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A molecular-statistical theory of second-harmonic generation (SHG) by isotropic bodies
immersed in an external DC or AC electric field is proposed. In particular, a microscopic inter-
pretation of the symmetry relations of the third-order susceptibility tensor, consisting of a temper-
ature-independent part due to the nonlinear electronic polarizability and a temperature-dependent
part due to molecular reorientation, is given. The reorientation effect is discussed in detail for
dense polar substances, where beside reorientation and mutual correlations of permanent
dipoles yet other effects intervene due to reorientation of dipoles induced in. the molecules
by the electric fields of electric multipoles of neighbouring molecules, causing a strongly tempera-
ture-dependent effect in nondipolar substances too. The réles and contributions of the various
molecular mechanisms are discussed quantitatively and compared with recent measurements
of DC electric field-induced SHG by fluids. Such studies are promising since, when performed
in gases, they provide direct information on the second and third order nonlinear optical polarizabil-
ities of the isolated molecules; in condensed media (liquids and solutions) they will moreover
provide data on the molecular electric multipole moments and their correlations.

1. Introduction

The experiment of Franken et al. [1] shows that when a strong laser beam traverses
a crystal without symmetry centre another beam of frequency equal to twice that of the inci-
dent one arises. This effect, one of the earliest in nonlinear optics and referred to as optical
second harmonic generation (SHG), has since been studied in various materials and is grow-
ingly a subject of interest to experimenters and theoreticians [2]-[10].

In the paper, we shall deal essentially with second harmonic generation by centro-
symmetric media immersed in a DC or AC electric field. The influence of a DC electric
field is such as to polarize macroscopically isotropic media, thus depriving them of their
centre of inversion and making them able to generate the second harmonic. DC electric
field-induced second harmonic generation was first observed by Terhuneé et al. [11] in calcite
crystal, which naturally possesses a centre of inversion. The same authors simultaneously
observed SHG in the absence of a DC electric field as a result of nonlinearity related with
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electric quadrupole polarization and electro-magnetic dipole polarization [2], [6]. Bjorkholm
and Siegman [12] performed more accurate measurements of quadrupole-type SHG and
electric field-induced SHG in calcite relative to the SHG obtained in crystals of ADP. In
addition, some weak generation can arise by higher order multipole electric and magnetic
effects in isotropic media presenting strong spatial dispersion [9, 10].

Recently, Mayer [13] investigated SHG by fluids in a DC electric field. The effect
was observed in nondipolar substances such as H,, O, and CCl, as well as in dipolar ones
like CO, CHCl; and other methyl and ethyl halogenoderivatives. In nondipolar gases, in
the absence of interactions, SHG is related only with the nonlinear electronic polarizability
of the molecules due to the second power of the optical field strength E2 and the first power
of the DC electric field Ej. On the other hand, as shown by Mayer [13], in dipolar gases this
temperature-independent effect is accompanied by a temperature-dependent effect due to
reorientation of the permanent molecular dipoles in the DC electric field. The temperature-
-dependent effect is also exhibited by nondipolar substances if condensed, where the
electric fields of permanent molecular quadrupoles and octupoles induce dipoles in neigh-
bouring molecules causing them to undergo reorientation in an externally applied DC
electric field [14]. In this way, the natural symmetry of an isotropic body is destroyed so
that, while acted on by a DC electric field, it is able to generate a second harmeonic of light
accessible to observation in experiments.

In the present paper we shall give a systematical quantitative analysis of second harmonic
generation by isotropic bodies such as gases, liquids and their solutions, when polarized by
immersion in a DC electric field. Particular consideration will be given to the réle played by
the various molecular mechanisms contributing to provide the conditions for SHG. Also, it
will be our aim to make apparent the réle of symmetry as well as optical and electrical
properties for individual molecules, including their various correlations in condensed
systems. The theoretical approach will be along classical paths permitting the derivation
of expressions adapted to direct numerical evaluations and to a comparison with experimental
results. For simplicity, frequency dispersion will not be considered explicitely.

