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Various nonlinearities due to the action of a strong d-¢ magnetic field and of the
electric field of an intense laser beam on the optical or magnetic properties of isotropic
bodies are discussed. The treatment is by classical theory along both phenomenologi-
cal and statistical-microscopic lines. Three new magnetooptical effects are suggested
for quantitative experimental study: (1) an inverse Cotton-Mouton, where calcula-
tions show that strong laser light induces magnetic anisotropy in a medium; (2) non-
linear optical variations in Faraday effect under the influence of laser light; and (3)
magnetooptical cross birefringence, which is shown to result even if both the probe
and laser beams propagate parallel to the magnetic field, as in linear Faraday. The
laser and high magnetic field techniques now available are shown to make feasible
the measurement of these effects, preferably in macromolecular and colloidal sub-
stances. Since such substances moreover easily permit total alignment of their micro-
systems in a d-c magnetic field or in the electric field of a laser beam, measurements
of the anticipated effects at optical, magnetic, or magnetooptical saturation are sug-
gested as a direct method of determining the sign and value of the optical and mag-

netic anisotropies of macromolecules and colloid particles.

INTRODUCTION

Magnetooptics takes existence from the
fundamental work of Faraday, Kerr, Ma-
jorana, Cotton, and Mouton, and has since
been the subject of extensive studies pre-
sented and reviewed in various monographs
(1-4) and articles (5-8). Faraday (1845)
showed plane polarized light, propagating
in a medium in the direction of an externally
applied magnetic field H, to undergo a
rotation of the plane of polarization. With
n_ and n, denoting the refractive indices
at frequency w = 2mc/\ for left and right
circularly polarized light, respectively, the
magnetooptical rotation is (2):

A
n_ — g = — VxH, [1]
T
where Vy is the Verdet constant, specific
to the medium and a function of the light
wavelength A. ’
If the light propagates at right angles to

the magnetic field, the (naturally non-
birefringent) medium—as first shown by
Majorana (1902) in colloidal solutions and
subsequently by Cotton and Mouton (1905)
in pure liquids—becomes optically bire-
fringent with optical axis parallel to the
direction of the magnetic field. The amount
of this birefringence is given by the differ-
ence between the refractive indices for
components of the light vibration parallel
and perpendicular to the direction of the
field:

ny — N, = )\C)‘H2, [2]

where C, is the Cotton-Mouton constant.

One of the earliest theoretical explana-
tions of magnetooptical phenomena was
proposed by Voigt (1) on the basis of
Lorentz’s (9) electron theory of matter.
Voigt interpreted magnetically induced
birefringence as due to the direct action of
the applied magnetic field on the electrons
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of atoms and molecules, conceived as iso-
tropic oscillators, and undergoing an aniso-
tropic deformation proportional to the
square of the field strength H in accordance
with Eq. [2]. By Voigt’s theory, the abso-

Jute retardation ratio should be:
Mg 3]
Ne — N

whereas the majority of experiments led to

Havelock’s (5) relation:
n —n _
Ne — N

n being the refractive inde;( in the absence
of an applied magnetic field.

Langevin (10), by statistical mechanies,
proved Havelock’s relation for substances
consisting of anisotropic molecules. Ac-
cording to Langevin, although molecules
are generally anisotropic, their distribution
in a fluid is entirely random, all orientations
being equally probable, and the fluid as a
whole remaining isotropic. When a strong
magnetic field is applied, a new state of
thermodynamical equilibrium sets in, favor-
ing orientation in the magnetic field direc-
tion in accordance with the distribution
function of Maxwell-Boltzmann statistics
(10):

m
AL

a m_.
) = 50) {1 + U0

-(3c0s20—1>H2—|— }

where f(0) is a distribution function de-
fining the molecular orientation for equal
probability in the absence of the field, and
a;", a.™ are magnetic polarizabilities of
the molecule parallel and perpendicular
to its symmetry axis, the latter forming the
angle ¢ with the field vector H. From Eq.
[5], the magnetic birefringence should in-
crease as the square of the field strength H
and decrease with the absolute tempera-
ture T; experiments have indeed shown
this to be the case in most liquids.

(5]
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The Cotton-Mouton constant resulting
from Voigt’s effect is of the form (2, 11)
=T ), 06
where p stands for the number density of
molecules, which undergo two different
nonlinear changes in optical polarizability
at frequency w, 7}" and 51", in directions
respectively parallel and perpendicular to
the magnetic field H. Voigt’s effect plays
the predominant role in atomic gases only,
in which it is the sole process giving rise to
birefringence (12).

Let us denote by a4“ and a.” the optical
polarizabilities at frequency w, respectively
parallel and perpendicular to the axis of
symmetry of the molecule. Langevin’s ef-
fect of molecular reorientation, with the
distribution function of Eq. [5]), now leads
to the following expression (10):

2mp

RO =
Cx 15nneT

(@1 — a.)a)" — a."), [7]
which permits determinations of the mag-
netic polarizabilities ;™ and «." from
measurements of magnetic birefringence in
gases (12) and very dilute solutions (13).
Studies of the Cotton-Mouton effect in
liquids and solutions provide information
regarding the nature and kind of inter-
molecular forces as well as the microscopie
structure of the fluid (11, 14-16). Also,
the magnetooptics of polymers and colloids
is developing (3, 5, 6, 17-20); indeed, in
such systems, total orientation of the par-
ticles is easily achieved in the magnetic
field—a state referred to as magnetic
birefringence saturation (18).

In recent years, a technique of obtaining
very strong magnetic fields by pulse methods
(16) has been evolved. Fields of the order
of as much as 10° oe are achieved in meas-
urable volumes. In such strong magnetic
fields, the laws given by formulas [1] and
[2] are invalidated even in gases (21);
nonlinear changes of order higher than the
second are produced in the refractive index,
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and magnetic saturation is achieved even
in substances consisting of simple molecules.

Moreover, laboratories can now use
gigantic ruby lasers for the production of
intense electric fields of the order of 10° v/cm
in nonfocused and 10° v/em in focused
beams. This has led to the detection of a
variety of nonlinear optical effects in various
substances (22, 23). Among others, a strong
electric field can cause the Verdet constant
of Eq. [1] to become a nonlinear function of
the light intensity (24). The Cotton-
Mouton constant of Eq. [2] is affected simi-
larly, as"we shall show in the course of this
paper. Obviously not only the optical but
also the electric and magnetic properties of
a body undergo variations under the in-
fluence of intense light (14, 25).

