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A general equation is proposed for the dynamical electric permittivity tensor, taking
into account, besides frequency dispersion, spatial dispersion describing the linear
and non-linear optical activities of the medium. It permits one to determine the
symmetry relations and value of the optical Kerr effect, a generalised Havelock
relation, and the non-linear change in optical rotation angle for arbitrary conditions
of observation. Simple examples are adduced to give a microscopic interpretation of
‘the results derived, rendering apparent the basic mechanisms (fluctuations of density,
non-linear changes in the optical polarisability tensor and gyration tensor, molecular
reorientation, and various radial and angular correlations) leading to induced optical
non-linearities. Measurements of non-linear changes in optical rotation angle are
shown to be promising in solutions of polymers or colloids, and will permit, inter
alia, direct determinations of the anisotropy of gyration properties of molecules.
macromolecules and colloid particles.

1. Introduction
In linear optics [1, 2], the light source was a classical one, causing only linear polarisation of
matter, whereas non-linear variations were caused by a DC electric or magnetic field (Kerr
effect, Cotton-Mouton effect [3]). Thus, the light beam was confined to the role of measuring
agent (detector) not affecting the properties of the material system. Earlier ideas tending to
predict that light, if sufficiently intense, might cause non-linear optical [4], electric or mag-
netic [5] changes in matter had to remain within the realm of pure theory until the coming
of laser technique. Nowadays, experiments making apparent non-linear changes in refractive
index are performed in two ways: an intense ruby laser beam inducing the optical Kerr effect
is applied in addition to a weak measuring beam [6, 7], or a single intense circularly polarised
beam inducing a rotation of the polarisation ellipse is resorted to [8-10]. These phenomena,
together with various other new optical effects, constitute the field of non-linear optics [11].
At present, non-linear optics deals not only with dispersion of frequency [12] but moreover
with spatial dispersion [11-14]. Particular attention is being given to optically active media
[15], in which harmonic generation [15-19] and non-linear optical rotation [20-22] are studied.
It is our aim here to give a strict, quantitative discussion of non-linear variations in refractive
index caused in optically active media by strong laser light. In particular, the diagonal and
non-diagonal components of the electric permittivity tensor are shown to describe, respectively,
the optically induced birefringence and the non-linear change in rotation angle. A discussion
is given for some special cases.

*A brief summary of the contents is to be found in the Review of the International Quantum Electronics Con-
-ference held at Miami on 14-17 May 1968, published in /EEE J. Quantum Electronics, QE-4 (1968) 330.
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2. Fundamentals

Consider an electromagnetic wave with electric vector E © and magnetic vector H ¢ oscillating
at frequency w to be incident on an arbitrary medium, in which it induces electric polarisation
P¢ and magnetic polarisation P™. In the general case, one has the following equations for the
tensors of electric and magnetic permittivities:

(EO'T(‘) - 80’1) E‘rw = 4 Po-e (0.)) (1)

(/J’(r'r ¢ - 80’1) H‘r © =4 Pcrm (UJ) (2)

d,,, denoting the unit Kronecker tensor.
The polarisation vectors P¢ and P™ comprise in general dipolar, quadrupolar and higher
contributions, which can be written as follows [14]:

1
Po'gthre__s'V‘chrfe"}‘--. (3)

1
Pam:Dom_§V1Q07m+-.- (4)

D,* and D,™ being respectively components of the electric and magnetic dipole polarisation
vectors, and Q,,,°and Q,,,™ components of the electric and magnetic quadrupolar polarisation
tensors; V is the derivation operator.

The direction of propagation of the electromagnetic wave is given by its wave vector k.
Provided the intensity of the wave (the squares of the amplitudes of E© and H*) is not
excessive, one is justified in writing the following linear relations:

Dzre = Xor°° (w9k) Erw +errem (w’k) HTa) (5)

Dﬂ'm = XU'Tmm (w’ k) HTw —I— XG'Tme (w’ k) E‘Tw (6)

where x,,°*and y,,,™™ are respectively tensors of the purely electric and magnetic susceptibility
of the medium, and x,,°™ and y,,™® are tensors of its cross electro-magnetic and magneto-
electric susceptibilities.

