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LIGHT SCATTERING IN SOLUTIONS OF RIGID ASYMMETRIC
BIOMACROMOLECULES ALIGNED IN AN ELECTRIC OR MAGNETIC
FIELD
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' A classical-statistical theory of Rayleigh light scattering by solutions of rigid assymmetric
biomacromolecules (proteins, polypeptides, viruses, efc.) in an electric or magnetic field is
proposed. The variations of scattered light intensity components are calculated for two cases:
(i) weak orientation of macromolecules due to an AC electric or magnetic field; (i) complete
ordering of all macromoleculesin an intense DC electric or magnetic field. In case (?), the variations
are shown to be quadratic in the applied field strength, and their knowledge permits determina-
tions of the dipole moment and electric or magnetic anisotropy of the macromolecule, as well
as its relaxation times. In case (ii), which is that of electric or magnetic saturation, we obtain the
possibility to determine directly the value and sign of the optical anisotropy of “cigar” and
“Jisc” shaped macromolecules. Numerical evaluations are made, and point to large variations
in intensity of light scattered by solutions of biomacromolecules or colloids. These variations
exceed by several orders of magnitude those resulting in molecular liquids.

1. Introduction

The process of Rayleigh light scattering by a solution of macromolecules placed in
a DC electric field is subject to well-defined variations, which are accessible to experimental
detection. Thus, variations of the scattered light intensity which result by applying a DC
electric field have been observed in solutions of Tobacco Mosaic Virus [1-3], poly-y-benzyl-
L-glutamate [1, 4], as well as DNA [5]. Among other problems, these observations permitted
to decide whether the macromolecule possessed only an induced or permanent dipole
moment, or both. Much more complete information concerning structure is provided by
studies of light scattering by solutions in an AC electric field [1, 2] when, in addition to the
steady (nonalternating) component of intensity, an alternating component varying at twice
the frequency of the applied field [2] appears. Such studies permit determinations not only

* Address: Instytut Fizyki, Uniwersytet im. A. Mickiewicza, Poznan, Grunwaldzka 6, Polska.
(447)



448

of the Debye dipole relaxation time [6] but moreover of the anisotropy relaxation time of the
molecule [7, 8]. Also, attempts have been made to detect similar variations under the in-
fluence of a magnetic field, in light scattering by suspensions of graphite [9].

In gases and molecular liquids, the scattered intensity variations caused by orientation
of molecules in a DC electric or magnetic field are very small [10] and, as yet, experiments
aimed at rendering them apparent have not been successful.

Hitherto [1-3], the variations induced by an external DC electric field in the intensity
of scattered light have been considered as occurring by way of the particle scattering factor
P(6) alone and as related essentially with the size of the particles. This assumption is correct
for very large particles, of size comparable to the light wavelength, provided they are optic-
ally isotropic or but very slightly anisotropic. But if the particles have perceptibly aniso-
tropic optical properties, there occur direct changes in the anisotropic components of
scattered light intensity [11], entailing changes in depolarization of the observed scattering.
Obviously, in the case of not very large particles, the effect of size is quite subordinate, and
optical anisotropy is the chief cause of the variations in intensity of scattered light. To this
circumstance is due to possibility of determining directly the amount and sign of the aniso-
tropy of optical polarizability in macromolecules and colloid particles [11].

In the present paper, we shall give a complete and consistent theory of light scattering
by solutions of rigid macromolecules in a DC or AC electric field. Particular attention will
be given to variations in intensity of the anisotropic components in weak fields as well as
in very strong electric fields, when total ordering (field-alignment) of all the particles can be
achieved [3]. The effect of pure orientation in the electric field will be assumed as essentially
decisive, thus justifying us in omitting the effect of nonlinear deformation [12] which, in
the case of rigid macromolecules, is quite unimportant. This assumption enables us to ex-
press the relative variations of the scattered light intensity components by three reorienta-
tion functions, which we calculate and present diagrammatically for arbitrary values of
electric and magnetic field strengths.

The results are particularized to various, specific substances, and numerical evaluations
of some effects predictably accessible to experimental detection are included.

2. Light scattering by free macromolecules

We consider the process consisting in the scattering of light by a dilute solution of
macromolecules, The latter are assumed as not interacting with one another, or with
the molecules of the solvent, the latter being dealt with as an optically isotropic medium.
Considering the macromolecules as rigid, of linear dimensions smallin comparison with
the light wavelength (thus not exceeding 4/20), we can for simplicity restrict the problem
to scattering of the electric dipolar kind neglecting higher multipole scattering as well
as scattering due to intramolecular interference. Consequently, we can define the intensity
tensor I of light scattered by the solution of number density ¢ of macromolecules, in
laboratory coordinates X, Y, Z, as follows [12]:

s_ o (&) dn)
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where the symbol { ), stands for averageing over all possible orientations £ of macro-
molecules and over the period of oscillations of the electric field E(f) = E, cos wt of the
light wave, oscillating at frequency .