Debye (26) and subsequently Peterlin
and Stuart (27) investigated the orienta-
tion of polar molecules (having an electrie
dipole moment p,) in an alternating elec-
tric field E® = E%™* oscillating at frequency
w; here, orientation is given by the distribu-
tion funection (28):

peEoe™* cos &
kT + <wrp)

E02 w w
¥ 5T [“" O

2
He 2
T | 09D

e'izwt
' (1 TiF i2w‘r3>}’

4 3
i

is the Debye relaxation time of a molecule
of radius r subject to a reorientation process
in a medium of viscosity », whereas 7p =
7p/3 is the relaxation time of birefringence
27).

In particular, at @ = 0, the distribution
function [8] takes the form used by Lange-
vin and Born in their theory of Kerr’s
effect. In the other limiting case, when

#(E) = $(0) {1 +

(8]
+

where

[9]
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simultaneously wrp — © and wrp — o,
as occurs at optical frequencies, we have:

a° —a.”
7B) = 500) {1 + 22

. (3 cos’ ¢ — 1) Eoz}.

Thus one sees that although the permanent
electric dipoles are unable to keep pace
with the oscillations of the electric field,
the electron polarizability ellipsoid of the
molecule nevertheless does undergo an
orientation. In this way, as shown by
Buckingham (29), intense light can induce
birefringence in a medium; this indeed bhas
been observed to take place in liquids when
laser technique is applied (30). Also,
circular birefringence induced by a cir-
cularly polarized laser beam (31) has been
detected.

It is well known that in molecular liquids
the relaxation times range (32) from 107
to 107 sec and are thus sufficiently short
for reorientation to take place during a
single laser pulse, usually lasting from 107°
to 107" sec. It can be asked whether these
conditions admit of the reorientation of

(10]

. macromolecules or colloid particles. Now,

relaxation times for aqueous solutions of
protein molecules (33) amount to 10™-107°
sec, so that reorientation can still occur
in the electric fields of the light of certain
lasers. Recently, optical orientation of gold
particles in water has been observed at
this Laboratory by Kaczmarek (34), who
used a ruby laser of a pulse duration of 107°
sec and an electric field strength at the
focus of the order of 3 X 10° v/ecm. The
pulse duration of ruby lasers can be ex-
tended to 107-107* sec, and on applying a
two-step amplifying cascade one gets a
beam with electric field strength about 10*
v/em. In the case of the larger macromole-
cules and particles, optical orientation can
be achieved with the electrie fields of focused
beams from continuously operating gas or
ion lasers.
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It is thus obvious that present laboratory
equipment is well adapted to the study of
the various new magnetooptical effects
which result specifically when a medium is
acted on simultaneously by a strong mag-
netic field and by the electric field of an
intense laser beam.

In particular, apart from the previously
considered effects, we propose here for
experimental investigation the magnetic
anisotropy induced in media by intense
light—an effect that may justly be referred
to as inverse Cotton-Mouton (35), since
the agent inducing magnetic anisotropy
in a naturally isotropic medium 1is now
laser light. Terminologically, this is an
opticomagnetic effect. It is noteworthy that
an inverse Faraday effect has recently been
discovered by Pershan et al. (36) by laser
technique. We moreover intend to consider
changes in the optical and magnetic prop-
erties of bodies due to optical (37) and
magnetic (18) as well as to magnetooptical
saturation. However, we shall refrain from
discussing variations due to strong d-c
electric fields as belonging to the domain of
electrooptics (5, 38, 39).

Obviously, besides the classical theory
touched on above, quantum-mechanical
theories of magnetooptical phenomena
(40-42) have been evolved. The considera-
tions of this paper, however, will be on a
classical level and based on phenomenologi-
cal-statistical methods (22, 43-45), which
will enable us to derive results valid for
arbitrary systems regardless of their micro-
structure and state of condensation. These
results can be particularized to molecular,
macromolecular, and dispersed systems.

THEORETICAL BACKGROUND

Consider incident upon an arbitrary
medium an electromagnetic wave (probe
light) with electric vector E® = E%™!
oscillating at frequency w, inducing in it
an electric polarization vector P.° at the
same frequency.

If the medium is isotropic in the absence
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of externally applied fields, one has the re-
lation:

(¢ — 1)E* = 42P,°, [11]

where ¢’ is the scalar electric permittivity
of the medium at frequency w.

In the case of an anisotropic medium, the
electric permittivity is a second rank tensor,
&r, the o, 7-components of which if re-
ferred to a Cartesian coordinate system can
be arrayed in the shape of a 3 X 3 matrix
(43):

€ry €xy €xz

(Eaf) = [12]

€yz Eyy €yz
€zx €2y €2z

The number of its nonvanishing components
and the mutual relationships between
these components will in each case depend
on the symmetry elements presented by the
medium. Thus, in the simplest case of an
isotropic body, the six nondiagonal com-
ponents of the tensor matrix [12] will vanish,
and the three remaining (diagonal) ones
will be equal to one another, so that we can
write

[13]

€r = €bor,

8, being the unit Kronecker tensor with
components equaling unity for ¢ = 7 and
vanishing for ¢ # 7.

For an anisotropic body, the vectorial
relation. [11] has to be replaced by the
following, fundamental relation in tensor
notation:

(G:’r - 6¢1>Erw = 47rP:°’ ) [14]

where we have applied (and shall henceforth
apply) Einstein’s summation convention,
stating that an index appearing twice
(here 7) indicates a summation. Obviously,
with regard to [13], Eq. [14] immediately
goes over into Eq. [11].

I, as was the case of classical light sources,
the electric field strength E” is not very
large, the medium undergoes a linear polari-
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zation (depending on the first power of the
field strength only):

Por = xo E.°, [15]
where x:¥ is the tensor of linear electric
susceptibility at frequency w, which, being
a second-rank tensor, can be put in matrix
form like [12]. With regard to Eqgs. [14]

and [15], we have the following relation
between the two tensors:

e:"r - 8117 = 41rxf,f -

The linear relation [15] holds as long as
the probe light is weak and the medium is
not acted on by external forces. Now, if
the medium is subjected to an external,
e.g., magnetic field H of sufficiently high
intensity, the polarization vector will in
general become a nonlinear function P,*(H)
of H. It has to be stated clearly that if, as
we shall see further on, the medium under-
going nonlinear polarization is a naturally
isotropic one, it becomes anisotropic and
its electric properties have to be expressed
by a tensor equation of the form [14].

