BULLETIN DE LA SOCIETE DES AMIS
DES SCIENCES ET DES LETTRES DE POZNAN

Série B — Livraison XXI — 1968/69

Nadbitka

MAJORANA EFFECT IN THE PRESENCE OF AN INTENSE LASER BEAM

by

S. KIELICH

(Présenté a la séance du 19 décembre 1968)

Summary. The classical theory of Majorana’s effect is extended to the case when a colloidal
system is immersed in a strong magnetic field and, beside the measuring light wave, laser light of high
intensity is incident on the system. It is shown that, with the intense electric fields of laser beams and
the strong pulsed magnetic fields now available in laboratories, measurements of magnetic or optical
or magneto-optical saturation have become feasible. In particular, the author suggests that certain
new, magneto-optical cross-effects be measured in colloidal systems or polymers in skilfully contrived
experiments, since the laser beam, polarized or not, can be applied perpendicularly to the magnetic
field lines, or parallel as in the Faraday effect. A study of these effects can be predicted to yield
abundant data on the linear and nonlinear electromagnetic properties of colloid particles, as well as
on their anisotropy and shape.

1. INTRODUCTION

The optical birefringence induced in gases and liquids by a strong DC magnetic field,
and generally referred to as the Cotton-Mouton effect, is relatively weak and not easily
measurable [1-3]. On the other hand, the magneto-optical birefringence of colloidal
systems Majorana’s effect is in general 10° times larger than in liquids
[2], and thus represents a quite considerable effect. Although 65 years have elapsed since
Majorana’s discovery, the magneto-optics of colloids has hardly been given the atten-
tion it deserves. Neither has it been sufficiently widely recurred to for obtaining informa-
tion on the magnetic properties of colloidal particles, apart from some papers [4, 5].
Recently, advances have been achieved in the magneto-optics of polymers [6 - 8], dia-
magnetic gases [9], as well as dilute [10] and concentrated solutions of liquids [11, 12].

Laser techniques now available for producing very intense electric fields (with E of
order 10° V/cm in a non-focussed beam, or 10° V/cm in a focussed beam) in conjunction
with existing methods of producing strong pulsed magnetic fields with H of order 105 Oe
suggest new possibilities in the domain of magneto-optical investigations of colloidal
systems. Thus, an intense laser beam can induce measurable variations in magneto-optical
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rotation [13] as well as in magneto-optical birefringence. It is found that these variations
can be particularly large in solutions of macromolecules and colloidal systems.

In the present paper, the Majorana effect will be discussed for the case when a col-
loidal system is acted on by a strong magnetic field and simultaneously by the electric
field of an intense laser beam. Especial stress will be laid on magneto-optical cross-effects
and on the possibility of their being made apparent in several new, experimental variants.

We shall show e. g. that magneto-optical birefringence can arise when the probe and
intense laser beams simultaneously propagate along the magnetic field lines, by analogy
to Faraday’s effect [1, 2, 14]. Obviously, Majorana’s normal effect does not appear in
these conditions, since it requires the probe beam to propagate perpendicularly to the
magnetic field [2].

With regard to the fact that colloid particles are strongly anisotropic both geometri-
cally and optically [15], the basic mechanism of the above-mentioned effects will ob-
viously consist in the orientation (alignment) of particles in the DC magnetic field [2]
or in the electric field of the laser beam [16]. In the case when the two fields are very strong,
we shall consider an effect of magneto-optical saturation by analogy to magnetic satura-
tion [4] and electric saturation [17]. We shall moreover take into consideration magneto-
-optical deformation of the particles — — — an effect hitherto studied only with regard to
molecules [1, 9, 11, 14]. However, for the sake of simplicity, we shall abstain here from
considering mutual interactions of the particles and their interaction with the surrounding
medium.