Let us assume the electric field strength E() of the wave so small as to cause only
a linear polarization of the macromolecule. The i-component of the induced dipole moment
resulting by this polarization is given by the relation:

my(t) = azEt), )

where the a;’s are components of the optical polarizability tensor of the isolated macro-
molecule. Summation over the recurring index % in Eq. (2) is implicite.
On inserting (2) into Eq. (1), we obtain the scattering tensor I3} in the form:

4
L= (—(Z—{) ainaia {ExEp:. @)

With the aim of further calculations, we assume the solute (and solvent) as naturally
inactive optically, and the system as revealing no energy absorption (absence of electronic.
dispersion and absorption). The polarizability tensor a;, is now symmetric in both indices
i and k, and transforms from laboratory coordinates X, Y, Z to the reference system of
principal axes 1, 2, 3 of the macromolecule by the transformation equations:

3
Gip = D) BLiCheo (4)

s=1
¢;, being the cosine of the angle between the laboratory i-axis and the principal s-axis.
The principal values of the macromolecular polarizability tensor are defined by Maxwell’s
expression {7, 12]:
V(n?—n3)ng

“ = Gl (- LT ®

where n, (s = 1,2, 3) are the principalrefractive indices of the macromolecule; its geometrical
shape is described by the parameters L,, with L, +L,+L; =1; the quantity »n, is the re-
fractive index of the optically isotropic solvent.

We furthermore attribute to the macromolecules the symmetry of rotational ellipsoids.
The optical axis of the macromolecule is assumed as coinciding with its geometrical axis
(the 3-axis). Let a4 be the polarizability parallel to the symmetry 3-axis, and a; = a, the
polarizabilities perpendicular thereto. Eq. (4) now simplifies to the form:

ay, = a by +an(3cisc—0), (©]
where
R S
=3 ®= az+2a,’ @

a being the mean optical polarizability and » the anisotropy of optical polarizability of the
macromolecule; d;, is Kronecker’s unit tensor with elements equalling unity for i =k
and vanishing if i # k.
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Let the macromolecule’s symmetry 3-axis subtend the angle ¢ with the laboratory
Z-axis. The directional cosines are:

€, = sin ¢ cos @,

¢y = sin ¥ sin @,
C,3 = cos &, ®

@ being the azimuth of the symmetry axis.
On inserting (6) into Eq. (3) we obtain for axially symmetric macromolecules:

L = {850+ 2#<3c;3¢4305+ 30,3000 =200, 0 +

+%%9¢;3613Ck3¢13 —3CiaCra 0 —3 0 Ciztrs + 08,00} 1, 9
where

. 4
Ii=o (%) A EEp. (10)

is the intensity tensor of isotropically scattered light. ,

Let the incident light beam propagate along the y-axis, and let observation of the
scattered light take place parallel to x. We shall moreover need the following notations:
V = L, is the scattered intensity component with electric vector oscillating along z vertically
to the plane of observation; H = I, is the component with horizontal electric oscillations
along y); the symbols v and A used in this context will indicate the state of polarization of
ncident light, thus respectively vertical (z-directed) and horizontal (x-directed) oscilla-

tions of the electric light vector E. In this way, we obtain with regard to Eqs (8)~(10):
Vo= {1+2x (3 cos? & —1),+2% (9 cos® # —6 cos? P+ 1) ) I’ ,
H, = 9% {cos® & sin? § sin? §) [,
Vi = 92 {cos? & sin? & cos? gD, I*

xx?

H;, = 9%2 {sin* & cos? g sin? p) 1% (11)

xx°

where the intensity components of isotropically scattered light are:

4 _ a
Ii=o (gg_) a¥(E2,, Ii,=o (%) a*(E2, . (12)

In the absence of external fields, the spatial distribution and orientation of the macro=
molecules in solution are quite random with respect to the plane of observation of the
scattered light. In consequence, on calculating mean values with equal probability, we ob-
tain the following non-vanishing angular functions:

| 1

2 =
,<COS " %o 2n+1°

: @n—-1lt . :
Ccos™ @rg = “5——, : (13)



451

which, with Eq. (11), lead to the well-known results for the components of usual Rayleigh
scattering [13]:

rz=(L+§wﬁzz, (14)

=k Tk 9 (15)

the last expression defining the Rayleigh-Krishnan reciprocity relation [14].