Similar relations can also be written for the components of the quadrupolar polarisation
tensors:

QO'Te :X(TTVeg (a)’ k) Ellw +XU’TVem (w’ k) HV(‘) (7)

Qarm = Xors" (w’ k) va + Xorv™* (w: k) va (8)

Xo7»°® and y,.,”™ denoting respectively the tensors of electric (or, more pointedly, electro-
electric) quadrupolar susceptibility and magnetic quadrupolar susceptibility of the medium,
whereas x,,,°™ and x,,,™® are tensors of its electro-magnetic and its magneto-electric
susceptibility.

All susceptibility tensors occurring in equations 5-8 are dependent on frequency dispersion
(according to w) as well as on spatial dispersion (i.e. dispersion according to the wave vector
k). Assuming spatial dispersion as small, one can write the dipolar and quadrupolar electric
susceptibility tensors thus [14]:

Xa"ree (w5 k) = Xo"ree (w) + iXa'Tvee (w) kv + Xtrrvpee (w) kv kp +.o.. (9)

Xors®® (w’ k) = Xa-rvee(w) + iXo"rvpee (w) k,a +.. (10)

Above, the tensor y,,**(w) describes only frequency dispersion of the refractive index, the
tensor y,.,°*(w) frequency dispersion of natural optical activity, whereas the tensor Xorvp®®(®)
describes the optical activity which can appear in bodies with inversion symmetry.

In this paper, we shall deal with such variations in the tensors (9) and ( 10) as can be caused
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by intense laser light oscillating at a frequency wy, distinct from the frequency w of the probe
light.

In a quadratic approximation, the non-linear change in refractive index induced by strong
laser light can be written as:

1
4 Xor* (@, wrL) =5 Xo'rvpee(w, wr) <E, " Eﬂ L4 (11)

whereas the non-linear change in optical activity induced in the same conditions is:

1
4 Xors’® (wa wL) = i Xtr'rvp/\ee(w’ wL) <Ep v E). 91y (12)

The symbol < >, stands for time-averaging over a period of oscillations of the electric field E =
The non-linear variations in the phenomenological form of equations 11 and 12 are valid
for arbitrary non-dissipative media, isotropic as well as anisotropic. However, we shall
restrict the present discussion to isotropic media using classical statistical methods; this will
enable us to relate the optically induced non-linearities to the microstructure of matter.
i
3. Non-linear Refractivity
We consider a homogeneous medium of volume ¥, isotropic in the absence of externally
applied fields. The electric polarisation vector component is now:

1
Dyt = 3, (g ® w00 By, (13)

where A4, ¢ is the electric polarisability tensor of the medium at frequency w. For an isotropic
medium, this tensor can be averaged statistically in accordance with the definition:

{Agr > gor = [y, (I, E) f(I', E) dl' (14)

f(I', E“) denoting the statistical distribution function for the system at thermodynamical
equilibrium in the electric field E #=. Integration in the right-hand term of equation 14 extends
over all possible configurational variables I'. I" describes the positions and orientations of the
microsystems of the material (see section 5).

In the presence of a strong electric field, the material becomes anisotropic. As a consequence,
the electric field in vacuum E, @ is now related with the macroscopic field E ¢ existing within
the medium (conceived in the shape of a spherical sample) as follows:

3Eva-w =(€a'rw +280"r) Erw (15)

The same is true for an electric field oscillating at laser frequency wy.

In accordance with the phenomenological equation 11, the electric polarisability tensor 4., ©
of the medium acted on by the electric field of an intense laser beam undergoes the following
non-linear variation:

1
AU'TO)(I" E‘l)L) = AO'T(‘) + i CO’TVPw’a)L <E'UV0)L E’Upr>t (16)

where C,,,, ¥ is the tensor of non-linear polarisability of the medium at frequencies w
and wg.

