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A microscopic theory of second-harmonic generation (SHG) of light by isotropic sub-
stances whose molecular electric dipoles have undergone total alignment in an intense DC electric
field is proposed. Such electric saturation strongly raises the SHG intensity; this increase can
be observed in some highly dipolar molecular liquids, particularly solutions of dipolar macro-
-molecules and colloid particles. For a weak electric field, the microscopic theory leads to Bloem-
bergen’s phenomenological symmetry relations, recently confirmed experimentally by Mayer,
for the nonlinear optical susceptibility tensor elements. Investigation of SHG electric saturation
is shown to provide a new method permitting direct determinations of the second-order nonlinear
optical polarizability of molecules, macromolecules and colloid particles.

1. Introduction

A recent paper by Mayer [1] contains results of measurements of second-harmonic
generation (SHG) by gases in a DC electric field. Mayer’s measurements show that in non-
dipolar gases (H,, O,, CH,, CCl,) as well as certain dipolar ones (CO, CHCly), the second-
harmonic power IT,, measured at frequency 2w is a quadratic function of the DC electric
field strength E°, whereas in other dipolar gases (e. g. CoHyl, C,HBr,I) anomalous values
are obtained for field strengths E° close to breakdown. The quadratic shape of I, (E°)
for dipolar gases has been explained by Mayer [1] on the basis of Langevin’s dipole re-
orientation theory [2]. In quadrupolar (H,, O,) and octupolar (CH,, CCly) gases, it can be
explained quantitatively as being due to the reorientation, in the DC electric field, of fluctu-
ational dipoles induced in the molecules by the electric quadrupoles and octupoles of neigh-
bouring molecules [3]. Obviously, beside these temperature-dependent statistical effects,
the temperature independent distortional effect of nonlinear electronic polarizability is also
present. Hitherto, however, the most careful recent measurements [4] have failed to deter-
mine which of the two effects is predominant. Numerical evaluations for polar substances
[3] point to a marked predominance of the reorientational effect. A decision can be expected
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from e. g. measurements of the temperature-or frequency-dependence of SHG. In the case
of ethyl bromide, the most recent measurements of Mayer [4] confirm Bloembergen’s
[5] symmetry relations between the three principal components of the isotropic temsor of
nonlinear optical susceptibility (see also Ref. [3]).

Mayer, in his communication [1], proposes no ‘mechanism of the anomalous effect
observed by him, which increases quadratically with JE° only up to some value of the field
and then grows steeply exhibiting a much stronger nonlinearity. The circumstance that
this anomaly appeared only in dipolar substances $uch as CHyl, C,Hgl and C,HBr, the
molecules of which in their ground state have quite large electric dipole moments (respecti-
vely 1.62, 1.91 and 2.03 in 1018 e. s. u. cm [6]), suggests a rather high degree of alignment
of the dipoles in the applied DC electric field as a plausible mechanism. A considerable
electric saturation can arise not only owing to the high applied electric field strength able to
cause total alignment of the molecules, but moreover owing to the fact that molecules in
excited states gain large electric dipole moments. It is our aim here to discuss the problem
quantitatively within the framework of Langevin’s [2] and Debye’s [7] classical theory of
molecular reorientation. We shall also show by microscopic considerations that Bloem-
bergen’s [3, 5] phenomenological symmetry relations are fulfilled strictly only in a linear
approximation with respect to the DC electric field strength but cease to hold in the presence
of a field strong enough to cause nonlinearity of a higher order.

2. Phenomenological theory

The i-component of the second-order electric-dipole polarization P®(w, , k;) produced
by the interaction of two electric fields Ej(w,, ko) and Ey(w;, k) in a medium at frequency
®; = wy+w, is given by [8]:

P, ;gz)(wp k) = %ijk( — @y, Wy, W) Ej(wz’ k;) Ey(ws, k), (1)

where the third-rank tensor y; defines second-order susceptibility in the electric dipole
approximation. The spatial distribution of the polarization (1) is characterized by a wave
vector K, = k,+k,, and the summation convention for repeated indices j and k is used.

