative anisotropy the ILangevin functions
decrease rapidly to zero, and the nonlinear susceptibility
cannot inerease with the applied electric field strength.

In general, the achievement of complete dipole align-
ment in molecular substances by external electrical
means alone, is not feasible unless other mechanisms
are concomitant. On the other hand, in certain liquids
an increase in SHG power can be favored alrcady below
saturation by factors such as the various molecular
correlations [9], [19] and electric-field-induced phase
transitions {20]. In many cases, the molecule in condensed
phase presents an effective dipole moment and polariz-
ability anisotropy larger than in the gaseous phase.
These factors can act to raise or sometimes reduce the
values of the reorientation parameters (16), thus favoring
a tendency to electric saturation at an earlier stage.
As an example, taking into consideration, for simplicity,
the effect of a local field according to the model of Lorentz,
(e + 2)E°/3, one obtains for nitrobenzene (¢ = 35 and
u = 424 X 107" ESU-cm) a reorientation parameter
amounting to p = 1.2 X 107 E? for the molecule when
immersed in the liquid, which is (e + 2)/3 ~ 12 times
more than for the gaseous molecule. For the limiting
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field strength 10° ESU below which the liquid, if thor-
oughly purified, does not exhibit dielectric breakdown,
Fig. 1 yields values of L,;(1.2) = 0.366 and 1,(1.2) =
0.225 lying below the region of saturation. Notwith-
standing the fact that these conditions do not correspond
to complete saturation (alignment), they nevertheless
suffice for inducing a nonlinear inerease in SHG intensity
under the influence of a strong de electric field.

Considerable electric saturation is easily achievable
in solutions of macromolecules such as rigid polypeptides
and flexible polyelectrolytes having very large dipole
moments, 4 = 3 X 107" LESU-cem [15]. Here, at 7 =
300°K, one has p = 0.1 E?; consequently, electric satu-
ration sets in at ficld strengths of about 100 ESU. Indecd,
Fig. 1 yields L,(10) = 0.90 and L,(10) = 0.754. Solutions
of dipolar colloid particles, too, can present considerable
saturation phenomena. Thus the vanadium pentoxide
particle V,0; has a dipole moment 100 times larger than
that of the nitrobenzene molecule C,H,NO,.

Measurements in this domain are highly promising
if performed on solutions of strongly anisotropic macro-
molecules, like tobacco mosaic virus in water, where
[15] as; — a;, = 3 X 107" em®, and from (16) the re-
orientation parameter of the polarizability ellipsoid
amounts to ¢ = O04FE). Accordingly, Fig. 2 yields
L,(+10) = 0.89 and L,(+10) = 0.80 for an electric
field strength of as little as 5 ESU so that saturation
of the nonlinear distortional effect defined by (28) sets
in. A similar effect can be expected to oceur in solutions
of colloid gold particles in water (positive anisotropy
@y — @y = 5 X 107® em® in gold particles of diameter
300 A [21]) where strong optical orientation of the particles
has been observed when using a laser beam [22].

In conclusion, it may be worth noting that recent
careful measurements by Mayer' in ethyl bromide con-
firmed Bloembergen’s symmetry relations in the form [9]

XX ix =2:1:38 37)

which result immediately from (12) and (24) on intro-
ducing the notation

xi° = 2xa(Ey),

X" = xp(),

X = xam(E) = x° + x5

It would be very useful to continue SHG measurements

in both weak and strong de electric fields, since this
would help to check the symmetry relations (12), (24),
and (37). Work in this direction, simultaneously re-
curring in the microscopic expressions derived above
for experimentally measured elements of the tensor
of macroscopic susceptibility x24, will provide direct
numerical data on the various elements of the nonlinear
polarizability tensors b%%, and ¢3%,; of the individual
microsystems.

(38)

! Private communications of September 3, 1968 and October 15,
68.
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