In the quadratic approximation considered here, the perturbed statistical distribution
function at thermodynamical equilibrium and temperature 7" can be written as follows:

1
ST E%) = AT, 0) {1 o (A, o = (A, ) (B, o Eq,,,w»} an

the symbol < > standing for statistical averaging with the non-perturbed distribution f(I", 0)
in the absence of an external field.
On inserting equations 14, 16 and 17 into equation 13 and on averaging over all possible
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directions of the electric fields with regard to laboratory reference axes, we obtain:
4o D, = 3R E,.* + {(Bis o0 — B wL) 801 Svp
+ 3By 9 8,,8,, + 3By 8,,8,,} E,, “E,,“ E,, %, (18)

where
47
Rip" = g {Aaa™ (19)
is the optical refractivity in the absence of a laser beam (Lorentz-Lorenz function), and
2 1
Bisw,wL :9_1/{<Caaﬂﬂw’m[‘> +H~<A Aazwa AﬂﬂwL>} (20)

defines a non-linear change in refractivity of the isotropic kind. This latter variation is seen
to consist of a part not directly dependent on temperature, stemming from the mean non-
linear polarisability of the medium, and of a temperature-dependent part related to the
fluctuations 4 4,,¢ = A,,° — {A,,“> and A Agp“r = Apz“r — {Agz=) of its mean
linear polarisabilities. The remaining three constants in equation 18 define anisotropic
variations in refractivity of the form:

Byow o = %/Uaﬂw?(i) Capys® ™ + E%*AaﬂwAyswL> 1)
where we have, fori =1, 2, 3:
Ooupys™ =38,,0845 + 38,584, — 20,50,5 (22)
Coupys® =40,,055 — 8,504, —8,58,5 23)
Oupys™® = 48,5845, — 8,508,5 — 8,, 845 (24)

Inserting equation 18 in the fundamental equation 1 and having regard to equation 15 we
obtain the variation in electric permittivity tensor as follows:

|
e — 80’)( = {RLL 80’1 + I:_3 (Bisa),w,, - Blw’wL) 80—1 SVP
+ Bzw’mL 80’V STP + B3w,wL 80'/7 8,’,,,] <E’vva Ev,ﬂ wb>t} (er/lw + 281/\) (25)

Let the probe light propagate along the z-axis. The preceding equation now yields the diagonal
components of the permittivity tensor in directions perpendicular to propagation as follows:

€or” — 1 1 .

m :RLL + §[Bisw’ “r <Eva- vr Eva- wl‘>t _|_B1w, wL<3Evm “r va “r — Evo- wLEmr wl‘>t]
(26)

€09 — 1 1

T o LA :RLL+ Py Bisw’ “u <E’Uo' e Evo- wL>t +'Blw’ wL<3E7w ve Evy Yo — E’Uo‘ “r Eva-wl‘>t

€yy ¥ + 3

@7

since, as is immediately obvious from equations 21-24, the following symmetry relations hold
for the isotropic body:
Bla),tuL :B2w,u)L _+_Baw,wL (28)
From equations 26 and 27, with a satisfactory approximation, we obtain the following
expression for the birefringence induced at frequency w by laser light of frequency wr:
ny — n, = A By (E, % E,*r — E,“= E, “), (29)
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where we have introduced the optical birefringence constant B, = measured in experiments
and defined as:

m_3 n? + 2\2 (ng? + 2\2 oo
with n, = Je, @, n, = Je,, ¢, with n and n standing for the refractive index respectively

for the probe and laser light wavelengths.

From what has been said, one sees that birefringence can be induced only by plane polarised
light (e.g. polarised along the x- or y-axis). Unpolarised laser light propagating along the
propagation direction of the probe light is unable to induce optical birefringence.