In the case of an isotropic body having a centre of symmetry, all tensor components
i vanish and, to obtain e. g. second-harmonic generation, one has to proceed to the
electric-quadrupole or magnetic-dipole approximation [8, 9]. However, we shall not deal
with such effects in this paper since we are interested in second-harmonic generation by
isotropic bodies immersed in a DC electric field E(0) = E° [10, 11]. The external field
E(0) polarizes the naturally isotropic body, destroying its centre of symmetry and causing
it to become anisotropic with macroscopic symmetry C,,. This absence of a centre of
symmetry gives rise to a situation which favours (a necessary though not always sufficient
condition) the nonlinear process of interaction (mixing) of laser light beams described in
accordance with Eq. (1) by:

P §2)(w1, k) = <Xijk( —Wy, Wy, ws))mEj(wz’ ky) Ey(ws, ks), (1a)
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where the symbol { ) g denotes a mean value calculated in the presence of the DC field E°.

Assummg E®to act along a given direction e.g. along the y-axis of laboratory coordinates,
thé macroscopic symmetry Ce, electrically induced in the medium will cause the tensor
{ Zuk> B of 'Eq. (1a) to have 7 non-zero components, 4 of them mutually independent,
namely

<xxyx>E°y = <xzyz>E',’,’ (xxxy>E;, = <Zzzy>5;’,, .
<xyxx>E',’, = <Xyzz>E:,’ (xyyy>E§’ (2)

With these relations, we obtain the following expressions for the components of second-
-order polarization (la):

POy, k) = (g — 1> 0, 09) )5y By (03 B5) Bifeog, Teg) +
sl 1 0> 03 B3, Kg) 005, T,
PO, Ky) = Ly — 01, 095 09 {En(3, Te) Boog, i)+ B0y, Kg) Biyfeog, o)+
oyl @15 D5 09) V53 B3, g) Eyfeog, Be),
POy, k) = (fapal — 01 09 09) ) B3, 1) Eyfeog, o) +
(gl — 01> 035 09y Eye0g, Bg) Eye0g, ). 3)

which can now be adapted to various experimental situations.

We shall consider the simple case of a single light beam w; = 2w, @, = w3 = @ propa-
gating in the z-direction. The tensor %% = Yip(—20, @, @) is now symmetric in the
indices j and k causing the 4 mutually independent tensor elements of Eqs (2) to reduce
to 3, since now we have moreover the relation:

(xxyx>E,, (Zxxy)Ey

With these assumptions, Eq. (3) yields the following polarization components at fre-
quency 2w in the x- and y-directions:

Piw = 2(%?‘%>E0E E

y XY .
P = (edmBRE+ o)y B @
with, for simplicity, the notation P = P®(2w, 2k) and E} = E{w, k)
If the incident light is plane polarized, then for the case E“’HEO (oscﬂlatlons along the
~ y-axis) Eqs (4) allow to determine Ao g3, Whereas for the case E® LE$ (oscillations along
the x-axis) one determines (nyx>E" It the light wave E”is circularly polanzed measure-
ment of the component P2%allows to determine (Yo, £ Whereas measurement of Pi*yields
(Zyxx>E,',+<Zyyy> gy Thus it is seen that all 3 components can be determined separately in
experiment [1].
Similar results can also be obtained along the following lines: if the DC field externally
applied to the isotropic medium is not too strong, and produces only a linear change in the
polarization (1), one-can write, in the following third approximation:

Pﬁa)(wl, ky) = Xijkl( — 0wy, Wy, W3, 0) Ej(wz’ ke;) Ey(s, F3)E; (0) ©)
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the fourth-rank tensor y;; defining a dipolar susceptibility of the third order which is no
longer sensitive to the presence or absence of a centre of symmetry, and has non-zero ele-
ments in the case of isotropic bodies too.

For the case of an isotropic body, the tensor x;;; can be subjected to an averageing
procedure over all possible directions of electric fields relative to the laboratory axes,
leading to: '

Liia = X1 0500+ 220501+ 230,0,; (6)

with ; — the unit tensor, and where we have introduced the constants:

Xs = XGﬂ‘Vd( —Wy, Wy, W3, O) O'sgy‘? ) (7)

and the notation, for s = 1, 2, 3:

1 ]
O'Et:ll?)yﬁ 30 (40250y5— OayOps— Oaslpy),
0'225)75 = 30 (4‘6m'6ﬁ6 80508y — Oapdye)s

0'533)?6 = 30 (4‘50:5657 Oaplys— Oaydpo)- )

For the isotropic body, the constants (7) can be written in explicite form:

1
X1= 5 (x4 xxyy— Yryny = Xeyya)s
1
5 (e + A xymy— Kz Xxxvw)s
g ,
X3 = 5 (x4 ayyx— Kxreyy = Axyav)s )

or, with regard to the relation [12]
axxx = Kanyy F Aayy T Loy = Lyvoy (10)
in quite simple form:
1= Lowwer™ (Layry F Lowyn) = Lo
Yo = Kayey X3 = Xayy - an