In considering a naturally isotropic
medium of volume V we are interested in
properties that are averaged microscopic
quantities. Thus, in a dipole approximation,
the electric polarization vector can be
written in the form:

VBY = f M. (z, E°, F)f(z, F) de, [16]

M. (x, E*, F) being the electric dipole
moment induced in the medium by the
electric field E” in the presence of an external
field F when the microsystems (atoms,
molecules, macromolecules, or particles)
are at configuration = and their statistical
distribution at thermodynamical equilibrium
of the system as a whole is defined by the
function

€xp {_BU (1)F)}
fexp (=8 U (z, F)} de~

Here 8 = 1/kT, whereas integration in [16)

f("» F) = [17]

163

and {17] extends over all possible configura-
tions of the microsystems.

The total potential energy of the system
U(x, F) at = and F can be resolved into a
nonperturbated part U(s, 0) in the ab-
sence of the external field (F = 0) and a
perturbated part W=, F) due to the action
of the field F on the system. In a great
number of problems, the perturbation energy
W is very small as compared to U(s, 0)
and kT, so that one is justified in expanding
the Boltzmann factor in [17] in a power
series and writing in a second approxima-
tion

f(=,F) = f(=, 0){1 — (W — (W))
+ LW — (W
— 2(W — (W)W + -+,

(18]

where
@) = [ W, B)f(=,0) d= [19]

is the statistical average calculated with the
function f(x, 0) of the nonperturbated
state by Eq. [17] for F = 0.

In general, the magnetic vector H* =
H’%™* of the light wave will also cause
magnetic polarization of the medium given
by a vector P,.°, and in analogy to Eq. [14]
we write for the tensor of magnetic per-
mittivity:

(,U':r _ aar)H‘rw = 4:7I'P:,,w . [20]

On going over to the microscopic in-
terpretation we average this polarization
as follows:

VP,* = f M, (x, H, F)f(z, F) du, [21]

with M,,”(x, H, F) denoting the magnetic
dipole moment induced in the medium by
the field H” in the presence of the field F.

FARADAY EFFECT

Consider the medium to be in a d-c
homogeneous magnetic field H of strength
so low as to cause only linear polarization.
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In addition to the electric linear polariza-
tion given by Eq. [15], we shall now have
moreover a mixed (second-order) polariza-
tion:

P :,v = xi:’:"
where the electric susceptibility pseudo-
tensor x:o™ of third rank defines the linear
changes in electric polarizability of the
medium induced by the magnetic field.

On inserting [15) and [22] into the funda-
mental equation [14], we obtain for an
arbitrary body:

“H, , [22]

€& — 8 = 4r(xar + xorv H,). 23]
Tor an isotropic body, we obtain:
Xer = xs'0ary  Xets = Xemears, [24]
where the scalar susceptibilities are:
xe = Y(xes + xay + xz2), (240
0 _ cum _ _eom com
Xom = Y6(Xayz — Xywz T Xyza (245]

ewm

- X:;a:n + Xz:z:n — Xezy )
€, being the Levi-Civitd extensor with
components equal to 1 or —1 according to
whether o7v is an even or odd permutation
of zyz, and to zero if any two indices are
the same.

With regard to [24], we can rewrite [23]
as follows:

[25]

w « w
€or — € Ogr = 4:7|'Xem€¢va

with & — 1 = 4wx,” denoting the electric
permittivity in the absence of a magnetic
field.

Once we assume the magnetic field as
directed along the z-axis (which is the
propagation direction of the probe light),
only the nondiagonal components of [25]
will be nonzero:

@ nA

' v w

V)\H zy [26]

€oy
Verdet’s constant now being of the form:
4%

V)\ = H Xem «
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If now we take into account that the in-
dices for right and left rotating oscillations
are (2):

Teqy

n +
2n

n:l:=

we go over directly from [26] to Eq. [1].

Similar ecalculations yield contributions
to Verdet’s constant from the magnetic
polarization induced by the magnetic vector
H® of the light wave in the presence of a
d-¢ magnetic field H (8, 41); these, how-
ever, are insignificant in the case of dia-
magnetic substances, and we shall refrain
from considering them here.

The preceding, purely phenomenological
considerations are valid for diamagnetic -
(and not excessively condensed) substances,
and have to be extended if the microsystems
constituting the medium possess permanent
magnetic moments, in Langevin’s classical
meaning (46), undergoing orientation in
the applied magnetic field. The potential
energy, which in this case is that of a para-
magnetic material immersed in a magnetic
field, is, in a linear approximation,

Wz, H) = —Ma.H.,, [28]

whence the distribution function [18] as-
sumes (in the same approximation) the
form:

f(=, H) = f(z,0)(1 + sMn-Ho), [29]

M,. denoting the permanent magnetic
dipole moment of the medium in the ab-
sence of externally applied fields.

On the other hand, the electric dipole
moment induced in the medium by the
oscillating electric vector E in the presence
of a magnetic field H is:

Mg, =-(AZ + B "H,)E.°,  [30]

where As; is the tensor of linear electric
polarizability of the medium at frequency
w, and its linear variation induced by the
magnetic field is defined by the polariza-

ewm

bility pseudotensor B:,," .

On inserting the polarization vector
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component [16], calculated by means of

[29] and [30], into Eq. [14], we finally get

(see Appendix A):

5::1 - €0w6¢rr = n—‘>\ V)\ﬁrrvHv; [31]
i
where the Faraday constant is now of the
following general form derived by statistical
thermodynamics:
27’
W= 3n\V

em 4 8 z‘;M?,w)em. 32]

This expression is correct for isotropie
media of arbitrary structure and degree of
condensation. Particularized for a medium
of mutually noninteracting microsystems,
it takes a form analogous to the well-known
result of Born (2):

25%ip (beer

Vi = 3an P

+ ﬂai‘éﬁ)ww (33]
p = N/V being the number density of
microsystems presenting magnetic moments
to" and polarizability tensors ahs and

ewm
afy -

The first terms of Eqgs. [32] and [33],
which do not depend directly on tempera-
ture, define a diamagnetic Faraday effect,
consisting in changes in the optical prop-
erties of a body or of its microsystems in-
duced directly by an applied magnetic
field. The second term in Eq. [33], which
depends directly on the temperature by
way of 8, defines the paramagnetic part of
Faraday’s constant related to reorientation
of the magnetic dipoles in the applied
magnetic field (46).