For intense light polarised with electric oscillations along the x-axis, one gets from equations
26 and 27 a formula which, in approximation, is a generalised Havelock relation:*

ny —n B¢ % 2B v

—n _Bisw’w” — Blw,ﬂ)z,

n, €1}

In optically inactive substances 4, ;¢ = A4, “, Aug " = Ap, ", Cppys®  * = Cpapy %y
and the constants from equations 21-24 are moreover related as follows:

B, ® 0 = 2B, 0s = )B, @, (32)

Equation 25 now reduces to the earlier form published [23]:

1 .
L 80’)[ = {RLL 80'1- + B[ZBisw’ wr Sa"r 8",0 + B mL(38¢rV STP

+ 380’P 81’1' - 280’1 SVP)] <EvaL E”ﬂ wL>t} (e‘r/\w + 2817{) (33)

where the anisotropy constant is:

27 1
By ¢s 0 = m<3caﬂaﬂw’wb - Caaﬂﬂm’wL + ﬁ(&Aaﬁw AaﬂwL - Aaaw AﬂﬂwL)> (34)

4. Non-linear Optical Activity

The contribution to the electric dipolar polarisation accounting for linear spatial dispersion
(the second term of the expansion (9)) can now be written as follows:

1
D,* =3By, Dpos Euy®S, (35)

S being a unit vector in the direction of propagation of the probe light.
The third-rank tensor B, ,,“ of electric polarisability of the medium at frequency w
describing its natural optical activity can be written as:

Bo"rpw = - ieo"rv vaw (36)

G, , ¢ denoting Born’s [1] gyration tensor, and ¢,,, denoting the unit antisymmetric tensor of
rank three (the Levi-Civita pseudotensor).
Inserting equation 36 in equation 35 we have

[
Do.e = — _I;'ED'TV <va w>EuL E,,,,,w Sp (37)‘

In the absence of strong laser light, this yields the dipolar polarisation component in the
form: :

*Cited after Langevin [3] as T. H. Havelock, Proc. Roy. Soc. 77 (1906) 170; 80 (1908) 28; these publications
were unavailable to this author.
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i

‘Dtrs = —3_1;'60'11; <Gaum> E‘v'rwsv (38)

and, by equations 1 and 15, the electric permittivity tensor:

4mi

€or ¥ — 801’ = W <Gaaw> eo'up(ev-rw + 28v1) Sp (39)

For light propagating along the z-axis, we have the following non-zero components:
€py . €yz® _ 41’ s
rEn A B A )

the constant R, ¢ describing optical rotation in the absence of the field E «=.
The angle of optical rotation per unit length of the medium is

— 3 (= n) (1)

where n— and n* are the indices of refraction for left and right circularly polarised light with
amplitudes

Ez =(E, TiE)Z (41a)
For the case of diamagnetic isotropic bodies we have approximately [1, 2]
iey,?
ni =n :F '—2‘;:—‘ (42)

whence with regard to equations 40 and 41 we get the angle of optical rotation at zero laser
intensity:

472 (n2 +2 w(n? + 2)
8, =—

TV \ 3 ) N nA Ro® “3)

Hence for special cases we come to the well-known results of Born [1] and other [2, 24-26],
who took into account also molecular redistribution.

In the presence of strong laser light, by equation 12 the gyration tensor is subject to the
following variation:

1
G, «I',E) =G,,©+=D

2 o"rypw’wl‘ KE,, “r Eval‘>t (44)

Above, D,,,,, %+ = is a tensor of non-linear gyration for frequencies w and wp,, and describes
the direct influence of the field E “= on the optical activity of the medium.
On insertion of the expansion (44) into equation 37 and with regard to the distribution
function (17), we derive the following result for the case of an isotropic body:
4n Dtrg = — l€g,, {3R0w Sup + [(Risw’ “r — Ry a),,) Svp 8/\,u
+ 3R,z 81}7\ ap,u + 3Ry ¢ x Svlu SpA] <E1J/\ wr Ev,uwl'>t} Ev‘ru Sp (45)
where the constant R, “ defining the natural optical rotation is given by equation 40, whereas
the constant
waL_Z_W D ©, g I_AG o AA4,, % 4
is ' Y7 < aafp ' >_*‘kT< aa BA v (6)

defines the isotropic variation in optical rotation. The other constants appearing in equation 45
are of the form:

T ) 1
Riw’wl‘ :Waaﬁyf}(l) <Daﬂ75w’wl‘ +k-7"GocﬂwA'waL> (47)
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with i = 1, 2, 3, and define optical rotation variations of an anisotropic nature. The tensors
0,5y are given by equations 22-24.