2. Phenomenological treatment

An electromagnetic wave propagating in a medium gives rise to (in general dipolar,
quadrupolar, octupolar ...) electric and magnetic polarization. The vector of electrlc polari-
zation P(r, t) at the space-time point (r, ) is [6], [9]:

P(r,t) = D, t)—V - Q@r, 1) +..., 1)

where D(r, t) is the vector of electric dipole polarization, Q(r, t) — the (second rank) tensor
of electric quadrupolar polarization (higher rank tensors of octupolar polarization etc. can
also be considered); V is the spatial differential operator.

In a first approximation, the relation between D(r, t) or Q(r, t) and the electric field
strength vector E(r, ¢) is a linear one. In tensor notation, this is rendered by writing:

DM, t) = yBEr, t) + x5V, Efr, ) + ... 2
Q(l)("' t) = ZukEk("' t)+x,,szzEk(1‘ t)+ ®3)
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_~ The second tensor x§ is the linear susceptibility tensor in the electric dipole-dipole
‘approximation; the third rank tensors xfj,{ = x4 are tensors of electric dipole-quadrupole
susceptibility of first order; the fourth rank tensor yf; is the electric quadrupole-quadrupole
susceptibility tensor. In Eqgs (2) and (3), the summation convention over recurring indices
J» k, 1 is implicite.

The relations (1)—(3) account for linear optics. However, such a description ceases
to be adequate and requires modification when a material system is subjected to an intense
electromagnetic field, such as that conveyed by the light beam of a giant laser. As long as
the nonlinearity induced in the medium is not too large, this can adequately be achieved
by having recourse to the second approximation [6, 9]:

D?’(r, ) = xfjiE}(f‘, D E (r, t)+ xij,E;-(r, O, E M, 0)+..., 4

QP(r, 1) = PGB (r, D Er, t)+... - ©)

Above, the third rank tensor xg-i defines the electric dipole-dipole susceptibility of second

order; the fourth rank tensor xfj‘,’d = x,qeg)- is that of the electric dipole-quadrupole suscepti-
bility of second order.

In certain cases (thus, for centro-symmetric bodies), one has to consider also a nonlinea-
rity of third order. For the electric dipolar polarization, this nonlinearity takes the form:

PO, 1) = g2 E(r, ) Ey(r, ) E(r, ) + ..., ©6)

ij
where the fourth rank tensor xg.‘,id defines the third-order susceptibility in the dipole-dipole
approximation.
For the case of an isotropic body, these tensors become isotropic and, quite generally,
‘can be written as:

Xi = X%  Xip =0,

Xt = %1000+ 22030+ 230004 U]
with 0;; — the unit symmetric tensor having components equalling 1 for i =j and 0 for
SEHR

By Eqs (7) one sees that in isotropic bodies the second-order effects (4) and (5) are
related with electric dipole-quadrupole polarization only, whereas in the third approximation
(6) there appears an electric effect already in the dipolar approximation.

Considerations like these hold, too, for the magnetic polarization induced in a medium
by the magnetic vector H(r, t) of the light wave [9], though its part in nonlinear optical
phenomena is small, More important, and indeed sometimes essential, are the changes in

electric polarization caused by the magnetic vector H(r, £); the relevant contribution to the
second order electric polarization (4) results as:

D(r, 2) = ngEy(r, ) Hy(r, 1), ©)

where the third rank pseudotensor'773-‘,’a defines the change induced in the electric dipole
susceptibility xf-j.d by a magnetic field. For isotropic bodies, the pseudotensor 7,

becomes [16]:
' Nije = Neipr )
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& being the third-rank antisymmetric unit tensor with components equal to 1 for (cycli-
cally) i =1, =2, k =3, to — 1 for (cyclically) i =2,j =1,k =3 and to 0if i =j or
j=kor k=i

As a contribution to third-order electric polanzatlon (6), we adduce the following one,
which is non-zero for centro-symmetric bodies also:

DP(r, i) = mlEy(r, 1)Hy(r, H,(r, 1 (10)

the tensor 77321 accounting for the change induced in the tensor xil- by the square of the
magnetic field strength. :

In order to adapt the preceding expressions to a description of optical- harmomc genera-
tion, it is convenient to replace the vectors P(r, t), E(r, ¢t} and H(7, t) by Fourier components
[8], when the space-dependent amplitudes P, P?®, ... have a time-dependence ¢,
e~'2® .. Accordingly, for the case of an isotropic bedy, the electric polarization induced
at frequency 2o is, by (8) and (9):