3. Light scattering by macromolecules reoriented by an AC electric field

We shall now deal with the case when the scattering solution is acted on by an exter-
nally applied electric field of strength F. Its action causes a reorientation of the macro-
molecules. Once we assume a macromolecule as possessing the permanent electric dipole
moment u, its potential energy in the field F is [15]:

u@, F) = ~ i 5 @b, f (16)

a;; being the tensor of its electric polarizability.

Restricting our considerations, as previously, to macromolecules (particles) having the
symmetry of a rotation ellipsoid whose symmetry 3-axis is at an angle 9 to the field direc-
tion F, we can rewrite Eq. (16) as follows:

u(Q, F) = — uF cos Op-— —;—— {oc-i—(ocs-ocl) (cos2 Op— -é—) Fz}. a7

The electric field F applied to the solution reorients the particles; when thermodyna-
mical equilibrium sets in (at temperature T), their distribution is described in accordance
with classical Maxwell-Boltzmann statistics by the function [6]:

exp [—fu(&2, F)]
[ exp [—Bu(@, F)]dQ2
in which the integral extends over all orientations £2 of particles, and f§ = 1/kT.

At not very large field strengths F we have fu < 1, so that the distribution function (18)
can be expanded in the power series:

S, F) = fo+fitfat-s (19)

fo = 1/2 denoting the distribution function in the absence of the external field F i. e. at
random orientation. The contributions of the first and second apprommatlons, with regard to
Eq. (17), are of the form:

S, F) = (18)

Fi=Fo {p cos Fp+q (cos“‘ Or — %)},

- 1 S |
it fa= —.2—'_;"01132 (cosz'ﬁ‘p— g—) o (20)
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-where we have introduced the dimensionless parameters [8]:

F

P= 7 (21)
Xy — &

=5 ™ ®2

-describing the reorientation undergone by the electric dipole and polarizability ellipsoid of
the macromolecule in the electric field F.

In the case when the macromolecules are subject to reorientation in an AC electric
field F(¢), the distribution functions (18)—-(20) are no longer applicable; appropriate functions
can be found within the framework of the theory of dielectric relaxation formulated by Debye
6] for dipolar molecules, and subsequently extended to the case of anisotropic molecules
in a strong electric field [7, 8]. Putting the AC field in the general form:

F(t) = X, Fye'r, 23)

where summation is over all (positive and negative) frequencies w, and F? is the field ampli-
tude, we derive in place of Eq. (20) the following formula:

Sy = fo {1+p(®) cos Bp+g(t) (cos* Fp—1/3) +...}, (24)
wherein we have introduced the time-dependent reorientation parameters:
eiont
T kT 2 " T+iw,p’ (25)

_ ef(on+wm)t ‘uz 1 1
80) = 577 IsT Z " "m{“"’_alJr W(IHGMD ¥ 1+"me0)}’ o

“Tp denoting the Debye relaxation time [6], and 5 = 7, the relaxation time of induced
birefringence [7, 15].

In the case now under consideration the unweighted mean values ¢ », of Egs (11)
have to be replaced by quantities obtained as a result of statistical averageing in the presence
of the external field F and defined as follows:

(CYo,r = [ G(Qf(Q,F)dQ. @7

Now, since in the case of axially symmetric particles the distribution function f(£2, F) is
.a function of the angle & alone, we can first perform an unweighted averageing over the
.azimuth @ in the right hand terms of Eqs (11), thus obtaining the following relative varia-
tions of the intensity components of scattered light (applying F along the z-axis):

_ Ve—V, _ 20x®(F) +8x"[Q(F)+T(F)]
Oy == = e (28)
F F
orf =Tt = Tl = gyi = o), (29)
o= _ g, (30)
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where we have introduced the functions of reorientation in the external electric field F:

D(F) = % {3 cos?d—1Yar, L)
QUF) = - (15 cost 915 cost #4200, (32)
T(F) = % <30 cos? #—15 cost 3 —Tg 5. (33)

These reorientation functions are defined in a manner to vanish in the absence of an external
field (at F = 0), when the unweighted averageing procedure (13) is the correct one.