On insertion of the polarisation (45) together with equation 15 into equation 1, one comes
to the following variation of the non-diagonal electric permittivity tensor components:

- s 1
€0y @ — 8"){ = — €z, S, {Ro® 8,,,, + [3 (Rig®» @ — Ry ©»vz) 8Vp s

—r&wwsﬁam+wam&ﬂ%J<ameww»}@mw+2&p 48)

Hence, for the probe light propagating in the z-direction, we get the following non-zero
non-diagonal components:
€y €ya” [

€rn® +2 € +2 3
+ le’wl‘ <3Evz et Evz Y — Evg-wL quwb>t} (49)

{3R0m + Risw’ e <E’I)a- “r E’Uo' wL>t

because in this case too a symmetry relation similar to that of equation 28 holds:
le,wL :sz,w;, __[_st,w,, (50)

With regard to the definition (41) as well as the relation (42), we find the non-linear variation
of the angle of optical rotation:

0 =0, + 0,7 <E,“» E,“»)¢ + 0,°"s (3E, % E,» — E,“ E, ), (5D

where 6, is defined by equation 43, whereas the quantities defining the isotropic and anisotropic
changes in optical rotation are respectively of the form:

nt 4 2\ (ng? + 2\2

e =T (P2) (B2 g -
1t + 2\ [ng2 + 2\

ezm=§( o )(LS )RIML (53)

In particular assuming the laser beam to propagate in the same direction as the probe light
(along the z-axis), we have by equation 51 for the change in rotation angle:

0 — 0, = (8,5s — 0,07) (E,“x E,“r + E, %= E, %, (54)

In the case of laser light polarised with electric vector E “= oscillating parallel to the z-axis,
we obtain by equation 51 a variation

0 — 0, = (85%s 4 20,27%) (E, o= E, ), (55)

In the case of laser light circularly polarised with amplitudes defined as equation 4la, we
obtain, with regard to equation 54:

0 — = (0 = gm0 (1E-00 p |- (54a)

One thus notes that a variation of the angle of rotation can result by using laser light
irrespective of whether it is unpolarised, plane polarised, or circularly polarised.

5. Application to Special Cases

The constants from equations 20, 21, 46 and 47 derived above are valid for arbitrary isotropic
bodies. We shall now apply them to the case when the volume V contains N identical micro-
systems (molecules, macromolecules or colloid particles). Thus:
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Bz-s‘"’““ZW{\;%W“’“’“”>>+;¢—T\AZam“"”’ﬁglam“’““’/ ©6)

N

¢ N 1 N
m .
B,o.o. = ——45V0aﬂy8(z){< Z caﬂysw,am(ﬁ) > + H’<Z Za“ﬂw(p)ayam(q) >} (57)
=1

=1

~
|
]
{
-
<

- . N 1 N N
R, @0 = Waaﬂ”/a(” {< Z duﬂysm’ vz P / + ﬁ\/\ Z; Zl gaﬂw(p) Ays " (0 >}(59)
p=1 r=14q=
Above, a, 4 “" is the polarisability tensor of the p-th microsystem immersed in the medium,
whereas the tensor ¢, 4, > ©= (") describes the non-linear variation of its polarisability due
to the strong electric field of the laser beam. Likewise, the gyration tensor g, ,“(” and that
of non-linear gyration d, 4, 5> “* (" describe the relevant properties of the p-th microsystem
within the medium.