D = E°H? (11)

uk
or, in vector notation [15]:
D* = y*E°xH". : (11a)

' Similarly, by (4) and (5), one-obtains the electric quadrupole contribution to second-
-harmonic generation [10, 15].
As stated at the outset, our particular interest bears on  SHG in the presence of a DC
electric field E®. With regard to Eqs (6) and (7) and in the case of an isotropic body, one
obtains:

= (xTtee+ Xinr0) EwEwEo +x1221E""E}’E’? > (12)

where the notation is x,.jk, = x,-ju (—2w, w, @, 0); for an isotropic body, this tensor has 21
non-zero components, of which only 3 are mutually independent because of the condition
A1t = Xites +Xihe+ X1gm (13

which applies to this case.

Similarly, one readily verifies that replacement of the field Hy(r,¢) in Eq. (10) by
a DC magnetic field H} leads to the possibility of SHG by isotropic bodies immersed in
a DC magnetic field [9].

Let us assume the light to propagate along the z-axis and the DC electric field to act
along the y-axis. In this experimental setup [13] with regard to Eq. (12) the polarization
components in the x- and y-directions are, respectively:

P, :w == szEm E;’E:,
Pl = (IeELEr 1 FSE)ES (19
where we have introduced the constarits:
210 = 2 45" = Xl + Xi%e
25" = Xitee T Xima+ X350 = Xitu (15)
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satisfying the relation:
10" = 1" (16)

Indeed, the tensor Zini(— 20, @, 0, 0) is symmetric in the indices j and %, so that the number

of its mutually independent components reduces to 2, namely y¥,, = y32,, and yigy,.
If the medium presents negligibly small electron dispersion, the tensor xf;,:, can be

considered as totally symmetric, whence with satisfactory accuracy we have [17]:

1
X%?zz = Zig’m = %ign =73 Zun (17

The preceding condition entails the following additional relation between the constants (15):
130 gdo 20 =1:2:3. .(18)

The symmetry relations (16) and (18) are due to Bloembergen! (see also Ref. [14]).

The foregoing phenomenological treatment, though quite general, is unable to provide
insight into the microscopic mechanism of SHG which, if known, would guide our choice
of systems with well-defined structures for experimental investigation. The relevant:microsc-
opic theory can be constructed along a twofold path: either in a quantum-mechanical
approach or in a statistical-molecular approach on a classical level. Here, we shall proceed
by the latter one, which is simpler and moreover permits a description not only of systems
with noninteracting molecules (perfect gases) but also of systems of mutually correlating
molecules, as is the case of imperfect gases and liquids. Obviously, we begin our discussion
by the gaseous phase, where the mechanisms are simple, in order to go over to the condensed
phase, where various molecular correlations leading to novel effects unknown in the absence
of molecular interactions become of essential importance.

3. Molecular treatment of dipolar gases

Consider a system of N noninteracting molecules, having permanent electric chpoles .
When in an external DC electric field, thelr potential energy is:

u( 2, E°) = u(0)—u,E? (19)
and they undergo a Langevin reorientation (when at thermodynamical equilibrium at temper-

ature T and provided the field is not excessively strong), which is given by the Boltzmann
distribution function [18]:

70,8 =, 1+ 1) (20)

Jo being the distribution function in the absence of the electric field.

! Private communication, September 15, 1968.
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Denoting by g the density of the gas, the component of electric polarization induced
therein at frequency 2w can be written as [19]:

P} = o [ mi (2, E%) d2 1)

the integral extending over all possible molecular orientations in the elementary body
angle dQ.

A component of the total dipole moment m2® induced in a molecule at frequency 20
in the presence of the DC electric field can be expressed, in accordance with the pheno-
menological equations (4) and (6), as follows [19]:

m2® (buk—l—cuk,Eo-l— B Jng (22)

Above, uk @ is the tensor of molecular second-order polarizability, and cz‘” that of third-
-order polarizability. On inspection of the expansion (22) one notes that the tensor c; e de-
fines the linear change caused in the tensor buk by the direct influence of the field on the

molecule, 7. e.
20 bz]k
o= (9E2) _

It will be useful to note that the tensors bl and ¢ ciy are symmetric in the pair of indices j
and k.