At complete parallel orientation (alignment) of all the particles in the direction of the
field vector F, in other words at cos & = 1, the functions (31)—(33) tend to the limiting
value

D(F) = QF) = T(F) = 1. (34)

- In the presence of a not very strong AC electric field when, in accordance with the
definition (27), averageing has to be carried out with the distribution function (24), we get
with regard to (31)-(33):

B(F) = —= 500 (35)

T(F) = ~20(F) = o= (), 36)

" In the case when the AC electric field F oscillates at a single frequency wy different
from the frequency o of the incident light wave (wz # ®), the complex reorientation para-
meter (26) can be resolved in the well-known way into a real and an imaginary part:

Re g(t) = % {(a3~ac1) (1 + 22 2wFt1++2:)af;f%sm 2wpt)
. +IJ;T% [1 + (1—2w¥tpTE) Cos 2;_):2 Z;:g(m%-z-m) sin 205t ]}, 37
Im g(t) = 421—;, {—1—?4_?0%;% (2wpTR cos 2wpt —sin 2wgt) +

In particular, for the case of a DC electric field F, that is for wp = 0, we obtain:

F2 2
g0) = 3ET (“3—“1+ kﬂT) » (39)
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whereas in the other limiting case — that of optical frequencies — when wzTp — oo and
wpTg — oo simultaneously, we get:

Ag—
8(=) = 957"

(F2,. (40)

The last-named case is that of light scattering in the presence of another, intense light
beam, thus emitted by a ruby laser [11, 12].

4. Scattering by macromolecules completely aligned in a DC electric field

Let us now proceed to the case when the DC electric field applied to the scattering
solution is sufficiently strong to cause complete orientation of the macromolecules. The
appropriate distribution function is now that of Eq. (18) which, with regard to (17), takes
the following form when the macromolecules are axially-symmetric:

exp (p cos 9p+¢q cos? &)

SO, F) = —
" (41)
27 [ exp (p cos Dp+q cos? 9F) sin Fpddp
0

The orientation parameters p and ¢ are defined by Eqgs (21) and (22).

a) Dipolar non-polarizing macromolecules

We shall begin by the case when the macromolecules are strongly dipolar, with per-
manent electric moment parallel to the symmetry axis, the latter subtending the angle dp
with the field F. Assuming for the sake of simplicity that the macromolecules do not polarize
anisotropically (¢ = 0) and supposing the field F to be applied along z (thus & = @) the
distribution function (41) reduces to the form:

16, F) = exp (p cos 9)

2% [ exp (p cos @) sin Id
0

(42)

and in accordance with the definition (27) of the averageing procedure we introduce the
following generalized Langevin functions [16] of the n-th order [17]:

[ cosndexp (pcos 9) sin 9d
Ly(p) = Ccos" B)p = —— : (43)
[ exp (p cos 9 sin 9dd
0

On substituting the variable ¢ = p cos @ and integrating the numerator per partes:

d !
ot Tr — ot e ! n—b
ftedt e;( }) —(n——k)!t ,
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we have quite generally [18]:

n

nl (=1t —(—1)ne?

Ly(p) = 1¢=o(n_ B! PP —e?) (44)
In particular, for n =0, 1, 2, 3, 4, ...
I,=1, Ii(p) = p) = coth p—
—1-24p) — L(p)— 3[ _ ﬂé’l]
Ly(p) =12 I Ly(p) = L(p) - 1-3 i
_ L(p) [ L(p)]
Li(p) =1-4—+ p 1-3 » (45)

where L(p) is the usual Langevin function [16].
By means of the generalized Langevin functions (43), we re-write the reorientation
functions (31)—(33) in a form adapted to numerical calculations:

D(p) = 2 {8Ly(p)—-13},

—

Qp) = 7 {15 L(p)—15 Ly(p)+2},

T(p) = 5 B0 Lyip)~ 15 L(p) = 7. (46)

The functions (46) are plotted in Fig. 1.

In the case of very incomplete, or indeed weak orientation of the macromolecules
(at p < 1), we are justified in expanding the Langevin functions (43) in power series. For
even and odd functions, we obtain respectively:

Ly (p) = kzo A:P% (47
L2n—-1(P) =kz(:) B:P2k+11 (48)

the expansion coefficients A} and B} being of the form:

7 Akl

Av= (2n+2k+1) (2k)! Z @I+) @) BN eI 49)

k

1 By

@nr2E+1) @+D)! A @D E)T (50)

B =
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By Egs (47)—(50), we obtain in a satisfactory approximation:

=L BT
L(p) = %_ + _24%2 - ‘;_{;%
Lip=2 -2
Lyp) = % % — i—%’g F o (1)
and the reorientation functions (46) become:
@(p)z%—gz—ngr...
o =L+ 2
T(p) = 22%2 - —%~- (52)

For large values of the parameter p, one can express the Langevin functions (44) with

sufficient approximation as follows:

> n! 1 .
Lip) =1+ Y -—— ( — —) » (53)
P k; n—k)! P

whence, at n =1, 2, 3, 4, we have:

1 22
L f=3 1-— —, L — —_—— + —5
1(P) » 2(P) p pg
3 6 6 4 12 24 24
Lip)=1— = 4+ — — —, L(p=1- =+ =5 — =+ = 54
s(p) p  p* P o(p) p p* p* pt 4

permitting one to compute the reorientation function (46) according to the following li-
miting formulas (p > 10):

3 3
Op) =1- > + =,
(p) > T

15 75 180 180

=1-= 45—+,
60 180 180
M) =1~ "5 + = - (55)

pe P’



457

In the case of electric saturation i. e. when all the electric dipoles are aligned in the
direction of the applied electric field, the Langevin functions (53) tend to unity at p tending
to infinity. In this case, the reorientation functions (55), too, tend to unity:

D(00) = Q(o0) = T(o0) = L. (56)
b) Dipolar polarizing macromolecules

We now extend our considerations to dipolar macromolecules which are anisotropically
polarizable. Here, two kinds of macromolecules have to be distinguished: (i) “‘cigar-shaped”
ones, where both the permanent electric dipole moment and the largest principal polariz-
ability are directed along the symmetry axis, and (i) ‘‘disc-shaped” macromolecules having
their dipole moment in the direction of the symmetry axis but their largest polarizability
lying in the plane perpendicular thereto. Case (i) is that of positive optical anisotropy,
o3 > &y; case (ii) corresponds to negative optical anisotropy, a; < a,.

Accordingly, the distribution function (41) becomes (with & = &5):

A0, F) = exp (p cos §+q cos? P)
27 [ exp (p cos #+q cos? &) sin 9d (67)
0
the sign ‘-’ referring to positive optical anisotropy, and ‘“ —>’ to negative optical anisotropy

of the macromolecule.
Resorting to the distribution function (57), we now define the ensuing, generalized
Langevin functions: ‘

[ cos" & exp (p cos #+q cos? &) sin Fd
Ln(P9 :[:q) =9 p- . (58)
[ exp (p cos ®+q cos? &) sin dd
i)

With the substitution [19]:

t = }/q cos OF ;ﬁ’ g +#0 (59)
they take the form:
p? 3 n
‘3;(% i ") f (t ¥ —p=) e di, (60)
2¢"2 I(p, £9) 3, 2Vs

where we have introduced the integrals:

Za
.
I(p,+q) = % e (44 " q) f ex? dt 61)

with the integration limits:

Ln(p, +q) =

a=-Vo+2£ YA Ve+ L Ve (62)



458
Using the recurrential formula:
2 1 - 3 n—1 — ]
trert dt = + Et" lete' 3 —5 2 ek dt (63)
we particularize the functions L(p,+q) of Eq. (60) in turn for n =1, 2, 3, 4 as follows:

Lipt) = F L + o —
(P9 = % 90 T i I(p,29)

_p*F2q , ette?  plet—e)
Ly(p, £9) = 442 * ilp, £ 8¢M(p =9)°

p(p*F6q)  pler+e?) | (P*TFagt+iqg?) (P—e?)
8¢® 8¢ I(p, £q) 16¢"I(p, £q)

Ly(p, +q9) = F

_ p+129(gFp?) | (PPFOg+4q) (Pte?)
L4(Pa +q) = 16(]4 + 16qf'?I(P, +q)

p(p?+492F10q) (e?—e?)
T R, x) ()

In the case now under consideration, the reorientation functions (31)-(33) take the form:

B(p, +) = 5 BLu(p, 9~ 1,
0p, +9) = 5 (5Lp, £~ 15Lo(p, +0)+2)

T(p, +q) = = (B0Lu(p, £0)~15L{p, £0)~Th (63)

where the Langevin functions L, and L, are defined by Eqs (64). The functions (65) are
plotted in Figs 2-7.

Strikingly, in the case of macromolecules of low optical anisotropy (% <0,1), the
change in vertical component (28) results in the form:

OVE = 4n B(p, +q). (66)

In other words, the variation of the vertical component of Eq. (28) is simply four times the
product of the optical anisotropy x of the macromolecule and the reorientation function
&(p, +q), which intervenes directly in Kerr’s effect [19, 20] and is thus accessible to me-
asurement.

c¢) Non-dipolar anisotropically polarizing macromolecules

In the case of non-dipolar macromolecules the dipole parameter p vanishes and, if

they are polarizable anisotropically (g # 0), the Langevin functions (45) of odd order