5.1. Isotropic Constants

We begin with the isotropic constants (56) and (58) which, on neglecting terms in non-linear
polarisabilities as well as the influence of molecular redistribution on the linear polarisabilities,
reduce to:

2
By 0r = mata = {(ANY (60)
R.. 0,00 = ﬁ W g 0L AN 2 61

Here, ¢® = a,, “/3 and a®: = a,, “*/3 are mean polarisabilities of the microsystem, respec-
tively at frequency w and wg, to be had approximatively from the well-known Lorentz-Lorenz
formula:
n—1 d4rm
w2 3P4
with p = N/V the number density of microsystems in the medium. In the same approximation,
the molecular rotatory parameter g ® = g, “/3 (the mean value of the gyration tensor) occurs

in Born’s formula [1, 2]:
47> (n® 4 2 v
b0 — (——3n ) pe 63)

(62)

obviously resulting from equation 43.
Equations 60 and 61 involve the mean square fluctuation of the number of microsystems, a
quantity given in statistical mechanics [27] as:

@npy =N+ [[ Lo v0 - g0w) g0} dry e, (64

where g)(r,) is the ordinary correlation function of molecules at position r,, whereas
g®d(r,, 1,) is the binary correlation function for microsystems at positions r,, and r,.

For the purpose of our calculations, it is preferable to use, instead of the statistical form
(equation 64), the following thermodynamical form originally derived by Smoluchowski in
his theory of fluctuations [28]:
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{ANY2) = V p? kT Br (65

with By —— the isothermal compressibility coefficient of the medium.
Returning now to equations 62, 63 and 65, we can re-write the constants from equations 60
and 61 in a form more convenient for numerical calculations:

o 9B (1= 1Y (et — 1

Big > o = 8 <n2 + 2) (nzz, + 2) (66)
o w Bz nA n? -1 Y

Ris™ ™ =g <n2 + 2) (an + 2) o ©7)

Keeping in mind that, by equations 26 and 27, the isotropic variation in electric permittivity
is defined as dets = ¢,is (E_“r E, ), with:

. n? + 2\? [ni? 4 2)\2
ot ( 3 ) ( 3 ) Bugtrt “®
we obtain with regard to equation 66 the following result:
Br n® + 2 ni? 42
is — —— 2 _. 2 _.
e =g |7 1 3 nr2—1 3 (69)

accounting for the electrostrictive contribution to non-linear variations of the refractive
index [29, 30].

In a similar manner, inserting equation 67 into equation 52 one obtains the following
expression for the isotropic change in optical rotation:

ng? + 2
0, =§-;00"'(111,2 - 1)( L 3 )

(70)

5.2. Anisotropic Constants

We have seen that the optical birefringence (29) induced in the medium by intense laser light
is, in accordance with equation 30, fully defined by the constant B, “: “= alone. From equations
22 and 57 and by classical statistical mechanics [27], this constant can be put in the form:

T
B 9oL = 4'_—§{3C¢ﬁaﬂm’w“ + 3Caﬂﬂaw""b — 2Caaﬂﬂ°""”L

1
+ k—T<3aaﬂ"'aaﬂ“’L +3a,5% a5, — 2am"’aﬂﬂ“’b)

2
b iz [ [oupra® @y ayomnio g, Ty ar, ar} a
where g@)(I,, I',) is the binary correlation function of microsystems p and g at configurations
I', and I, (the configurational coordinates contain the positional variables r and orientational
variables Q2 of the microsystems).

The first term of equation 71 defines birefringence due to non-linear polarisability of the
microsystems. The second term depends directly on temperature and results from reorientation
of anisotropic microsystems in the electric field of the laser light [4]. In addition to these two,
which describe the optical birefringence in gaseous or highly dilute media, equation 71 contains
a third term which is of significance in condensed media, where it accounts for various mole-
cular correlations of the radial as well as of the angular kinds. A discussion of the roles of these
various correlations in optically inactive substances is to be found elsewhere [23, 30-33]. Here,
we adduce only the result which is obtained for axially symmetrical microsystems when the
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term in non-linear electronic polarisability is omitted (in certain cases, such terms cannot be
neglected, as shown in references 23 and 34-36):

47
B, o = AE]}E]'”(“% © —ay®) (ass s — an ) (1 + Ja) (M)
Above [31]:
Ja = Eflej(3 cos? 0, — 1) g, ') dl, dl’, (73)

is a parameter of correlations of the angular kind between microsystems whose symmetry
axes subtend an angle 6,,,.