On inserting Eq. (22) into (21) and averageing with the distribution function (20),
we obtain an equation of the form (12) where the phenomenological coefficients are now
expressed as follows by way of parameters of the isolated molecule:

Yate = xuzz lgO {3C:¢pp—0§pﬁa + o (3bzapﬂﬁ —bgﬁﬁﬂz)}, (23)

Lo = % {202;9& —Crapp + yd (2bagstin — bfmﬂﬂﬁ)}- (24)

These expressions are valid for molecules of arbitrary symmetries. We shall now partic-
ularize them for some special cases. Thus, in the case of molecules belonging to the point
group Oh (e. g- SFg, UF,) all the components of the tensors g, and b2, vanish whereas the
tensor cuﬂy,, has 21 nonzero elements, only 3 of which are mutually lndependent and the
coefficients (23) and (24) become:

Aaize = §%— (i1 + 3cTiaa— cizm)s (25)
Ko = = (i + detin— 263, (26)

"This result applies to the point group Ty also (e. g. CH,, SiCly, etc.) where the tensor
b2“’ has nonzero components (6 mutually equal components b33;), but no permanent:
electrlc dipole occurs (u = 0). Hence, in the case of molecules with a centre of inversion
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as well as nondipolar molecules the constants 3753 and y2,; consist only of a part which does
not depend directly on temperature, and results by third-order nonlinear electronic polariza-
tion of the molecules.

In the case of molecules having a permanent electrlc dipole, the other, directly temper-
ature-dependent term, which is due to coupling between dipole reorientation in the DC
field [18] and second-order molecular polarization, comes to play a part. Since in molecules
of low symmetry the number of independent tensor components b2, and cae s is quite
considerable, the expressions (23) and (24) are now somewhat complicated. This leads us
to restrict our present considerations to some point groups only comprising the majority
of the simpler molecules.

Thus, for molecules with symmetry of the point groups Cg, and C,, (e. g HCl, CO
HCN, etc.), we obtain with regard to Eqs (23) and (24):

%1122 = % {03333+ 761122+01221+ 6criss— 2ctgns + o3 T (5333 +3bies— b3i,1)} , (27

Kisr = 6—%— {03333+ 23 a0+ 6ciom + Bchany — dcims + - ,u3 (b§§’3+4b311~ bis) } (28)

For numerical evaluations, we neglect electronic dispersion; the tensors bi;’y and c::;’yo
are then totally symmetric reducing the coefficients (27) and (28) to:

2w
Aitee = Yiges = % (02‘” + 3;:71 ) ) (29)
where b? = (b2 +2b3%)/3 and ¢ = (285 +8c2%, +4¢32,)/5 denote mean values of non-
linear polarizabilities of the second and third order respectively [19].

Since as yet no theoretical values are known for the molecular parameters 5% and >,
we are induced to recur to an approximation which consists in taking instead the corre-
sponding DC nonlinear polarizabilities # and y in accordance with the relations 5*® ~ 28
and ¢® = 2p/3 valid in the absence of dispersion. In the first place, we note that putting
p = b* = 0 in Eq. (20) we bring it to a form applicable to diatomic molecules of the point
group D, (e. g. Hy, Oy, Ny). Thus e. g. for H, theoretical calculations give [20] 4= =0,
y = 0.4x10-% e. s. u. and Eq. (29) yields coefficients 42 of Eqs (14) and (15):

’ 252 = 3yits = 6.60X10-8 e. 5. u.

However, experiments yield [13] 3 = 991038 e. s. u., more than 1.4 times the theoret-
ical value. For the dipolar molecule CO we obtain the theoretical values [21]: u3 = 0.11 X10-18
e 8. U Pz = —015X10"30e. s.u. fg; = —098x10®0e.s.u. and [20] Ya35
= 0.2X10-36 e. 5. u. With these, Eq. (29) leads to the coefficients y2* of Eqs (14) and (15)
for T'= 300°K: ’

15° = 3x3%ss = 0(0.03—0.34) X10-% . 5. u. = —0.31p X103 ¢. s. u.