COTTON-MOUTON EFFECT

From the phenomenological viewpoint,
the Cotton-Mouton effect stems from the
nonlinear electric polarization induced by
the square of an applied d-¢ magnetic field;
this polarization, when inserted into Eq.
[14], leads to the following variation of the
electric permittivity tensor:

- 60“’5,,- = 47!')(:fo ,,H P [34:]

@
€or
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where the electromagnetic susceptibility
tensor xsry, of fourth rank has nonzero
components in the case of an isotropic
medium also. The phenomenological equa-
tion [34], applicable though it be to arbi-
trary bodies, fails to permit any statement
whatsoever as to the microscopic mechanism
of the effect. In order to bridge the gap, we
have .to develop a statistical theory, as has
already been done with regard to the
Faraday effect.

To begin with, let us restrict ourselves to
the case when no magnetic moment exists
in the absence of externally applied fields
(M, = 0) and when no electric polariza-
tion, linear in the magnetic field strength, as
described by [22], occurs. With these
restrictions, the electric dipole moment
induced in the medium can be written as
follows:

Me, = (As' + %CorHH, + -+ )E°. [35]

Above, a new fourth-rank tensor C;;,,
appears. It describes the change in electric
polarizability of the medium due to the
square of the applied magnetic field.

In the case now under consideration the
potential energy [28] of the first approxi-
mation is equal to zero, and we have to
proceed to the second approximation:

W(x,H) = —1447H,H., [36]

where A7, is the tensor of linear magnetic
polarizability of the medium. The distribu-
tion function [18] is now of the form:

f(=, H) -
= (=, 0){1 + 248(Ac; — (A7) H.H.}.

Returning to Egs. [35] and [39], we now
easily calculate the polarization vector
component [16], which on insertion into
Eq. [14] leads to the following result for
isotropic bodies (see Appendix A):
eoa',r - e0‘.}60")' = zn)\{ imang

., [38]
+ G(HH, — 156.H%)},
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wherein the constant

Q" = o= ((Chs) + FAALALR)}  [39]
defines isotropic variations of the tensor
¢ due to the nonlinear polarizability of
the medium (first term) and to fluctuations
of the linear electric and magnetic polariza-
bilities (the second term of Eq. [39}—the
counterpart of magnetostriction). The con-
stant C,* defines the diamagnetic part of

the Cotton-Mouton constant:

o =

ewm >

15 AV {(3 aaé::ﬁ aaﬁﬂ

+ B(BApAG — Avadpp)}.
This formula holds for arbitrarily con-
densed media. If particularized to the case

of noninteracting microsystems, it becomes
(2,11):

[40]

d
C\ = {3Cafas — Caass

15n)\ [41]

+ ﬂ(3a a':B - a’aaaﬁﬂ)}

The first, not directly temperature-de-
pendent term is related to the nonlinear
change in optical polarizability of the
microsystems induced directly by the mag-
netic field (Voigt’s effect). The second,
temperature-dependent term arises by orien-
tation of the magnetic polarizability ellip-
soids in the magnetic field (Langevin’s
effect). Since for isotropically polarizable
microsystems (11) we have:

a:'z‘/; = aswaaﬂ 3 G/':B = amaaﬂ 3
Cafnd = M2 Bapdys
+ %(ﬂ‘f]’m - "lim)(savaﬁﬁ + 50:66197)’

one notes that [41] reduces directly to Eq.
[6], which describes the Voigt effect alone,
since now the Langevin molecular orienta-
tion term vanishes.

Voigt’s effect of nonlinear deformation
plays an essential part in atomic substances
whereas in substances consisting of molecules
beyond absorption regions it plays a part
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subordinate to that of the second term of
Eq. [41], since in such substances the effect
of orientation of the anisotropic micro-
systems predominates. Accordingly, in such
cases, we are justified in neglecting the
very small Voigt effect (12) and in con-
sidering only the Langevin effect, which, in
the case of linearly polarizable axially sym-
metric microsystems, is given by Eq. [7].
The latter formula results obviously from
the general equation [41], since at symmetry
with respect to the 3-axis given by the
unit veector k, the tensor of linear polariza-
bility can be written in the form:

Aag = anaap + (a33 bt an) kakp . [42]

Had we included in our calculations (in
addition to the diamagnetic energy [36)])
a paramagnetic energy [28] as well as a
moment linear in H in the expansion [30],
we would have obtained in the general
equation [38] (in addition to the diamag-
netic part of the Cotton-Mouton constant
[40]) a paramagnetic part of the form
(15, 35):

B

O = o (2B
ewm 4
BomMbg) + B (3ALSMpaMag [43]

— AL MosMag)}.

Cotton-Mouton constants of the forms
[40] and [43] have found application to
liquids if account is taken of various molecu-
lar correlations (11, 15) and to solutions
(15, 35), as well as to macromolecular sub-
stances (19), and can readily be applied
to suspensions of colloid particles.

In concluding this Section it may be
worth noting that, in the case of probe
light propagating along the y-axis per-
pendicularly to the xz-plane containing the
magnetic field vector, the general equation
[38] yields the following expression for the
difference between mutually perpendicular
components of the permittivity tensor:

= 2n\C\(H. — H.Y). [44]

] ]
€2 — €z
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For a magnetic field acting along the z-axis
we get, in approximation, Eq. [2] since
€ — € =2 2n(n) — nu).

OPTICALLY INDUCED MAGNETIZATION

Before the coming of lasers, it had already
been suggested (25) that strong light could
nonlinearly affect the magnetic properties
of matter. Recently, Pershan et al. (36)
carried out an experiment in which they
succeeded in magnetizing nonabsorbing
bodies by means of laser light. In this case,
laser light with electric vector E°% = E’¢™**
oscillating at frequency . induces in the
medium a magnetic polarization vector of
second rank whose component is:

Pmar = X:.fb;LE:’ LEI:‘“L. [45]

Above, the pseudotensor x5r,” of third rank
deseribes the nonlinear change in mag-
netic susceptibility induced by the laser
beam of intensity E“ZE “%. In the absence
of dispersion and absorption, the pseudo-
tensor xsr,~ is the inverse of the pseudo-
tensor xir, appearing in the theory of
Faraday’s effect, and in the case of isotropic
bodies is given by the expression [24]. We
can accordingly bring [45] to the form:

n

47I'Pm¢ = LZTL V)\LGVTVE:’ LE:”L7 [46]

i

where V), is a Verdet constant defined by
analogy to [27] for the laser wavelength Az .