It may well be worth reminding that orientation of particles in strong optical fields is
very considerable, and that this is the reason of nonlinear light scattering [16], optically
induced birefringence, as well as self-focussing of laser beams [18]. Indeed, it would be
most interesting to proceed to a study of self-focussing and self-trapping of laser beams
in colloidal systems placed in a strong DC magnetic field, when conditions of observation
can be chosen so that the nonlinear changes in refractive index will increase or decrease
according to the direction in which the magnetic field is applied. But we shall not discuss
these effects here, it being only our wish to indicate their feasibility.

2. MAJORANA EFFECT IN A STRONG DC MAGNETIC FIELD

Consider a medium of scalar refractive index n, containing in suspension ellipsoidal
particles having anisotropic optical properties given by the principal values n;, n,, ns
of their refractive index. In the absence of solvation and external fields such a medium
is optically isotropic, but under the influence of a strong magnetic field H it becomes
optically anisotropic with electric permittivity tensor e;, when the frequency of the electric
field E of the measuring light beam is w. In the case of a dilute solution, when the number
density p of particles is not excessive, the electric permittivity tensor is given by the funda-
mental formula [14]

«
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Assuming for simplicity that the particles are linearly polarizable, one can write for
the induced electric dipole moment component

M7 =Ag E? @

with 45 — the polarizability tensor at frequency w. Greek indices ¢ and 7 denote tensor
components, and repeated indices in (2) imply, by the Einstein convention, a summation
over the three Cartesian components x, y, z of the laboratory reference frame; J,, is the
unit Kronecker tensor.

In the presence of a DC magnetic field the particles tend to align themselves, but this
is opposed by the Brownian motion in the solution. By classical Maxwell-Boltzmann sta-
tistics, at thermodynamical equilibrium of the system when the temperature is 7, the
probability for the particle to have its axis in the elementary solid angle d is determined
by the distribution function:

@1y =A@, 1)
’ fexp{-BUQ, H)} dQ’

3

where the integrations are over all particle directions in dQ; f=1/kT.
The potential energy U(22, H) possessed by a diamagnetic particle of the colloid in
the magnetic field is, to within the second power of H:

U(QaH)=_%ALnrH¢rH19 (4)

where A7, is the o7 —component of the diamagnetic polarizability tensor of the particle.

The principal values of A2, are given by [3, 15]

o VE— no)nj
" odn[nd+(—nd) L]’

where the Lis (L;+L,+L;=1) are shape parameters of the particle of volume v. For
magnetic principal polarizabilities, one need only replace the electrical parameters in (5)
by the corresponding magnetic ones.
We shall now consider the simple and particularly interesting case of particles posses-
sing an axis of symmetry, e. g. along the principal 3-axis defined by a unit vector k. For
such particles, we obtain

&)

A:')1:=A(f éat+(A3 —Al) ka k‘r »
and by (2) we obtain from (1)
8:;—8;;=47[p (Ag)_ ;D)j (Za' Z—Xg xt) ka kr (Q$ H) aQ (6)

for the difference in refractive indices for oscillations along the z-axis and x-axis of the
incident light wave propagating in the direction of the y-axis.
Similarly, the energy (3) can be rewritten as

U(Q’H)=_%{AT601+(A';—AT)kakr}Ha'Ht‘ (7)

In the case of a not very high magnetic field, we can expand the right hand side of”
(3) in a power series in the temperature parameter 8, obtaining by (7) from eq. (6) up to-
the third-order approximation:
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& —&ex=1r PP(AS—AD) (45— A7) {1+~ (45— A H* -
15 21
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The preceding expression is applicable to the case when (A7 —A4") H2<2 i.e. for col-
loidal systems with particles of a size of 100 A acted on by a magnetic field of considerably
less than 10° Qe. The first term of (8) describes the well-known Langevin formula [1].

As the optical polarizabilities of Eq. (5) are in general, mathematically, complex quan-
tities, we can resolve the birefringence (8) in the well-known manner into a real part descri-
bing Majorana’s effect and an imaginary part describing magneto-optical dichroism [2].