Fig. 2
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Fig. 1. Reorientation functions, Eqs (46), for dipolar nonpolarizing macromolecules
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Fig. 2. Reorientation function @(p, +-q) for dipolar polarizable macromolecules with positive anisotropy
Fig. 3. Reorientation function Q(p, +¢) for dipolar polarizable macromolecules with positive anisotropy
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Fig. 4. Reorientation function T(p, +¢) for dipolar polarizable macromolecules with positive anisotropy
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Fig. 5. Reorientation function @(p, —q) for dipolar polarizable macromolecules with negative anisotropy

L,(0,£¢q), Ls(0,-£q), ... vanish whereas those of even order reduce to those derived for-
merly [11]:

1 1
L0, 4q) = F — 4 oo,
{0k = F %0~ 24510, +q)
3 20T3
L0, £q) = -2 + - IF 67)

4g® ~ AgRI0, +q)
The integrals of Eq. (61) now take the simple form:

Ve
I0,4q) = eﬁf ey, (68)
0
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Fig. 6. Reorientation function Q{p, —g) for dipolar polarizable macromolecules with negative anisotropy

1.0

Fig. 7. Reorientation function T(p, —q) for dipolar polarizable macromolecules with negative anisotropy
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For small values of ¢, we can expand the functions (67) as follows:

1 4q 8q? 1643

L0 £9 = 5 £ 35 + o5 T 1175 T
1 8q 1642 32¢3
L, 9 =5 £ 155+ 1575 T 51073 T (69)

and the reorientation functions (65) become:

2 . 4 _ 8¢
DO, £9) = = = + 315 F 15

15 m +...,

_ .29 4 | 8¢
Q(O, iQ) =+ §T + ?15 + -5079— +...

A
21

442 32q°

315 + 10395 +.enn (70)

T, +¢) = + =+ +

In the case of electric saturation, at ¢ — oo, we now have for “‘cigar-shaped’ macro-
molecules of positive anisotropy Lo(0, + 00) = L,(0, + o) =1 and the reorientation
functions tend to unity:

D0, ) += Q(0, +o0) = T(0, + o0} =1, 71

whereas for ‘‘disc-shaped” macromolecules of negative anisotropy L0, — o0) = L,

(0, —00)==0 and the reorientation functions (65) take the limiting values:

B0, — o) = — % 00, — ) =1, T(0, — o) = — (72)
In the two cases (71) and (72) respectively, the change in vertical component (66)
assumes the form:

(73)

spF vE_ v, { 4% for cigar-shaped macromolecules,

Vo  |—2x for disc-shaped macromolecules.
One sees that measurements of light scattering at electric saturation enable one to
determine the anisotropy » not only as to its value but also as to its sign. It is abvious
from Eqs (14) and (15) that usual Rayleigh scattering yields only the square of the optical
anisotropy, x2

5. Nonlinear changes in depolarization ratio

In the case of light incident with electric vector oscillating vertically, the depolariza-
tion ratio of scattered light is defined [13] as:

H,

7 (74)

D, =
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and with regard to (14) and (15) one obtains for usual Rayleigh scattering the well-known
formula [13]:

3x2

Do =51 g

(75)

In the presence of an external electric or magnetic field, one has the components (28)
and (29) and finds in accordance with the definition (74):

_ 32[1— ()]
Dy = 5+4x2+20xD(F) +8x2[Q(F) + T(F)] 0

In the case of electric saturation this depolarization decreases to zero both for “‘cigar-
shaped” and ‘‘disc-shaped” macromolecules.
In the case of light incident with horizontal oscillations of the electric vector, the ratio

is defined as [13]:
Vu

Dy = ﬁ;o (77)
whence with regard to Eqs (29) and (30) we get:
1-Q(F) T(F)—Q(F)
Di = 15y =1 Tome (78)

In the absence of external fields this yields a value of 1 which, at electric saturation, decre-
ases to zero in the case of ‘‘disc-shaped” macromolecules. For “‘cigar-shaped” ones, Eq. (78)
at saturation is indeterminate.

Eq. (78) is of especial interest in the case of weak orientation of macromolecules in an
AC electric field, when with regard to (36) the change in depolarization ratio results in the
form [15]:

Df-1=— 2 () (79)

permitting direct determinations of the reorientation parameter g(1) defined in general
by Eq. (26) and in particular cases by Egs (37)-(40). Quite obviously, formula (79) provides
the experimental possibility of determining the sign and value of the electric anisotropy of
the macromolecule or the birefringence relaxation time 7g.