The preceding result shows that the contribution from third-order nonlinear electronic
polarizability is 10 times smaller than that due to dipole reorientation, whose sign is negative.
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- Measurements by Mayer [13] gave 722 = 0.450 X 10-38 e. 5. u. — a result satisfactorily coincid-
ing in absolute value with our theoretical evaluation.
The expressions (27)—(29) apply as well to molecules of point group symmetry C,,
(e. g. BrFy, IF;) and Cg, (e. g. NH;, CHCl;, CH,l). For CHCl; we have [22] u = 1.01%
%x10-18 e. s. u. and from Rayleigh light scattering [19] bfj3 = 12.1X10730 e. s. u., biy,
= 9.6x10-% e. s. u. whereas from optical Kerr effect [23] ¢” = 4.8 X1073 e. s. u. Since
here b2 = 2b® and ¢* ~ ¢®, we get by Eqs (14), (15) and (29):

230 = 0(1.2+84) 10~ e. 5. u.

Measurements in the present case yield [13] 43 = 1.1 X103 e. s. u. which is equal to the
theoretical value from the nonlinear polarizability effect alone. We ask why the dipole re-
orientation effect, which is 80 times larger, is not apparent experimentally? This is pre-
sumably due to the presence of mutual molecular correlations reducing strongly the effect
in question, or else the value from experiments may result too low owing to insufficient
absolute accuracy [13]. In any case this points to the necessity of taking 1ntermolecular
interactions into consideration, as we intend to do in the next Section. :

As seen above with regard to strongly dipolar molecules, the term in nonlinear polari-
zability is numerically unimportant and can be dropped when applying Eqs (23) and (24)
to molecules of point group symmetry Cy, (e. g H,0, O3, H,CO, CH,Cl,, CgHCl, C;H;NO,
etc.), yielding:

Yitee = 1 20 kT (2b3as+ 3bi%s+3bass — bati— base), (30)

Yz = 60 kT (b33a-+2b371 +2b3sa— bits— b3zs). @31
Obviously, however, molecules of lower symmetries involve too many molecular para-
meters, and numerical evaluations are not so easy.

4. General theory for dense isotropic bodies

Molecular correlations can be expected to affect SHG in liquids just as they affect other
nonlinear phenomena (e. g. nonlinear refractive indéx, nonlinear light scattering, etc. [24]).
The problem is most conveniently approached by way of the semimacroscopic method first
used by Kirkwood [25] in linear dielectric theory and extended [23], [26] to mnonlinear
optical phenomena. This consists in taking a macroscopic isotropic spherical specimen of
volume ¥ and electric permittivity £ immersed in a different, external medium of permittivity
&, or in vacuum (g, = 1). When an external electric field of sufficient strength E? is applied,
the specimen becomes electrically anisotropic with electric permittivity tensor &;, and the
macroscopic field E° existing in the specimen is related to the externally applied field E
as follows [27]:

3¢, EY = (g;-+2¢,6; )E’o " (32)
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A similar relationship holds for an electric field E;’ oscillating at frequency w; the quantities
&;; and &, have now to be replaced appropriately by &} and &;. In particular, for a weak field,
when the medium has isotropic permittivity s; = ¢ §;;, the relation (32) reduces to the
much simpler form [16]:

3e
Eo= 2%
e+2¢,

We now define a dipolar electric polarizaﬁon at frequency 20 as follows [23]:

E. (33)

P = lV f M3*f(z, Ed. (34)

The statistical distribution function f(z, E°), when the microsystems (atoms, molecules,
macromolecules) of the system immersed in the external field E° are at configuration 7,
is in a first approximation:

S B = fi5,0) (14 7 MIES). )

where MP is the total electric dipole moment of the medium in the absence of external
fields.

The dipole moment M2® induced in the medium (volume V) at frequency 2w in the
presence of a DC electric field can be written thus [26]:

o 1 » o ‘
M’2 = -—4— (Bgd]:-l- C?;HE:)I)E: k> (36)

Bf,",;’ and Cf,",;, being tensors describing respectively the nonlinear polarizabilities of the
second and third order, per unit volumeé of the medium. '

With regard to Egs (33)—(36), we find that, for a dense medium, the phenomenological
coefficients of Eq. (12) are of the form:

@ ‘ ng . @ o) 1 7Y o
i = Ty @Camo— Cabpet g BB M~ BspM ), (37)
yagn = L QC— Coo s 1 (2B22, M o— BXsM )y (38)
GOV affa aaff ET zfpiVt o aaf L )/

where the smybol { ) stands for statistical averageing at zero external fields, whereas
the macroscopic factor L2 resulting by the isotropic relation (33) on assuming &, = 1is [2]:

. o
30 o0t+2\ [En+2 go+2

o 22 (2 (522), ®

The expressions (37) and (38) hold irrespective of the structure and symmetry of the

microsystems of which the dense isotropic medium consists. We shall now apply them
to some special cases.
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4.1 Dipolar substances

We consider substances having dipolar molecules which (we assume) do not change
their optical and electrical properties as a result of short-range mutual correlations. If now
the volume ¥ contains NV like molecules, we can express the macroscopic parameters of
Egs (37) and (38) in terms of molecular parameters as follows:

2 lua ’ B2w _?2 b:glsp)’

aﬂvﬁ = Z Ci‘,;%) ‘ (40)
so that Eqs (37) and (38) now become.

[ 20 N 1 3y N N
2 P o
Him = 557 {(; (el - cxa‘”)> T (2 3 - ’u.?))}»,

p=1 ¢g=1

N ’ N
@ L2e ® 1 o o
Yiges = Y4 {(Z (2c20®) — c,,,“”)) = (Z Z (262,00 _ p2ot0) (q))>}
. ) p=1 ¢=1

p=1

(41)

(42)
These two expressions are immediately seen to go over into the ones (23), (24) derived
previously for the gaseous state by neglecting statistical molecular correlations and putting
L* =1. Asin the above-considered approximation, the terms in third-order nonlinear
polarizability are practically correlation-independent and thus can be omitted in the present
considerations, so that Eqs (41) and (42) become:

w L3 w i) ) l -
Xﬁmz = Tgm (3b§w— bczzw)ﬂﬂKaﬂ’ (43)
Xigm = 60 kT (2buw byve) 15 K. (44

Here, we have introduced a tensor of angular molecular correlations:

Kop = Sypt0 [ 9 g(z,) d v, S (49
with c(“) — the cosine of the angle between the axis & of molecule p and the axis 8 of ¢,
and g( o) — the function of binary correlation between molecules p and g when at
mutual conﬁguranon . 28]

In the absence of angular correlations, the correlation tensor (45) reduces to the unit
tensor J,g, and Eqs (43), (44) at L*® = 1 take the form valid for gases. We also note that
if the dipole moment of the molecule has the direction of the molecule’s symmetry axis,
e. 8. the 3-axis, then ¢89 = cos 0,, and the correlation tensor (45) reduces to the well-
-known angular correlation parameter Ky = K of Kirkwood’s linear theory of dielectrics [25]:

K = 1+¢fcos 0, g(z,,) d 7,, . (46)
0,, denoting the angle subtended by the dipoles of molecules p and g.
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In addition to the short-range statistical correlations (46), Kirkwood considered a long-
-range contribution in accordance with Onsager’s model [29] involving the replacement of the
dipole moments in Eqs (41)-(44) by the following one:

3e | Eoot+2
* — 0 o
# (280+8°°) ( 3 ) # - 7

where &, is the static and &, the high-frequency dielectric constant.

By (47), u* > u in all cases, whereas the angular correlation parameter (46) can exceed
unity (in general, for molecules whose dipole moment has the direction of the short axis,
as in CHCl,) or can be less than 1 (if the dipole moment is parallel to the longer axis, as in
CeH;Cl).

Specifically, for the CHCl; molecule, K =12 and p* = 147 y = 1.48x10-18 ¢m
e. s. u., whereas for CgH;Cl K = 0.6 and u* = 1.86 s = 3.14X10~8 cm e. s. u. since [22]

= 1.69 X108 c¢m e. s. u.

Moreover, it may be of interest to note that on the assumption that a molecule interacts
with but one of its neighbours Kirkwood’s parameter (46) takes the following values accordlng
to the angle between the two molecular dlpoles :

0 for HM = 180°
K =11 for 6,, = 90°
2 for 6,, = 0°.

These values are thus found to vary from 0 at antiparaﬂel orientation to 2 at parallel orienta-
tion of the dipoles, and the contribution of dipole reorientation to SHG in dense media will
depend largely on what kind of angular dipole correlation is relevant.