3. MAGNETO-OPTICAL CROSS-EFFECTS

We shall now consider the case when the medium immersed in the DC magnetic field
is moreover acted on by a laser electric field E“X oscillating at frequency ;. This situa-
tion gives rise to novel, magneto-optical cross-effects.

The time-averaged potential energy over many cycles of the optical frequency is,
in a quadratic approximation [16]:

UQ,E,)=—347r EZ*E; “%, ®
or, for axially-symmetric particles:
U(Q » EL): - 711? {A?L 5at+(A?L—A?L) ka' kr} E;)LE:“JL‘ (IO)

By the expressions (7) and (10), the distribution function is of the form

exp {(VuHo Ho+ yo, 1) ko K.}

Q,H,E)= ,
I 2 § exp {(Vm Hy H oA Yoo Lo ko o} dQ

(11)

where
Ym=3B(A5—A7) and y, =1B(A3*—AY) (12)

are parameters of orientation of the particle in the magnetic and laser fields, respecti-
vely, and I, =EP*E-“*/2 is the intensity tensor of the laser light wave.

Inserting (11) in Eq. (6) we obtain for the birefringence due only to the magneto-opti-
cal cross-effects (see Appendix):

82_8?x=3cem(zazt"xa xr) (3Ha-HvIvr+3HtHv Iva_

—2HvHvI,,,—2H,,H,IW), (13)
where we have used the notation:
4TCp w w m m . o
Con=g 0 (AT~ A3) (A5~ AT) (A3~ A7), (14)
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From (13), one obtains various magneto-optical cross-effects. For the present discus-
sion, we select only the more important ones.
In the case when the direction of propagation of the laser beam is the same or op-
posite to that of the probe light wave (y-axis), Eq. (13) yields
&, _8?x= 6Cem{3 (H? Izz "'Hyzc Ixx) _HZ(Izz '_Ixx) "(HZ —Hch) (Ixx+Izz)} . (15)

zZZ

For a non-polarized laser beam I, =1,,=1,/2, and (15) reduces to

8ee—&5e=3Con(H; —HD) I, (16)

whereas for a polarized beam with oscillations along the z-axis
80— 5e=6Con(H; —H}) I . 17)

In the case when the magnetic field is applied parallel to the propagation of the beams,
Eq. (15) yields for the birefringence

E?z_e?xz _6Ceme(Izz_Ixx)9 (18)

which vanishes if the laser beam is unpolarized.

Let us now assume the laser beam to propagate in the direction of the x-axis perpen-
dicularly to propagation of the probe light wave; computation from (13) leads to the
expressions:

62— %, =6Con H21,,, (19)
&0~ =6C,, HX(I,—1,), (20)

2Z

for magnetic field applied parallel or perpendicularly to the propagation direction of the
laser beam, respectively.

The preceding considerations permit to state that various technically feasible experi-
ments still await performing. These are expected to make apparent the effects on a col-
loidal system of the concomitant action of a DC magnetic field and electric field of a
laser beam, with the latter propagating perpendicularly to H (as in Majorana’s effect)
or parallel to H (as in Faraday’s effect).

4. MAGNETO-OPTICAL SATURATION

When immersed in a very strong magnetic field or in the electric field of a laser beam,
colloid particles tend to total alignment, leading in well-defined conditions to magneto-
-optical saturation. In the case now under consideration, we have to ask whether we are
still justified in expanding the Boltzmann factor of the distribution function (11) in a
series in powers of f, as done previously. For colloid particles of dimensions of order
100 A, the anisotropy of optical polarizability is of order 1078 whereas the anisotropy
of magnetic polarizability is about 10724, whence the orientational parameters (12) ate
of the orders y,,~1071% and y,, ~107% at room temperature. As a consequence, expansion
of the function (11) in a power series is justifiable only as long as the magnetic field strength
is maintained below 10° Oe and the laser field below 10° esu. One sees that with the now
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generally available strong magnetic and laser fields, calculations of the birefringence
(6) have to be performed with the full distribution function in the form (11).