Moreover, from equations 51 and 53, one notes that the anisotropic change in angle of
rotation is fully described by a single constant R, @ “z. Similarly to equation 71, we may write
it out, obtaining:

Rl @, 0 — 74%) {3daﬂ<xﬂ W, vy, + 3daﬂﬂa ©, 0, __ 2daaﬂﬂ w0, W
1 w [ w [ w w
- ﬁ(g'g“ﬂ ap™ + 3g0€ﬂ Qpo " 2804 App =)

2
+ 7 e €20 ayy 0 20T, T dr ) (74)

The symmetry properties of the gyration tensor g, ¢ are such as to nullify all its components
in the case of molecules possessing a centre of symmetry and a plane of symmetry (e.g. mole-
cules of the point groups Oy, Ta, Th, Dgny Dany Cou, Cyns €tC).

For groups T and O we have g; = gy, = g33 = g and @y = @3, = @33 = a, which can be
summarised by writing:

gaﬂw = gwsaﬂ)aaﬂa)L =a" aaﬂ
dzxﬂy8w’ L = dlw’ vz Socﬂ 878 + d2w’wL(8a'y 8/5’6 + 80:88ﬂ'y) + d3m’wL(8a'y 8/98 - 8058 8,6'7)

In the case here under consideration, linear rotation is given by equation 63 whereas the non-
linear change in rotation angle reduces to the simple form:

47
Ryoron =T pdyoson (9)

showing it to be due to non-linear gyration alone, since there is no orientation of molecules
with isotropic polarisability in the absence of molecular redistribution [23, 31].

In the case of strongly anisotropic molecules and not excessively high temperatures one is
justified in omitting in equation 74 the term in non-linear gyration, which in general is
numerically small as compared with the temperature-dependent term resulting from molecular
reorientation, e.g. for the point group D, the diagonal tensor components g, g and @,z are
non-zero, so that:

2mp
R 9o = m{(gu“’ — 822") (@11 % — @329%) (€229 — 833 9) (G20 %% — a33 %)

+ (8a3® — gu®) (@33 = — ay **)

3
-+ % Z Q56 @ Ay ¥E Ij@ cos? 8,60 — 1)y g (I, , I') dl, dl’q} (76)

s, t=1
0,,¢" denoting the angle between the principal axis s of molecule p and the axis ¢ of molecule g.
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In particular, for the point groups C;, Ds, C,, D,, Cq, D¢ we have g1 = g45 7 g4 and
ay = dyy F agg, and equation 76 reduces to:

_ 4mp
T 45kT

If, for simplicity, one neglects molecular angular correlations in the temperature-dependent
term of equation 74, one has explicitly for the point group C; (e.g. secondary butyl alcohol):

Ry“» e (€33 — gn®) (ags ™ — an ) (1 +Ja) (7

27p
Ry ¢ = m{(gu“' = 822“) (A" — A33) + (822“ — 833 “) (@22 — @33 %)

+ (g3 — gu®) (@33 — an =) + 6(g12” G s + o3 Az " + g0 ¥ Ay w")} (78)

This expression is equally applicable to the point group C, (e.g. H,0,) where, however, one
has to write g,3 = g4y = 0.

Considering only optical reorientation of microsystems in the two effects of optical
birefringence and non-linear optical activity, one obtains with regard to equations 72 and 77
the following relation:

Ry¢» o _ 833” — gu” (19)

B o> ass® — anp®
permitting one to determine the ratio of the anisotropy of the gyration tensor and the
anisotropy of the optical polarisability tensor. Denoting by r the linear dimensions of a micro-
system, the ratio (79) is found to be of order r/A. For molecules, this amounts to 10~ at
A =~ 5000 A, but can be 100 or 1000 times more for macromolecules or colloid particles.