In the case or unpolarized incident light, the depolarization ratio is [13]:

H,+H,
D, =3, 80
Vv+ Vh ( )
or, with regard to Eqgs (28)—(30), in explicite form:
219 _ _
DF 3x%2— Q(F) — T(F)] @1)

= 5721 202 D(F) + 2 [5Q(F) +8T(F)] -



464

In the absence of external fields, this yields the well-known formula [13]:

6?2

“TEITE ®2)

At saturation, the depolarization of formula (81) tends to zero for “‘cigar-shaped”
macromolecules, and to:

_ 052

= Hzai) ®)

for “‘disc-shaped” ones.

6. Discussion and conclusions

The theory developed by us here is applicable strictly to solutions of molecules or
macromolecules the linear dimensions of which are smaller than the light wavelength.
However, as is apparent from Table I, in the case of ordinary molecules the reorientation
parameters (21) and (22) are very small even if a local field, thus of the Lorentz type
F = (¢+2) E/3, is taken into account. Specifically, in nitrobenzene we have p = 1.2 X 10-3E
and ¢ = —1.4x10-8 E%. Even when working with most carefully purified nitrobenzene,
it is hardly possible to apply fields upward of 103 e. s. u. if electric breakdown is to be
avoided. Fields of this order yield, at the best, reorientation parameters p ~ 1 and ¢ ~ 10-2.
Consequently, complete electric saturation cannot be achieved in a molecular liquid, al-
though the degree of ordering (alignment) of the molecular dipoles can be sufficient for
causing variations of the order of thousandths in the scattered light intensity — variations
well within the range of recording by sensitive measuring procedures.

The assumptions of the present theory are fulfilled by solutions of certain biopolymers,
such as proteins, nucleic acids, and viruses, as well as colloid suspensions (thus, V,0, etc.),
where the macromolecules (particles) can be regarded as rigid, continuous rotational ellipsoids
(rods or discs). The reorientation functions (31)~(34), as is seen from Eqs (28)-(30), directly
define the relative variations of the intensity components of scattered light, and consequently
depend but weakly on macromolecular size. These reorientation functions (31)-(34) remain
fully valid for non-deformable microsystems with linear dimensions less than 1000 A.
For bigger microsystems (upward of 1000 A) the values of these functions decrease by several
hundredths; upward of 3000 A, the decrease exceeds 50 per cent.

We hence conclude that the above-derived formulas permit to make numerical evalu-
ations of the order of magnitude of the variations to be expected from almost all the micro-
systems listed in Table I. For example, our theory is applicable quite strictly to Fibrinogen
and Edestine, for which it leads to reorientation parameters p = 0.03 E and g = 10-4 E?
permitting to predict a beginning of electric saturation in a field of 100 e. s. u. Complete
electric saturation should be achievable in solutions of rigid polypeptides (e. g. poly-y-
benzyl-L-glutamate, Collagen, etc.) and rigid polyelectrolytes like Tobacco Mosaic Virus,
where the reorientation parameters (21) and (22) assume the enormously large values p = E
and g = 0.4 E?, In the latter case, a field of 10 e, s, u, should be quite sufficient for obtaining
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TABLE I
Geometrical and electrical parameters of some molecules and macromolecules
Average Relaxation El.ectrm Electric
molecular Length | Diameter | time tp dipole anisotropy
weight [ A [4] [108 sec] momenlt u P References
Muwx 1073 (107 1110724 cmy)
e.s.u. cm]
Carbon disulphide 76x 10— 5.2 2.7 8.3x10-8 0 9.60 a, b
Water 18x10-3 3.8 3.2 4.5x 10 1.85 0.60 a,b,c
Nitrobenzene 123x 102 8.5 4.9 7.3x10¢ 4.24 —7.64 a,b,c
Ovalbumin 45 109 28 9 250 d, e
Insulin 40 46 1.6 360 d, e
. met- 70
Hemoglobin 67 47 60 10 oxy-120 d, f
Zein 40 320 40 11 380 d
y-Globulin 150 235 44 72 1100 d, e
Beta-Lactoglobulin 40 122 28 4.3 730 d,e
Fibrinogen 400 700 38 1200 1.2x107 d
Edestin 310 860 96 98 1400 d
175 1250 5% 108 2800 g

Poly-y-benzyl-L.- 195 1335 30 | 5x10° 2700 | 8x105 | h

-glutamate 250 1550 1.5% 104 3920 1.2x10¢ | i
Collagen 280 2800 14 4.5% 104 15000 3x10° j
Tobacco Mosaic Virus