However, so as to be able to perform the calculations throughout, let us assume as
simplification that the DC magnetic field is imposed along the z-axis and that the laser
electric field oscillates also parallel to the z-axis. We now have:

X.k,=sindcos ¢, z,k,=cos$,

where 9 is the angle between the symmetry axis of the particle and the z-axis of the labora-
tory reference system. With regard to Eqs (6) and (11), we can now write:

bgr—Ery=4np (45— A D (), 21

where we have used the function due to O’Konski et al [17]:
D(y)=4% [ (3cos’ 3—1)£(9, y)2nsin 49 (22)
1]

with

2
£8 )= exp(ycos” 3) , 23)

f exp(ycos?®9)2nsin 9 d9
0

where, in our case,
V= YmH + Yo Ls 24
For not too strong fields, one can expand (23) in a power series, as a result of which the
function (22) takes the form
P(y)=23 c¥" (25)
n=0

wherein ¢; =0, and for n>1 we have [18]:

n u Cn—k
c,= - —_.
" nl@n+1)@n+3) Sik!(2k+1)

(26)

For the case of weak fields (y<1), one can represent (25) by the following approxima-

tion:
2 4 , 8 5, 16 ,

PH)=—P+—Y -y ——— 27

W=13"" 3157 “ams? “atiss! T @)

For the case of very strong fields and positive anisotropy one has to recur to the func-

tion (22) in the form calculated, tabulated numerically and plotted by O’Konski et al
[171:

3 e’ 1 1
2O=31 % ("% (28)

Jy | et
0
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The limiting form of (28) for very strong fields is [17]:

3
2(y)=1 =1’ (29
and for y-—c0 one has &—1.

If one puts y=y,H*=10"1°3H?2 in the function (28), magnetic saturation can appear
at a magnetic field strength of 3-10% Oe, which is accessible in laboratories [12]. For
y=y4,,I=1075 I, optical saturation can occur already at electric field strengths of 103 esu
available in non-focussed laser beams. With y defined by Eq. (24), one has the case of
magneto-optical saturation caused by simultaneous action on the colloid of a strong
magnetic field and an intense laser field.

Calculations of the function (22) can be extended to cases when the particles possess
a magnetic moment, or when they do not present axial symmetry, as done for the case

of saturation of electric birefringence in solutions of macromolecules [17, 19].

5. GENERAL THEORY OF MAJORANA EFFECT

In the general case, similarly as for molecules [1, 2], the polarizability tensor of the
particles 4% undergoes the following variation when they are acted on by the DC ma-
gnetic field H:

1
Af,’,(H)=Af,+B?:"vH‘.+3 ConmpH,H,+.... 30)

Above, the third-rank pseudotensor BY” characterizes the linear change in electric polari-

oty

zability tensor due to H, whereas the fourth-rank tensor Cg,, defines the nonlinear change
of A, caused by the square of the strong magnetic field.
If the particles have a magnetic dipole moment M, the potential energy (4) has to be

replaced by the following expansion [11]:
U(Q,H)=—M,H,——;—AZ,",H¢,H,—..., 3

and we obtain from (1) by (2) with (30) and (3) with (31) the general expression
8:')1_ n§661= {3RLL 5at+F0 €ty Hv + QH 250'1:+ CM(3H0'H1—H250'1)} ’ (32)
where
4
RLL = —’z“eAe (33)
is the well-known Lorentz-Lorenz function, with A,=(47,+ 45+ A%)/3 denoting the
mean polarizability of the particle. Mathematically, (Eq. 32) recalls a formula derived
by this author [14] for molecular liquids.
The term of (32) linear in H determines the well-known Faraday effect with the cons-
tant

2n wm ©
F0= ? p( aﬁy+ﬂAaﬂM7)8aﬂya (34)
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where ¢,, is the Levi-Civitd extensor with components equal to 1 or — 1 according to
whether afy is an even or odd permutation of xyz, and zero if any two indices are the
same.
The constant in Eq. (32):
2np

Q="5-Cay (35)

describes isotropic changes in the tensor &2, due to the square of H, whereas

np

Coy =
M= 45

(Camns+2BBogs My+ BAS; AT+ B2 A% My, M) Yapys (36)

accounts for the optical anisotropy induced in the medium by a DC magnetic field, with
the notation
xaﬂ'yé = 35!1}1 5ﬂ5 + 351‘5 5ﬂ? _ 250,/9 5,),5 .