4.2 Nondipolar substances

With the aim of simplifying this discussion of the temperature effect for nondipolar
molecules, we shall neglect electron dispersion of the tensor B2, justifying us by Eqs (37)
and (38) in writing simply:

Aies = Aign = VI (B:tzﬁM 8- (48)

In dense media, electric molecular fields F exist even if no field is applied externally.
Owing to fluctuations of these molecular fields, electric moments of higher order arise in
centrosymmetric molecules. The latters’ symmetry is destroyed in accordance with the
following relations:

S (o) o
= Z“ﬂ%)Fﬁ )+ veey
=1
N
Bl = 2“1 EoDF s+ ..., (49)
p= 5 .

F®) is the field at the centre of the p-th molecule due to the electric multipoles of the re-
maining molecules of the medium.
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Omitting anisotropy of the polarizability tensors a5 and cf,;’y,, we can write with regard
to (48) and (49):

o Lo e @
Aaita = igz—ﬁacz‘”(F 2) = nryites T (F%), (50)

where @ = a,,/3 is the mean electric polarizability of the molecule, and ,; 7%, is the term
resulting by the effect of third-order nonlinear polarizability given in Eqs (29) and (41) by
the temperatiure-independent term.

In particular for axially-symmetric molecules possessing a quadrupole moment @ only
(for a definition of molecular multipole moments, see e. g. Refs {30] and [31]), the mean
statistical value of the square electric quadrupole-type field is [26]:

(F% = @2(rs), . (51
where (r8) is defined as:

G = dag [ g (n)dr, | - (52)

&(r) defining a radial distribution function [28].
Applying Kirkwood’s {32] model of hard sphere of diameter d and volume v = 7d?[6 to
the calculation of (52), one gets with n >4 [24], [33]:

- (n—3)/3
(KJ) . (53)

Mean values of (52) can also be calculated for imperfect gases by applying the Lennard-
-Jones potential [30]. -
In the case of benzene at 295°K we have [14]:

@ = 6.74X10%! cm™3, & = 10.32 X10~% cm3, (r8) = 5105 cm3,

80 recurring to the calculated quadrupole [34] @ = (12 =~ 26.3) 10-% e. s, u. cm? and with
regard to (50) and (51) we find that the temperature-dependent quadrupole-induced dipole
effect amounts to (20+-80) per cent of the effect due to third-order nonlinear polarizability.
In CS, this quadrupole contribution is twice larger [14], but nevertheless failed to produce
signals in Mayer’s measurements [13].

For the Hy molecule one has: & = 0.79 x10~-24 cm3 @ 0. 66)<10-3‘3 e. s.u. cm? [31],
{r® = 2x10% cm8, whence by (59) and (51) yifs = 1.7 nzxiise. Similarly, for CO:
a=195%x10"2%cm3, @ = —25%X10-%e.s.u. cm? [31];, [35], (8 = 61080 cmS,
yielding 3%, = 0.2 5y %2%,. Consequently, in these cases also, reorientation of dipoles which
are induced by molecular quadrupoles leads to contributions which, when added to the values
calculated 'in Section 3 enhance accordance with the experimental data [13].

The expression (50) applies also to tetrahedral molecules, which have neither a dipole
nor a quadrupole moment [30], but possess an octupole moment 2 and a hexadecapole
moment @D giving rise to an electric field [26]:

oy =

@ =2 oy L grgom), (54)
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Specifically, for CCl; one has: ¢ = 6.22xX10% cm™3, & = 10.5X10-2 cm?, (r10)
= 61072 cm~19 [14]; the hexadecapole moment is as yet not available, but 2 = 5.5x10-34
[42] or 15x10-34 e. s. u. cm?[37], whence with regard to (50) and (54) we conclude that the
contribution from reorientation of dipoles which are induced in the molecules by the octupole
moments of other molecules amounts to only 2 per cent of the third-order nonlinear polariza-
bility effect. It is yet to be hoped that in other substances this octupolar effect may prove
more considerable, although in molecules such as CH, or CF,the octupole moment is known
to be three times smaller than in CCl, [30], [31], [36] —{[38]. :

Eq. (54) with £ = 0 describes octahedral molecules like SFg, where the first non-
-zero moment is hexadecapolar @. Predictably, however, its contribution here is very small.