Since in the case of light circularly po-
larized and propagating along the z-axis
the amplitudes of the electric vectors of
right and left rotating oscillations are:

Ey = (E, = iE,) /2, [47]
Eq. [46] reduces to the form (36):
Ppe = 2227, (LY — 15), 148

272

where I." = E + E,*/2 is the intensity of
right and left circularly polarized laser
light.

The formula [48] defines an inverse
Faraday effect [36] consisting in the induc-
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tion, in a nonabsorbing medium, of mag-
netic polarization by circularly polarized
light.

We shall now show that intense light can
induce magnetic anisotropy in a medium.
This new effect originates in the circum-
stance that the electric vector E°Z of the
laser beam not only causes magnetic polari-
zation of the second order as given by
formula [45] but moreover modifies non-
linearly the magnetic polarization P,°
induced by the probe light’s magnetic
vector H”. We are thus dealing here with
a mixed polarization of third order:

Py = Xorsp "H "B E %, [49]
wherein, in the absence of electron disper-
sion and absorption as well as dipole re-
orientation, the fourth-rank tensor Xgr,,~
possesses properties analogous to those of
the tensor x:ry, of Eq. [34] describing the
Cotton-Mouton effect. By inserting [49]
into Eq. [20] we obtain the following ex-
pression for the variation induced in the
magnetic permittivity tensor by intense

laser light:

Bor — o0 = dmxers, "ERE,CE. [50]
This expression is valid both for static
magnetic permittivity (0 = 0) and for
magnetic permittivity dependent on the
frequency w; as will be shown further on,
it describes an effect which is the inverse
of the Cotton-Mouton effect and in which a
body changes its magnetic properties under
the influence of intense light. In particular,

for isotropic bodies, Eq. [50] becomes:
ﬂ:f - ﬂowsw = aao’TE ‘:LE;O’L

51
+ bESUEY + o

cEZEE MR,
where a, b, ¢ are constants involving com-
ponents of the tensor xzsys .

For the case of laser light propagating
along the z-axis, Eq. [51] leads to the fol-
lowing expressions for the differences be-
tween the diagonal and the nondiagonal
components of the magnetic permittivity
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tensor:
Moz — M;’u = 2(b + c)(Ifx - szu 3 [52]

poy — wpe = 2i(b — o) (14" — 1), [53]

One thus sees that magnetic anisotropy
of the kind given by Eq. [52] can be induced
only by light that is linearly polarized in
the direction of the z- or y-axis, since in the
case of natural light IZ = I, = I/2 and
the anisotropy wsz — myy Vanishes. On the
other hand, circularly polarized light can
induce magnetic anisotropy according to
Eq. [53] only in a medium with dispersion
and absorption, since in an optically trans-
parent and magnetically lossless medium
we have:

muwz,

2
i%r (3Xaﬁaﬁ

MWW I,

— Xaafs )- [54]

b=rc¢=
We now proceed to a statistical-micro-
scopic interpretation of the results in the
special case of mutually nonminteracting
microsystems; however, we assume that
these microsystems (molecules, particles)
interact with the electric field of laser light
according to the following formula of their
potential energy in the field:

W(s, Eu) = —Ya E"E"", [59]

where a2k is the linear eleetric polarizability
tensor at frequency wy .

On inserting this energy into the distri-
bution function [18] we obtain, in an ap-
proximation sufficient for our aims,

f("’ EL) = f(": O) {1 + g (a:’rL
[56]
- <a:,L>>E:LE:‘°L}.

Assuming moreover that the tensor of
magnetic polarizability of a microsystem
ay. undergoes no nonlinear optical varia-
tion, we get with regard to Eqs. [20] and
[21] for diamagnetic substances:

Mor — 0or = 47FP f a'::rf(", EL) dr. [57]
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On substituting herein the distribution
function [56] and on performing an averaging
procedure one comes to an equation of
the form of Eq. [51], where the constants
a, b, and ¢ in the absence of dispersion take
the form:

26 = 2 = —3a = nL)\LOfI? , [58]
where

RO __ o8 m WL _ m WL

A, = 1—-——5anL (3aaﬁaaﬁ‘ (1950 7Y ) [59]

is the counterpart of the Cotton-Mouton
constant [41)], arising by reorientation of the
microsystems in the laser field of frequency
Wy, .

Recurring to the relations [58], we can
now write the magnetic anisotropy [52]
in the form:

M;w - Ilyy = 2nL)\LC§\z[?(I:Z - IIII;U . [60]

This formula, patently, describes an in-
verse Cotton-Mouton effect.

NONLINEAR FARADAY EFFECT

Let us now consider magnetooptical ro-
tation in the presence of intense laser light
—a situation involving in addition to the
polarization [22] the following nonlinear
contribution:

Poy = xorvon "EEVRE,“Hy [61]
leading to the following variation of the
electric permittivity tensor:

e:‘r - éowaaf

= dx{xern + Xerwor By E,"F{Hy .

One notes that this equation contains
(in addition to the earlier term describing
the usual, linear Faraday effect) a new term
the experimental meaning of which is that
of a nonlinear variation in Faraday effect
due to intense light. Hence, this term leads
us to anticipate a new experiment in which
the measured, optical properties of matter
vary under the simultaneously exercised
influence of a d-¢ magnetic field H and the
electric field E“~ of laser light.

(62]
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Let us now consider this nonlinear Fara-
day effect more closely in a statistical ap-
proach, starting from the following relation:

& — et = dmp [ BT f(5, Eo) de, [63]

where for the sake of simplicity we have
omitted the direct nonlinear optical vari-
ation of the pseudotensor b;;,".

We now introduce, by analogy to the
gyration tensor g,. of optical activity theory
(2, 4), a tensor g,r defined thus:

ewm
bar P

[64]

Invoking moreover the distribution function
[56], weiobtain (see Appendix A):

. em
= —l€n{vp-

— €08 = — {V(O) Osp

€
+ Y VPGEE (6
+ 3E,*E,“*
— 28, EXEN ") YeonH
where

470 om 47’
xmp g = TP em
3nA n\

is the usual Verdet constant (its diamag-
netic part) in the absence of the laser beam,
whereas

= [66]

Vo = 2008 (3gmatk — gmag) 167
450\

is a Verdet constant from induction by

light and is due to the effect of optical

reorientation of the microsystems alone.