When light propagates within the medium parallel to the magnetic field lines along
the y-axis, Eq. (32) yields

w — w F
Exz gzx=_qH (37)

nL_nR=
2n n ’

for the difference in refractive indices n, and ny for left and right circularly polarized
light, respectively.

Assuming the incident light to propagate along the y-axis perpendicularly to the xz-pla-
ne containing the DC magnetic field vector, Eq. (32) yields

® o
- €2 8.x::: 3CM
=T, 2n

for the difference between the refractive indices in the directions of z and x.

The general expressions (34) and (36) reduce easily to the form obtained by Born
[1, 11} for the Faraday and Cotton-Mouton constants of atomic and molecular gases.
The first two terms of (36) are related with the change in polarizability of the particles
due to direct action of the magnetic field; in the case of strongly anisotropic particles,
they can be neglected with regard to the other two terms, which result by orientation
of the particles in the magnetic field. If moreover the tensors A4;; and Ay, are referred
to principal axes, then by (36) we get for diamagnetic linearly polarizable particles:

n, ——(H-H}) (38)

TP (A% A (AT — )+ (A3 — AZ) (A~ AZ) + (A3 — AD (A~ D} (39)

= 45kT

If the particles possess a magnetic moment, Eq. (36) yields the paramagnetic part of
the Cotton-Mouton constant as follows:
Clim g (A= A3) (M= M+ (45— 43) (M3~ M+ (45 - 4D (MG - MD} . (40)
If in particular one assumes the particles as spherical (L, =L, =1L;=1/3) and optically
isotropic, all tensors become isotropic [11]:
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A=A, Ap=A"04, (41)
wm 1 m om
apys = C1"0ag 05+ 5 (C"—=CT™) (0ay Op5+ 045 5,) .

C{™ and C7™ are the nonlinear changes in polarizability of the particles in the directions
parallel and, respectively, perpendicular to the vector H.

Obviously, with regard to Eq. (41), the contributions (39) and (40) arising by orienta-
tion of particles vanish, and the only source of birefringence in the case now under consi-
deration resides in the nonlinear distortional effect which, with regard to Egs (36) and
(41), is given by the simple formula:

2Tcp wm wom
CM=T(C|[ —CY ) (42)

similar to the one valid for a diamagnetic gas consisting of spherical molecules [9].

In a similar manner, a discussion of the general formulas (34) and (36) can be carried
out for particles of yet other symmetries. In particular, when considering rotational el-
lipsoid symmetry, one comes to the results of refs [2] and [3].

The theory thus generally formulated can be extended to comprise the presence of a
laser field, but the final results are of a rather complicated form, and we refrain from
adducing them here.

6. CONCLUDING REMARKS

High magnetic field techniques now generally available permit to go beyond the qua-
dratic Majorana effect and to detect and measure variations depending on higher powers
of the magnetic field as given by Eq. (8). In very strong magnetic fields when y=y, H?
in the O’Konski function (28), one can investigate saturation of magnetic birefringence,
easily achievable in appropriate solutions of macromolecules or systems of colloidal
particles. Electro-magnetic saturation can easily be achieved in systems containing large
particles. E. g., for particles with a volume of order 107!2 cm® the magnetic anisotropy
is of order 1071° [4], so that magnetic saturation results already at a magnetic field of
the order of 3-103 Qe.