With the above-derived relations, Eq. (5) can be rewritten for the isotropic body as
follows:

P zgs)(wn Ey) = Yy —@01, 03, @3, 0) Ey(wq, k) Ej(w35 k) E;(O) +
F Xy — 01> g5 @3, 0) By, ) E{ery, ky) E0)+
+Xxyyx( —y, Wy, 3, 0) Ej(wz, k,) E}(wa’ k) E,(0). (12)
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. If the problem involves but a single light wave, the tensor xz‘;;l = Yu (—20, 0, 0, 0)
is symmetric in the indices j and k, whence xxxyy xxyxy Thus, assuming as previously
the DC electric field parallel to ¥ and the light wave propagating along z, we obtain by (12)
the following components of third-order polarization at frequency 2w:

P2w — 2x2w Ea)EwEO

xxyyx
P, i = xyxxyE;)E;)Eg'l'xyyny;,E;)Eg’ ' (13)

where, in accordance with (10), we have:

xz:fyy = 2xxxyy+xxyyx o - (14)
On comparing Eqs (4) and (13), one obtains inan approxiination linear in the DC electric
field
<X:2$y >E';, = xi:’;’ny;‘,
e )y = ey
<x321;0y >Ey nyny b ‘ (15)

In the absence of electronic dispersion, and in a satisfactory approximation, we are
justified in considering the tensor x, & as totally symmetric, now leading to:

, Ty = Sy = gy (16)

The symmetry relations (14) and (16) for the tensor elements x?j‘,‘e’, of nonlinear suscep-

“tibility are similar to those discussed recently by Bloembergen [5] and Mayer [4]. Clearly,

similar relations are valid by (15), in the linear approximation, for the susceptibility tensor
elements (5% g In the next Section, we shall prove this by a microscopic method.

3. Molecular theory for dipolar fluids

Let us consider a fluid consisting of noninteracting molecules of number density g
when we have by classical statistical mechanics:

AR f bk f (2, E0)dQ. | 17)

Above, buk is the tensor of second-order polarizability of thé molecule which transforms
from laboratory coordinates (indices i, j, k; axes x, ¥, 2) to molecular coordinates (indices
a, B, y; axes 1, 2, 3) according to the transformation formula

- (18)

2 2

. bij(I: = cizcjﬁckvbagy

;, denoting the cosine of the angle between the laboratory. i-axis and the molecular
oz-ams

For molecules presenting permanent dipoles u, the potential energy of a molecule in the

DC electric field E0 is [7]: ‘ ‘ ,
w(B%) = —pE}) = —cju E} ' - (19)
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and Bolzmann’s statistical distribution function at thermodynamical equilibrium at tempera-
ture T takes the form:

exp (% Cial? )

f exp (% c,-,E?) dQ

Integration in the expressions (17) and (20) is over all possible dipole orientations in the
elementary body angle dQ =%sin 4 dd dp dy. .

. Since we are interested in the elements xi“’xy, xf,;’x and y2  with regard to the transfor-
mation formula (18) we require the directional cosines ¢, and c,, in explicite form. Expressed
by way of Euler’s angles 9, ¢, ¢, they are:

F (2, E°) = (20)

¢, = cos & sin ¢ cos yp-+cos @ sin y,
o = cos § cos @ cos p —sin @ sin p,
C3 = —sin P cos g,
¢yy = sin & sin @,

o = sin & cos g,

v
c,3 = cos &, (21)

y3

One notes the advantage of assuming the electric dipoles as directed along the molecular
3-axis, the latter subtending the angle & with the DC electric field EY acting along the labora-
tory y-axis. In this situation, the distribution function (20) becomes simply [2]:

exp (a cos )
f(9, E) = = (22)
4n2 [ exp (a cos @) sin & dd :
0

with the dimensionless parameter of orientation of the dipole in the electric field:

4_.“3E3
a= -

(23)

Since the statistical distribution function.(22) does not depend on @ and y, we can begin
the calculation of the mean values (17) by carrying out integrations over all values of g and y,
thus considerably simplifying the final results. In this way, and applying the procedure to the
case of dipolar molecules having symmetry of the point group Gy, (e. g. Hy0, CgH;NO,),
we derive by Eqs (17)-(22): '