If the tensors gas and asf are referred

to principal axes 1, 2, 3 of the microsystem,

Eq. [67] can be rewritten in expanded form:

2n” 2n”pB
45nn

+ (g2 — g33) (@ss" — ass®)
+ (g3 — gir) (as¥ — a1t™) }.

VP = — g5) (a1t — asd)

{(gi7
[68]

Assuming as previously the light to
propagate along the z-axis, in whose di-
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rection the d-¢ magnetic field is applied,
one obtains from Eq. [65]:

@ 2n\

oy = —0r {V(O)

ezy

+ 15 v sEeem;er 109

— E;FE; %) }H,

The nonlinear variation in Verdet con-
stant is thus seen to be positive if the
electric vector of the laser beam oscillates
along the z-axis, and negative if the laser
beam propagates along the z-axis and its
electric vector has components E;* and
E,;*. This statement is expressed by writing:

2V 1L,

VPUIL + IL).
OPTICAL SATURATION

We hitherto assumed that the potential
energy [55] of the system in the electric
field of the laser beam was small as com-
pared to k7T, and recurred to the distribu-
tion function in its approximate form given
by Eq. [56]. In very strong optical fields,
the polarizability ellipsoids of the micro-
systems can undergo complete alignment,
so that optical saturation takes place in the
whole volume of the system. We can no
longer use the approximate expansion [56]
in calculating optical reorientation effects,
but have instead to recur to the distribution
function [17], which in the present case with
regard to [55] takes the form:

exp (Z “’LE“’ LE_"’L>

f exp (g a.-Es E, ‘”‘) de

With the aim of simplifying further cal-
culations, let us assume that the micro-
systems present the axial symmetry; ex-
pression [42] is the one to be used now,
reducing the function [71] to:

E-W = { [70]

f("y EL) =

. [

exp {yo, (k-€)’}
fexp (1o, (k-€)°} dr
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where
Yor =& (a8 — atyEE (73]

is a parameter of reorientation of the micro-
gystems in the electric field E“%, the direc-
tion of which is defined by the unit vector e.

If one applies Eq. [57] to the case of
axially symmetric microsystems, the mag-
netic anisotropy results in the form

oz — My = dwp(ass — afy)

2 [74)
: f {(k-x)? — (k-y)*}f(=, Es) de

with X, y, z denoting unit vectors parallel
to the axes of laboratory coordinates.

On assuming that the laser light is po-
larized with electric vector oscillating
parallel to the z-axis, and on denoting by
& the angle between the latter and the sym-
metry axis k of the microsystem, we can
write Eq. [74] as follows:

Bz — My = 47"P(a’3n3 - arlnl)q’(ywz,)s [75]
where
1
¢(ywz,) = 5
[76]

: f " (3 costd — 1)f(8, Ex)2r sin o do
[1]

is a function introduced by O’Konski et al.
(38) in the description of electric saturation
of optical birefringence. The distribution
function [72] is now of the form:

f(l?, EL)
_ exp (Yo, cos’ &) [77]
21rf exp (Yo, cos’ ¢) sin & do
0

Keeping in mind, in calculating the
latter, that the optical anisotropy of the
microsystems can be positive (as is the case
of CS,, where az;; > an) or negative (e.g.,
for C¢Hs, where a3 < a1n1), we obtain the
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funection [76] in the form:

(£ y) =
43 {——1 l} 1 7
s \Vi I(x=y) Wlf 2
involving integrals of the form:
Vil
I(xy) = L e et [79]
2 Vvl

the upper and lower signs referring to
positive and negative anisotropy, respec-
tively.

The function [78] has been tabulated and
plotted for both positive (37, 38) and nega-
tive (47) anisotropy. For ¥y = 0 we ob-
viously have #(0) = 0, whereas in the
limiting case as y — o the orientation
function [78] tends to unity in the case of
positive anisotropy and to —14 in that of
negative anisotropy.

The procedure to be followed is similar if
we wish to calculate the influence of optical
saturation on the Faraday effect from Eq.
[63] and the relation [64]. Thus, denoting
by & the angle between the symmetry axis of
the microsystem and the z-axis, parallel to
which the magnetic field H lies and the laser
vector E“? oscillates, one obtains the follow-
ing nonlinear change in Verdet constant:

e -
2 [30]
= -2 (2437

= I — git — g2z )®(Ly o)

A similar result is obtained if one sup-
poses that the laser beam propagates along
the z-axis; one has only to replace the re-
orientation function by ®(Fy).

For not too strong reorientation (y < 1),
the function [76] can be represented in the
form of the series (48):

_ 2%
®(y) = is o
PEVANE AN U
315 4725 31185 ’
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One sees that in a first approximation of
the expansion [81] the result [80] reduces
to the variation [70], with Verdet constant
of the form:

Ve o 27" o8

= T (205

— g — g%)
(82]
- (as" — a1i®)
being a particular case of the constant [68],
on the assumption that an = @y = gz

MAGNETOOPTICAL SATURATION OF
BIREFRINGENCE
Finally, let us consider the icase when
axially symmetric microsystems undergo a
reorientation induced concomitantly by a
d-¢c magnetic field H and a laser electric
field E, given by the distribution function

f("; EL, H)
exp {Yo,(k-)° + ym(k-h)*} [83]

[ xp tyn (- 0)* + g’} s

i
where ¥, L[ is defined by Eq. [73], whereas

go =5 @ - By
is a reorientation parameter of the miecro-
system in the magnetic field H, the latter
being directed along the unit vector h.

Let the probe light beam propagate
parallel to the y-axis. The birefringence is
now: (Fig. 1):

G.‘:z — € = 47rp(a§’3 - a;’l)

, : 1851
[ 12— (ex))iGe, B, H) d.

Insertion of the first-order expansion of the
function [83] into Eq. [85] yields the usual
Cotton-Mouton effect and the optical
Kerr effect (30).