It is ‘of particular interest to consider the case of Majorana’s effect in the presence
of intense laser light, rendering observable various magneto-optical cross-effects as given
by formulas (13) - (20). Indeed, the ratio of the constant (14) accounting for these cross-
-effects and the constant (39) accounting for the quadratic Majorana effect, in the case
of axially-symmetric particles, amounts to

Con _P ASE— ATF)~1076,
Cy 21
This means that, in colloidal systems, variations in Majorana effect due to the cross-effects
are of order 107° 7, thus being accessible to experimental observation recurring to usual
laser techniques.

Noteworthy, too, is the case of light propagating as in Faraday’s effect along the
magnetic field applied in the y-direction; now H,=H,=0 and in accordance with the
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expression (8) the usual Majorana effect does not appear. In this case however, according
to Eq. (17), birefringence appears to the amount of

8?: - 8(;:: == 6Cem H)Z; Izz (43)

defining a new, magneto-optical cross-effect. In the experimental set-up under considera-
tion, the cross-effect of Eq. (43) occurs simultaneously with laser-induced birefringence
[16, 18], compared to which it increases with the magnetic field strength H as f/21 (43"~
— A™) H?. For particles of dimensions of the order of 10° A, this ratio is of the order
of 1072 H?, whence the effect given by Eq.(43) should be quite easily detectable by means
of the strong magnetic fields now generally in use.

These effects, when subjected to experimental investigation, can be predicted to consti-
tute a direct source of data regarding the values and signs of the magnetic anisotropy of
axially-symmetric particles. Similarly, formula (42) will permit to gain information on
the nonlinear magneto-optical deformation of spherical particles.

In addition to the above-considered magneto-optical effects, one can investigate other,

-novel effects, such as light intensity-dependent changes in magneto-optical rotation {13}

1
nL—nR=—n~(Fo+F1I+F212+...)H, (44)

where F, and F, describe departures from the usual Faraday effect given by Eq. (37).
Pershan et al [20] recently investigated an inverse Faraday effect, consisting in the induc-
tion of magnetic polarization in the medium by circularly polarized light of intensities
Ipand Ip:

P,=(Go+G I+G, I’ +. . )(Ig—~1Iy) (45)

Also, magnetic anisotropy induced in the medium by intense laser light can be investiga-
ted [21]. The effects described by formulas (44) and (45), easily detectable in colloids,
are discussed in detail in a separate paper [22].
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Appendix

UNWEIGHTED AVERAGING

As long as the magnetic H and laser E, field strengths are not too large, Boltzmann’s factor in
the distribution function (11) can be expanded in a power series with the following accuracy:
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f(Q, H9 EL)=f(Qa 0) {1 +ﬁ(ka‘kt_<ku kt>) (ym Ha Hr+
+Yor Le) +4 B2 ko ko kyky— (kg ko by by — g ko Ry ki~
—kqklky kp> +2<k, kt><kv kp>] (yf;: H,H.H,H,+\

+29m Yor Hy Hy L+ y2, L L) +...), A.D)
where
<k,,k,kv...>=fk,,k,kv...f(9,0)d9 (A.2)

denotes averageing over all possible orientations of particles with the distribution function £(, 0) valid
at zero external fields, i.e. averageing with equal probability. The definition (A.2) now yields:

<kl1 kr> :%' 60: )
<kc k: kv kp) =1i5 (6” évp +§av er "‘Jaa 5?\') s

105

<ka' kr kv kp k). ku> = —'L {501(6\’17 5}.;& +5vl qu +5vu 6&0) +
+ éav(aw 6}.14 +5u 6‘1‘4 +6tu alp) +5ap(5rv 6;.‘4 +6t}- avu +§ru Jv).) ""
+6¢A(6rv 5pu + arp b‘vu +5ru 6vp) +6au(5rv5p). + 5:0 6\'/1 +5ti. va)} . (A.3)

On substituting the distribution function (A.1) into Eq. (6) and taking the mean values (A.3), one
obtains formulas (8) or (13).
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