(X2 = L (208 + D) Ly(o) + (2B — B B3 (o) — L@}
(e, = L ((6351+b3) [L4(0) + )] + 26355 b~ BRI Ly (o)~ L@}

o)y = & (2BRL(0) + (2B + i+ BRI () L)), (24



where we have introduced a Langevin function of the n-th order:

[ cos™ & exp (a cos 9) sin & dd
6

Ln(a’) == F.3

of exp (a cos ¥) sin d9

)]

Integration per partes yields [13]:
2l —1k [ es—(—T)r—ke—a
Lia) = ni(—=1) [e (=D ]
k

L R | e —e)

whence we have in turn forn=20,1, 2, 3, ...:
1
Ly(a) = 1, L,(a) = L(a) = cotha — =’

L(a)

L) =122 [0 =1 -2 1622

P 5 eee

L(a) standing for the well-known Langevin function [2] (Fig. 1).
Eqs (24) with

2w 20 20 __ 7120 2w
bils = bzas b311 = bizs # bigss

10
L(a)

T kT
D —— ]

{ l ] l 1 |

0 2 4 [ ] 10 2
Fig. 1. Graphs of the Langevin functions I{a) and Ly(a) defined by Eq. (27)
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(27)

(28)
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reduce to:

(e = 5 2HRLy(@) + (B — bt (@) — Ly(a)]}
(Hoediy = & (BRRILL (@) + Lafa) |+ (53— 23 (@)~ L)1},

(o) = 5 (35aL(a) + (235 + B3 Ly(0)— Ly(a)} (29)

(expressions valid for molecules of point group symmetries Cj, (e. g. NH;, CHCl,, CH,F,
and so forth), Cy, (e. g. BrFy), Cg, and C,, (e. g. HCI, CO).

At small values of the reorientation parameter (23) i. e. if the DC electric field strength
is low or if the molecules are but weakly dipolar, the Langevin functions (27) can be ex-

panded:

L@ = %— 2 -
L3(a)=§—%%+4—i%—.... - (30)
Taking only terms linear in the field strength, we reduce (24) to the form:
(o Yy = Tt (b3 -+ 3015+ 33— b3t — b3 B,
(oeedy = g (Bio— bl — b + 26301+ 2035 B,
by YBy = b8 (3630 + 2532 +2b3%5 + b2, + bies) ED. @Y

60LT

One sees immediately that this approximation linear in E) implies the symmetry rela-
tion:

2tz Yy + Ay, = Ty 5 (Y
which results also by way of the macroscopic expressions (14) and"(15).
Putting : B
bits = by = b3hy = bi%, # by, (33)

in Egs (31), which is true for the point groups Cy,, C,,, Cq, and C,, in the absence of elec-
tronic dispersion, we obtain:

Clomdey = 3 (228 )es = 3 (220 0m : (34)
with

(o) = gy B+ 2B5) By, (35)
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Thus, the symmetry relations (32) and (34) derived microscopically in a linear approxi-
mation are proved to be equivalent to the phenomenologically derived relations (14)
and (16).

By insertion of (33) into (24) or (29), we obtain:

<X52c?y>E§ = <Z§:c’x>E§, {(5333 blz,fs)lq(a)+(3b§‘f3-—b§§’3)L3(a,)},

(o), = g (8b1hLs(a) + (355368 Lo(a) (36)

showing that in the case of a strong DC electric field the symmetry relatlons (32) and (34)
do not hold generally.

In the limit, when the DC field is very strong causing total alignment of the electric
dipoles, the Langevin functions (27) tend to 1 at @ — o0 and the expressmns (24) reduce
to the quite simple form:

(Z:?y>w =2 (bffs + bgg’s) s

=L = (b33l-+ b3,

3

<xyyy>oo = Eb§g3. (37)

Hence, in the case of total electric alignmént either, the macroscopic symmetry rela-
tions (32) and (34) are not fulfilled. One finds that, in order that these relations shall be
maintained, the following molecular relations have to be fulfilled:

’ w 1] o i 2

bifs+bazs = b3y bl = 3 - b3%s (38)

or, in the absence of electronic dispersion:

: 1l 20
bﬁ’s = bggs = b 11 6322 3 =0 333° (39)
The relations (38) and (39) appear to be justified in juxtaposition with the relations [14]
1

%Efss = ¥ifs = Z3p = - = 3 X33s3 (40)

which are valid in the absence of elect:romc dlspersmn for the elements of the third-order
susceptibility tensor.