6. Discussion and Final Remarks

Both optically induced birefringence and non-linear optical activity have been shown to be
accessible to a description within the framework of a uniform statistical theory which, in this
general form, does not require postulation of any special model assumptions regarding the
structure of microsystems or their mutual correlations. The theory can be written completely
to give the explicit dependence on frequency in relation to electronic dispersion [11-14, 37, 38],
molecular relaxation dispersion [31, 39, 40], as well as spatial dispersion [11, 12] comprising
electric and magnetic multipoles of higher orders [13, 14, 41]. Contributions to refractivity,
not considered here, from the magnetic permittivity tensor (2) can be calculated as done
elsewhere for the case of static magnetic permittivity [42]. A quantum-mechanical formulation
of the preceding theory can be given [13, 38]; it can also be extended by methods of quantum
field theory [22].

Experiments performed hitherto on different liquids [6-10] have confirmed the theoretical
results, taking into consideration various molecular correlations [23, 30-33]. Lately, papers
aimed at checking Havelock’s relation (31) have appeared ; certain of these measurements [43]
point to a decisive role of molecular reorientation, when in accordance with equation 31 the
result has to be —2, whereas other measurements [44] appear to favour non-linear optical
polarisability, when Havelock’s relation yields +3. The decision seems to hinge on considera-
tions of the role of electrostriction (appearing in the constant B;,) as well as of that of the
electrocaloric effect [45]. Equation 70, too, points to a role of electrostriction in the isotropic
variation of the rotation angle. Thus, be it only for this reason, the mechanism leading to
variations in rotation angle is somewhat different from that of optical birefringence which,
with regard to equation 29, does not depend on electrostriction. On the other hand, electro-
striction intervenes in Havelock’s relation (31) and in measurements of absolute variations
in refractivity (“‘retard absolu”) [43-46].

The decision as to which of the three mechanisms: electrostriction, non-linear electronic
polarisability, or molecular reorientation, plays the chief part in any given case may be
expected to come from measurements of optical Kerr effect and non-linear optical activity as
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functions of temperature. Helpful information might be gleaned from a study of these effects
in solutions, as functions of concentration, since variations related to non-linear polarisability
have to be additive whereas variations due to optical reorientation exhibit considerable
deviations from additivity as a result of various molecular correlations [23, 31]. One has yet
another way of studying these non-linear effects by determining their frequency dependence,
which is different for each of the mechanisms under consideration, especially near regions of
non-linear absorption. Another possibility of direct assessments of the effect of non-linear
polarisability suggests itself with regard to a recent paper by Brewer [47], namely by recurring
to strong light pulses of a duration of 1012 sec for causing induced non-linearities. Reorienta-
tion cannot take place in so short a time, at least in a wide variety of molecular liquids.
Obviously, in solutions of polymers or colloid particles, where relaxation times amount to
10-¢ to 10-8 sec, such separation between non-linear polarisability and the reorientation effect
may be feasible by use of the now generally applied lasers yielding pulses of nanosecond
duration.

Regarding the possibilities of making observations of non-linear changes in optical activity,
equation 70 together with equations 30, 53, and 79 leads to the following relative variations
of the isotropic and anisotropic components, respectively:

0, ni? 4 2

e B na2 = 1) (LT) (80)
f,anis _ ﬂ ( 3 )2 <g33“‘ — &n “) B, e @1)
90 @ 27Tp I’lz + 2 3g e a33 © — au @

Since in most liquids [48] Bz is of the order of 10~° dyne/cm?, the relative isotropic variation
in rotation angle (80) is of an order of 10~'? times the laser light intensity. The numerical
evaluation of the anisotropic variation (81) is rendered somewhat more difficult because of a
lack of relevant data. In molecular liquids [48] p ~ 6 X 10®/cm?, a33 — a3 ~ 5 X 10724 cm?,
[71 B, =~ 1077 cgs. For d-secondary butylalcohol, the mean molecular rotatory parameter

= 6 X 1072° cm3 at A = 5893 A [24]. Hence the ratio (81) is also of the order of > 10722,
Clearly, observations of such variations will require the focused beam of a giant ruby laser
with electric field strength of order 10° to 10% e.s.u. Much larger effects (10% to 10® times
larger) can be expected in solutions of macromolecules and colloid particles [49, 50], where
a non-focused ruby laser beam should prove sufficient.
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