However, if one recurs to the second-
order approximation of [83], one obtains
(in addition to the birefringence [44]) the
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Z

X

Fia. 1. Diagram showing setup of proposed
experiments. The measuring (probe) light beam
with electric vector E“ is in all cases chosen to
propagate along the y-axis. The propagation direc-
tion of the laser beam with electric vector Er can
be chosen arbitrarily; however, the most advan-
tageous direction of propagation for it would be
along the y-axis. The d-¢ magnetic field H can be
applied along one of the reference axes z, y, or 2.
The symmetry vector k of the particle subtends
the angle ¢ with the z-axis, its azimuth being

(‘-

following magnetooptical cross birefringence:
— € = 20O (2.2, — Zor) {3(Eohe
+ eh,) (e-h) — 2(e.e, + hoh,) }H T*

[+
€z

involving the constant

@ _ 2mpf’
O = 3

(871
- (a3 — a11) (a33 — aiy) (as® — aif),

the value of which is dependent simul-
taneously on three polarizability aniso-
tropies, two of them electric for frequencies
© and w;, and one magnetic. As to the
birefringence of Eq. [86), it depends on the
square of the magnetic field strength H
and on the intensity I* = E“XE “%/2 of
the strong laser beam.

An analysis of the expression [86] sug-
gests several experimental variants for the
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measurement of this magnetooptical cross
effect. We shall now consider some of these
variants. To begin with, let us consider the
case when the direction of propagation of
the laser beam is the same as that of the
probe light, i.e., parallel to the y-axis.
Equation [86] now yields for an unpolarized
laser beam:
& = m\CP(H! — HHI* [88]
and for a laser beam which is polarized
with oscillations of the electric vector paral-
lel to the z-axis:

o = 2a\C(H, — HYIE .

€y

(5}
€z

€z — [89]

It is thus apparent that Eq. [88] describes
a nonlinear contribution, due specifically
to the influence of the strong laser light of
intensity I, to the Cotton-Mouton effect
of Eq. [44]. Obviously, the Cotton-Mouton
effect [44] and its nonlinear variation [88]
can take place only if the magnetic field H
is applied along the z-axis or z-axis. How-
ever, Eq. [89] shows that a birefringence
can also appear in the case when the mag-
netic field acts along the propagation direc-
tion of the two light beams (y-axis), as in
Faraday’s effect. This “parallel” magneto-
optical birefringence is given in general form
by the expression:

— € = —2n)\C)(\2)Hy2(I:} — I.) [90]

ézz
and should be accessible to measurement
independently of the “perpendicular” Cot-
ton-Mouton effect [44]. Clearly, the bire-
fringence of Eq. [90] can occur only if the
electric vector of the laser beam oscillates
perpendicularly to the direction in which
the magnetic field is applied, e.g., along
the z- or z-axis; an unpolarized laser beam
is unable to produce such birefringence,
since in this case I, = IY, = I*/2 and the
birefringence [90] vanishes. HEquation [86)
suggests yet other experiments; however,
we refrain from discussing them here.
When reorientation of the microsystems
is considerable, one is no longer justified
in expanding the distribution function [83].
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For a magnetic field H and electric vector
E, acting along the z-axis, we can now write:

f(l’, EL, H)
__ ep (o tym)cos’d) oy
2r fo exp { Yoy, + Ym)cos’d} sin ¢ dg

where ¢ is the angle subtended by the axis
k of the microsystem and the unit vector z
of laboratory coordinates (Fig. 1). Since

in this case k-z = cos ¢ and k-x = sin ¢
cos ¢, Eqs. [85] and [91] yield:
eg’z - e:,:c

= 4mp(ass — o) ®(E Yo, £ ym). [92]

This formula defines optical birefringence
in the presence of magnetooptical satura-
tion. It reduces to the formula for optical
saturation of birefringence (37) if y,, # 0,
Ym =0, and to magnetic saturation of
birefringence (18) if y,, = 0, ym # 0.

DISCUSSION AND CONCLUSIONS

In molecules like CS; or Ce¢Hs, the re-
orientation parameters [73] and [84] are
of the order of y,, ~ 107 E,* and y., =~
107°H® at 300°K. With such low values,
it would be necessary to apply a laser beam
with electric field E, of the order of 10*
esu or a magnetic field H of as much as
3 X 10° oe in order to bring the reorienta-
tion function ®(y) of Eq. [78] to a value of
10~°, corresponding to a value of y = 107~
Hence, in order to be able to observe in
molecular liquids the nonlinear effects
anticipated by our. ecalculations, one would
have to apply fields of the utmost intensity,
thus incurring experimental difficulties (op-
tical breakdown due to laser light).

The situation changes spectacularly for
the better if one considers using macro-
molecular or colloidal substances. Thus,
large molecules and colloid particles of
about 100 A present reorientation parame-
ters of the order of y,, 10°E,* and
Ym =~ 107" H?, so that fields of less than

~
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E, ~ 10 esu and H ~ 10*0e are now
sufficient for raising the value of the funec-
tion ®(y) to 107°. Such fields are readily
available in laboratories at present. Optical
gaturation would thus demand a-field E.
of order 10° esu, involving the focused beam
of a ruby laser with a pulse duration of at
least 107° sec so that the macromolecules
can keep pace with the field in the process
of reorientation.

For the case of optical saturation, Eqgs.
[75] and [92] lead to the following expres-
sions:

+ 4wp(ass — a11),

Mz Hyy = m ” [93]
- 27FP(0'33 - au),

© © + 41rp(a,§’3 - aﬂ),

€22 €xx = © © [94]
- 27rp(a33 - an),

permitting direct determinations not only
of the optical and magnetic anisotropy of
macromolecules and colloid particles but
moreover of its sign (in Egs. [93] and [94],
the signs “—?” and “+4” refer to negative
and positive anisotropy, respectively).
From Eq. [80], in the case of optical
saturation, investigation of the Verdet
constant, which is now of the form:

vEe — ¥

3nA

_ 21er
3nh

em

+ (292? — 11 — g?'z"), [95]

(265 — gif — g%,

will permit determinations of the sign and
value of the magnetooptical anisotropy
induced in the macromolecules or colloid
particles.

Colloid systems (e.g., anisaldazine, see
reference 18) with particles of the order of
10° A and a high magnetic anisotropy
amounting to about 107 are quite easy
to obtain, leading to a magnetic reorienta-
tion parameter [84] of order Yy, =~ 107 H~.
In such systems, magnetic saturation can
be achieved even at magnetic field strengths
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H of less than 10* oe. Hence, the properties
given by Eqgs. [93]-[95] should prove ac-
cessible to measurement in the presence of
magnetic saturation, induced by a d-c mag-
netic field of intensity easily achievable in
Iaboratories with electromagnets. Similarly,
the study of the influence of magnetooptical
saturation suggests itself with the system
acted on simultaneously by a strong d-¢
magnetic field and the electric field of in-
tense lager light.