Accordingly, assuming the relations (39), we obtain with regard to (36) the following
relation: -

<x3;;>E;=3<x:$y>E;,=3<x::;_>E;— Tolla @

showing that (in the absence of dispersion) the nonlinear optical susceptibilities depend
on the DC electric field in the same way as the dielectric polarization in Langevin’s [2]
and Debye’s .[7] theory of dipolar dielectrics:

P0 = gul(a). 42
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4. Discussion and conclusions

We thus see that in a strong DC electric field the macroscopic symmetry relations (32)
and (34) are fulfilled only if the molecular symmetry satisfies the relations (38) and (39).
For the case of electric saturation, the relations (38) and (39) were easily predictable, since
at total alignment of dipoles the macroscopic symmeiry of a body as a whole has in general
to coincide with the symmetry of its individual molecules. Consequently, by (37), measure-
ments of the various elements of the nonlinear optical susceptibility tensor <Zuk>E° can
be concluded to constitute a novel, direct method of determining numerically the respective
elements of the tensor bv,c of nonlinear. optical polarizability of the isolated molecule. Also,
the expressions (24)—(36) permit determinations of the tensor elements b,lk for dipolar mole-
cules of certain symmeiries and pave the way for comparisons with the results of other
methods [15]. :

Another conclusion is that the occurrence of the anomalous effects observed by Mayer
[1] in dipolar substances is attributable to the effect of molecular reorientation rather than
to that of nonlinear distortion. But the shape of the Langevin curves of Fig. 1 is such as to
render difficult the achievement of electric saturation in molecular gases without risking
the intervention of yet other mechanisms. In this ¢ontext, photoionization of molecules in the
intense laser field is presumably by no means unimportant as a factor precipitating optical
breakdown as well as dielectric breakdown in the DC eleciric field.

It seems highly probable that the achievement of electric saturation is aided by a very
effective mechanism, one known to participate e. g. in electric dichroism [16] and electric
fluorescence polarization: we have in mind the induction of very considerable electric dipoles
in excited molecular states under the influence of external or internal electric fields [17, 18].
The local electric field in a dense medium affects the molecular dipole moment giving rise
to an effective value defined in the Lorentz model by [7]:

e+2 '
5 W , (43)

*

and in the Onsager model by [19]:

Bt = ( 2€?wa ) (i'igtg) ® | )

with & the static and &,, the high-frequency dieleciric constant.
- Effective dipole values are especially strongly raised in the Lorentz model in dipolar sub-
stances with large dielectric constant. E. g. for nitrobenzene at T = 300°K one has ¢ =35
and [6] 4 ==4.24x10"18 . . u. cm, leading to a reorientation parameter (23) a = 1.2 10‘3E_‘v’;
Assurning a field E° a 1083 e. s. u., which is not strong enough for producing breakdown in
nitrobenzene of high purity, one obtains @ =1 and the graphs of Fig. 1 yield L(1.2) = 0.366
and Ly(1.2) = 0.225. Thus, in the case of nitrobenzene, a conmderable increase in second-
-harmonic infensity can be expected to take place. ’

In water ¢ = 79 and [6] y = 1.85X10-18 e. 5. u. cm; one finds that, with the Lorentz

model (43), the electric saturation effect attains the same level as in nitrobenzene. However,
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considerations of conductance impose the use of the pulse method [20] if applying a strong
electric field to water.

A considerable degree of electric saturation can easily be achieved in solutions of
macromolecules such as a rigid polypeptide (poly-p-benzyl-L-glutamate) or a flexible
polyelectrolyte (sodium polyethylane sulfonate), which present very large electric dipole
moments u = 3X10-15 e. s. u. cm [21, 22]. Here, at T = 300°K, the reorientation parameter
(23) @ = 0.1 EJ, and high saturation results even at a field of E®= 100 e.s. u., since the
graphs of Fig. 1 now yield L(10) = 0.9 and Ly(10) = 0.754.

Also, solutions of dipolar colloid particles are well worth taking into consideration.
Colloidal V,0; (vanadium pentoxide) has a moment u = 410728 e.s.u. cm leading to
a = 102 EJ, so that a field strength of as little as 100 e. s. u. will produce an effect equal
to that produced in nitrobenzene by a field of 103 e. u. s.

From the preceding calculations and examples, we draw the conclusion that intense
second-harmonic generation due to electric saturation should be easily observable in solu-
tions of dipolar macromolecules or colloid particles. '

The author wishes to thank K. Flatau, M. Sci., for his discussions when translating
this paper into English.
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