5. Final remarks and. conclusions ‘

As shown above, the third-order susceptibility (in the absence of molecular correlations,
as is the case in dipolar gases) consists of a temperature-independent part due to nonlinear
electric polarizability and a temperature-dependent part resulting from the reorientation
of permanent dipoles in a DC electric field. As yet, experiments on SHG [13] have not led to
separation of the two effects. Nevertheless the present numerical evaluations permit the
statement that in dipolar gases at room temperature the dipole reorientation effect is the
predominant one. It'also seems worth while to attempt a resolution of the two effects in ex-
periment by measuring the temperature-dependence of SHG. Information as to the order
of magnitude of nonlinear electronic polarization can be obtained from work on second-har-
monic scattering [19], [39], third-harmonic generation by gases [40], optical Kerr effect [23],
and DC Kerr effect [41]. ‘

There is yet another way of resolving the two effects in question, namely by studies of
electronic or dipolar dispersion in an AC electric field. In the latter case, in accordance with
Debye’s dipole relaxation theory [18], one has to replace the permanent dipole moment u
in the distribution function (20) and Eqgs (23) and (24) by a dipole moment u* oscillating at
frequency wqy much smaller than the optical frequency w:

@, __ Hat*t .

Yo = m, (55)
where 7, is Debye’s relaxation time for the principal molecular axis a. Eq. (55) suggests
to investigate to what amount SHG is affected by Debye dipole dispersion, at the same time
extending the scope of studies on molecular relaxation processes [42] and providing a means
of making directly apparent the réle of dipole reorientation in SHG.

In dense media, the two effects are more or less dependent on the molecular correla-
tions within the system. The nonlinear polarizability effect is but slightly affected by the so-
-called translational fluctuation effect [32] (not discussed in this text, see Refs [24], [26]).
On the other hand the molecular reorientation effect, which is of a statistical nature, is
strongly dependent on the various molecular correlations. Particularly in dipolar liquids the
effect of reorientation of the dipoles can undergo an enhancement or a decrease according
to the kind of angular short range dipole correlations, and SHG investigations can be ex-
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pected to provide highly valuable data on the ‘structure of such liquids and their dielectric
properties [25], [30].

The temperature-dependent effect can be said to occur not only in dipolar substances
but also in quadrupolar and octupolar ones owing to the strong molecular electric fields
existing in the condensed state and inducing dipole moments, which then undergo a reorien-
tation in an applied DC electric field. The preceding statement results from Eq. (49), which
shows that even in the case of molecules that are centrosymmetrical in their ground state
(g = b2, = 0), the effective values of M? and B2, are in general non-zero in regions with
fluctuations of the electric fields of molecular multipoles causing a destruction of the initial
symmetry of the isotropic medium as long as the DC electric field is kept applied. A naturally
centro-symmetrical medium when acted on by a DC electric field becomes macroscopically
anisotropic, with symmetry C,. As we have for the case of quadrupolar substances, this
effect is strongly temperature-dependent and, at not too high temperatures, plays an im-
portant part in comparison to the distortional electronic effect.:

A qualitative resolution of the two effects can also be hoped for from SHG investigations
in solutions as a function of concentration. Indeed, from the shape of Eqs (37) and (38) or
(41) and (42), it is readily seen that the distortional electronic effect has to be practically
additive (neglecting translational fluctuations), whereas the molecular reorientation effect can
deviate considerably from additivity as a result of angular correlations. The situation is sim-
ilar with regard to dielectric polarization [30] and optical Kerr effect [23], [24].

Finally, let us note that quite recent, very careful and accurate measurements by Mayer?
for bromoethane have resulted in full agreement with the symmetry relations (16) and (18);
though as yet, it has not been possible to decide unequivocally as to which of the relevant
mechanisms: nonlinear distortion alone, or in combination with molecular reorientation,
is essential in SHG. Predictably, considerable intensities of SHG are to be expected in macro-
molecular substances and colloid solutions, where the reorientation of particles and the
optical nonlinearity are strong [43].

The author wishes to express his sincere indebtedness to Professors N. Bloembergen
and C. Mayer for their interesting letters, in particular regarding the symmetry relations for .
nonlinear susceptibility.

The author wishes to thank Dr G. Birnbaum for his fruitful discussions of certain
spectral and molecular aspects of the subject when at the Warsaw Laser Measurements
Conference. :
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