(TMV) 49.5x 103 3200 150 1.3x10° 41000 3.3x 101 k
Deoxyribonucleic

acid (DNA) 400 5000 40 1.5x 108 20000 1.4x10° 1
Bentonite 2500 thin disc 108 3.1x10 | m

a2 C.G.Le FevreandR.J. W.Le Fevre, Rev. Pure and Appl. Chem., 5,261 (1955); J. F. Harrison, J. Chem.
Phys., 49, 3321 (1968).
b C.P.Smyth, Ann. Rev. Phys. Chem., 17, 433 (1966); S. K. Garg, J. E. Bertie, H. Kilp and C. P. Smyth,
J. Chem. Phys., 49, 2551 (1968); M. Davies, Sci. Prog., 56, 337 (1968).
¢ R.D. Nelson, Jr., D. R. Lide, Jr. and A. A. Maryott, Selected values of electric dipole moments for mole-
cules in the gas phase U. S. Department of Commerce, National Bureau of Standards, Washington 1967.
4 Die Physik der Hochpolymeren, Band II, Das Makromolekul in Ldsungen, Edited by H. A. Stuart (Springer-
Verlag, Berlin 1953) and Ref. [20].

Reference [19].
Reference [4].

e - IR

Chem., 1, 99 (1968).
! G. Weill, C. Hornik and S. Stoylov, J. Chim. Phys., 65, 182 (1968).
m Reference [20] and S. Stoylov, S. Sokerov, I. Pethanchin, N. Ibroshev, Dokl. Akad. Nauk SSSR,

180, 1165 (1968).

S. Krause and C. T. O’Konski, Biopolymers, 1, 503 (1963).
W. H. Orttung, J. Am. Chem. Soc., 87, 924 (1965).
G. Boeckel, J. C. Genzeling, G. Weill, H. Benoit, J. Chim. Phys., 999 (1962).

K. Yoshioka and O’Konski, Biopolymers, 4, 499 (1966).
References [2], [19] and Stoylov, Y. Mauss, C. Hornick and G. Weill, Bulgarian Acad. Sci. Commun.
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complete electric dipole saturation, whereas saturation by orientation of the polarizability
ellipsoids should occur in even weaker fields.

The theory moreover applies automatically to the case when the microsystems undergo
orientation through the agency of a DC magnetic field H, since one need but replace the
reorientation parameters (21) and (22) by:

_ umt _ XX

#,, denoting the magnetic dipole moment, and x, %; the magnetic polarizabilities respecti-
vely parallel and perpendicular to the symmetry axis of the microsystem.

In molecular liquids (like CgHg) the diamagnetic anisotropy is at the most of order
10-28 cm? [21]; accordingly, the reorientation parameter (84) is of order 101 H?, so that
magnetic saturation cannot be hoped for, even were one to use the strongest magnetic
fields of 108 Oe now available [22]. The prospects seem brighter in colloid solutions, e. g.
in anisaldazine, where magnetic anisotropy is about 10-20cm?® [23] and ¢ ~ 1077 H?
pointing to magnetic saturation in a field of 10¢ Oe. In other colloid suspensions [24] also,
and particularly in colloids of ferromagnetic particles (where the permanent magnetic
moments are very large, thus amounting [25] to 8x 101 e. m. u. in Fe;O4 for particle
radius 74 A), strong orientation of the moments takes place. Likewise encourageing are
solutions of DNA and RNA, since they exhibit considerable magneto-optical birefrin-
gence [26].

Hence, the study of light scattering by a solution of macromolecules or particles when
the microsystems are completely aligned in the direction of an external electric or magnetic
field provides a method of determining the optical anisotropy as well as the geometrical
shape of the microsystems.

In concluding, it may be appropriate to stress the significance of the variations in purely
anisotropic components (29) and (30), which do not depend directly on optical anisotropy
like the variation (28), but depend only on the reorientation functions (32) and (33). Such
studies are promising, as recently a rapid method of measuring the horizontal component
by laser technique has been made available [27] permitting in accordance with Eq. (15)
to determine the square of the optical anisotropy [27]. Although as yet attempts to use this
method in order to make apparent nonlinear variationsin horizontal component due to in-
tense ruby laser light have remained undecisive with regard to molecular liquids [29], it is
to be hoped that the effect can be observed in solutions of strongly optically anisotropic
macromolecules [30].

The author wishes to express his sincere thanks to Professor H. Benoit for his discus-
sions of certain aspects of this paper when on a visit to this Department.

The author is much indebted to Drs J. R. Lalanneand S. Stoylov for their kind interest
and remarks concerning the possibility of measuring the anisotropic component and to
J. Bauman, M. Sci., for carrying out the numerical calculations required for plotting the

Langevin functions.
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