From the preceding considerations, it
can be said that real possibilities are now
available for the standardization of new
and simple methods of determining the
magnetooptical properties of macromole-
cules and colloid particles as well as their
anisotropy and geometrical shape (see Ap-
pendix B). The new nonlinear magneto-
optical effects calculated in this paper
should also be easily apparent in liquid
crystals (49) and other substances the
microsystems of which can undergo re-
orientation.

Historically, the linear magnetooptical
effects were first found in colloidal systems.
It is only natural that these systems should
still be the most appropriate for the de-
tection of the nonlinear effects anticipated
here.

The classical theory presented above can
be  easily extended to multicomponent
systems involving various molecular cor-
relations of both the radial and angular
kinds (15, 35). Also, one can evolve a
coherent, quantum-mechanical theory of
these nonlinear magnetooptical effects, as
has been done for the case of other, simpler
phenomena (40-42, 50). This will provide
new information regarding the electronic
structure of atomie, molecular, macro-
molecular, and colloid systems.
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APPENDIX A
UNWEIGHTED AVERAGING METHOD

Tensor components referred to labora-
tory coordinates with unit vector basis x,
y, z will be labeled o, 7, », p, - - - ; referred
to the axes of the molecular coordinate
system, with unit vectors i, j, k, they will
be labeled a, 8, ¥, §, --- . Let us accord-
ingly transform the tensors a,, b, , and
so forth, from laboratory to molecular
coordinates:

ad‘r

bﬂ TV

= caacfﬁaaﬁ ’ [A]_]

= cUacfﬂcv’rbaﬁ‘Y y ",

where, if all reference systems are Cartesian,
the transformation coefficients c,. have the
meaning of cosines of the angles between
axes ¢ and a. The directional cosines ¢,
and ¢ fulfill the orthonormality relations:

Ca'acrﬂarr = 6aﬂ 3 Cvacfﬁaaﬂ = 601 . [A2]

On averaging these products of directional
cosines over all possible orientations at
equal probability, we get (35):

(Coaleg) = 140 abor ,
(CoaCeploy) = Y6€apyears ,
(CraCrpConCos)

= 140{ (43abns — Bardss — Basdsy) dorbsp
+ (4:6;;7556 - 6a66ﬂ7 - 5049875)5011 p

+ (400508 — 8agdys — Sardss)s0r}.

As an example, let us calculate the nonlinear
variation of the Verdet constant as given
by the following equation:

«@ (7] .
€or — € Ogr = _47|'P74€arv

[A4]
[ O HS B

which results from Eq. [63] on insertion of
{64]. Returning to the distribution function
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in the form [56], we obtain:
€°0r = —4mpiesnH, ALg5)

51‘701' -
ﬁ em WL\ _ /. em\/ @F EmLE—-wL [A5]

+ Z((!hpaky} (gva Xand)) Ex et B
or, using the transformation formulas [A1]:
6:’1' - 6005” = —-41rpie,,-,,H p{gi”é(CyaCPﬁ)

4 ngt’gas,{‘((cmcppchc,.ﬁ [A6]

— {Cratop)onsCus)) EX “E 7.

On inserting herein the mean values [A3]
of the directional cosines, we find:

4z em
_g‘ P'&éarva {grx aavp

5:,1' - fl)wan =
_ 8

120

— 295e0sd" )0, BN " ER "

(8gapaaf + 3gapask

em wj,

+ 4% (4g%maF — gmals  [A7]

— Gaatis’) By P E;

B m W em W
+ G (4gapass — gapaf

~ gihai) B}

If, above, one assumes the tensor au¥
to be symmetrical as is the case in the ab-
sence of dispersion and absorption for op-
tically nonactive molecules, the formula
[65] results immediately. The other ex-
pressions, [38] and [59], are similarly derived.

APPENDIX B

POLARIZABILITY OF THE

ANISOTROPY ELLIPSOID
Let us consider a medium of electric
permittivity ¢ within which an externally
applied uniform electric field E° extends.
We consider an ellipsoid, of electric permit-
tivity ¢’, immersed in the medium. The
electric field E* existing within this ellipsoid
is related to the field E° by the following
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equation, which results by electrostatics of
anisotropic bodies (51, 52) :

e:r ‘r"3 = {(aw - Lo'v)efn' + Lﬂeir}E-r‘- [B]-]

The symmetric tensor L,, = L., describes
the geometrical shape of the ellipsoid and
has the following properties: its trace
equals unity,

La‘raﬂ' = Lo‘a = La:a: + Lw + Lzz = 1’ [B2]

and its principal values are given in the
well-known manner:

\ . © _ ds

R L N Al
where
Re = (r2 + 8)(r2 + 8! + 8),

with 75, 7y, s denoting the lengths of the
semiaxes of the ellipsoid.
In the particular case of a sphere (r, =

r, = r, = r), the shape tensor becomes
isotropie:
Lur = %60'1 [B4]

and [B1] reduces to the simpler form:
3B, = (e + 26)E’. B3]

If, on the other hand, the permittivity
of the medium in which the ellipsoid is
immersed is isotropie, i.e, if

(B6]
Egs. [B1] and [B2] become for an ellipsoid:
&BS = {(bn — L)ee + Loc)BE’ [B7]
and for a sphere:

SeeEo'e = (G;.,- + 25e6ur)Eri-

[
€r = €edar 5

(B8]

By referring the tensor components e
and L, to the principal axes, we derive
relations for the electric field within the
ellipsoid:

el

E‘ = € + (eo'i - ee)La !

[BY]
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or the sphere:

353 e
Gai + 259 Eo‘ :
For the case of isotropic bodies, these re-
lations lead to certain well-known expres-
sions (51, 52).

For a cylinder about the z-axis, we have
L., = 0 and Ly, = L, = ¥4. In the case
of a cireular dise, L,z = Ly = Oand L., = 1.

By Eq. [14], one gets for an anisotropic
ellipsoid of volume v immersed in an iso-
tropic medium of electric permittivity e

ESf = [B10]

(ej'r - eeaﬂ)E‘ri = é/;—r alcrEfe~ [B]-l]
With regard to the relation [B7], we hence
derive the tensor a,, of electric polariza-
bility of the ellipsoid; in particular, its
principal values are given by the well-
known expression (17):

v(e, — €)e

= Inle. + (e — e)Ld)’

Similarly, expressions are obtained for
the tensor of magnetic polarizability of the
anisotropic ellipsoid under consideration.
The present discussion can be extended to
the case of dispersive and absorbing media.

(12 [B 1 2]
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