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A theory of the nonlinear light scattering effects producible in colloidal systems by
strong laser light is proposed. Two effects are considered: (i) nonlinear scattering due
to orientation of colloid particles in the optical field, and (ii) multiharmonic scatter-
ing due to nonlinear optical deformation of the particles. Investigation of (i) pro-
vides information on the sign and value of the particle’s linear optical anisotropy,
whereas (ii) shows its nonlinear optical properties and symmetry elements. Since
present laser techniques are adequate for revealing higher order scattering effects,
we have here a new method of gaining vaster knowledge of the shape and size of
particles than by studying linear light scattering only.

Rayleigh (1) and Gans (2) proposed a
classical theory of light scattering by col-
loidal particles, small with respect to the light
wavelength and ellipsoidal in shape. Their
and later (3) work showed that by studying
the state of polarization and depolarization
of light scattered by colloidal systems one can
gain information on the size and shape of the
particles in suspension.

This paper is aimed at giving an extension
of the Rayleigh—-Gans theory to the case of
nonlinear scattering oeccasioned in colloidal
systems by light of high intensity / such as is
emitted by lasers. Such a theory for light
scattering by molecules of gases (4) and
liquids (5) has been proposed by this au-
thor earlier, showing that nonlinear scatter-
ing can be due to orientation of molecules by
the electric field of the light wave, as well as
to nonlinear polarization of the molecules by
that field. Bersohn (6) proposed a theory of
second-harmonic scattering by solutions of
macromolecules. Second-harmonic scattering
has been recently detected experimentally
in liquids by Terhune et al. (7) and in gases
by Maker (8) recurring to laser technique;
it is more sensitive with regard to the type
of molecular symmetry than linear Rayleigh
scattering and thus constitutes a fine tool for

Journal of Colloid and Interface Science, Vol. 27, No. 3, July 1968

structural and spectroscopical investigations
(4-10).

In gases and molecular liquids, the effect
of optical orientation is small; in colloidal
systems, however, owing to the considerable
anisotropy and size of the particles, it can be
by several orders of magnitude larger, thus
attaining high values. As a consequence, ori-
entation of the particles in the electric field
of a laser can cause considerable changes in
the optical properties of colloids, leading to
self-trapping (autocollimation) of laser
beams in gold-water colloid as recently ob-
served experimentally by Kaeczmarek (11);
but, moreover, such changes should lead to
nonlinear light scattering easily accessible to
observation by existing laser techniques.
Thus laser techniques can be applied to the
investigation in colloids of these new non-
linear optical effects as well as of hitherto
known optical phenomena (birefringence,
activity, dichroism, ete.). The advantages
of a laser electric field as compared with the
hitherto applied DC electric (12-15) or mag-
netic fields (16, 17) for producing molecular
orientation are obvious, being due to the
specific properties of laser light (coherence,
monochromaticity, high intensity, ete.) and
to the fact that it frees the measurements of
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nonlinear effects from various vitiating elec-
tric processes such as electrophoresis and
electro-osmosis.

The quantum-mechanical theorv of har-
monic scattering of light has been worked out
for scattering by molecules (9) and by
macromolecules (6). From the quantum
viewpoint, second-harmonic scattering is a
process involving three photons: two pho-
tons of incident light of frequency w vanish
by absorption as a result of interaction with
matter, whereas a third photon is emitted by
radiation, with double frequency 2w, or more
generally 20 4+ wy; if the molecule makes a
transition from quantum state k& to [ with
frequency wi;. Quite generally, one can be
dealing with multi-harmonic -scattering in
which n photons of frequency w are incident
on the molecule, which scatters a photon of
frequency nw, or nw =+ o for a quantum
transition of the Raman kind (9). The pres-
ent paper, however, gives a classical theory
of nonlinear light scattering by colloidal
particles in a phenomenological-statistical
approach. Phenomenologically, nonlinear
scattering of light consists in the fact that the
intensity /s of scattered light is not a linear
function of the intensity I of the incident
light if the latter is sufficiently intense, asis
the case for lasers. Thus, as will be shown
later on, one can write in general

Is =8 + S’ + S+ -+ = > 8,07,

where the quantity

> (ka)'@y

k=1

Sp =

is the phenomenological constant of nth
order scattering.

Above, 8; = «'Q," is the constant of
linear (or first-order) scattering with ground
frequency o discussed by Rayleigh and Gans
for ellipsoidal colloid particles. The constant
Sy = o'Qy 4+ (20)'QF defines nonlinear
scattering of the second order and consists
of ‘a constant ,° describing scattering at
frequency o due to orientation of ellipsoidal
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particles in the optical field and of a constant

5° of second-harmonic scattering due to
nonlinear deformation of the particle (the
latter when in a strong electric field E gains
a dipole moment of the second order, i.e., a
dipole moment proportional to the second
power of E). Similarly, the third-order scat-
tering constant S; = *Qy” + (20)'Q% +
(30)*Q3° consists of terms involving re-
spectively first-harmonic scattering Q;* due
to orientation of particles as well ag'second-
and third-harmonic scattering effects Q3* and

3° related moreover with higher-order de-
formations of the particles. Each of these
higher-order scattering effects is in its own
way (specifically) sensitive to the shape and
type of symmetry of the scattering particle
as well as to the structure and thermo-
dynamical state of the scattering medium.
They can be resolved into separate contribu-
tions by investigating the scattered intensity
in its dependence on the temperature, fre-
quency, and angle of scattering.

1. NONLINEAR SCATTERING OF LIGHT
DUE TO ORIENTATION OF PARTICLES
IN AN OPTICAL ELECTRIC FIELD

Let us consider colloidal particles of ellip-
soidal shape, having anisotropic optical
properties given by the principal values n, ,
7, , 13 of their refractive index, and immersed
In an extensive isotropic medium of scalar
refractive index ng . Their linear dimensions
are assumed small as compared to the wave-
length X of incident light (2r < M/xn); this
assumption allows us to restrict considera-
tions to the dipolar approximation. Let us at
first assume for simplicity that, under the
influence of ‘the electric field £ of the light
wave, the particles undergo only linear polar-
ization, i.e., the dipole moment induced in
them can be written as follows:

Me = A E, . 1]

In the preceding equation, the tensor 4 ,, de-
scribes the linear optical polarizability of the
particle; the principal values of 4,, are given
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by the well-known formula (2, 12)

U(ni2 - 7L02)n02

47ned + (n2 — n®) L]’

A; = (2]
where the L, are shape parameters of the
particle (of volume v = 4ariryrs/3) given as

1 o0
Li = 57’1 12 7‘3]0’

(3]
ds

(rZ + S)(r + S)(r2* + S)(rs* + S’

and fulfilling the condition L; + Ly 4 Ls =
1; above, r1 , 72, 73 are half-axes of the ellip-
soid.

With the foregoing assumptions it is suffi-
cient to consider light scattering of only the
dipolar kind, described by the tensor (4)

r, =5 [(@moaty @m.sat), "

'f(Qy I) dQ:

where ¢ is the number density of scattering
particles, whose orientation with regard to
the direction of the optical (electric) field &
of the light wave (of velocity ¢ and intensity
I = E/2) is given by the variables @, and
whose statistical distribution is given by the
Maxwell-Boltzmann function

exp {—Bu(, 1)}
[ exp | —pu(Q, I)} dQ

with 8 = 1/kT. A colloid particle, in which
the electric field E induces the moment [1],
and which undergoes orientation by the field,
possesses the potential energy

'I,I,(Q, E) = —%AJTEGET . [6]

This energy, on time-averaging over one
period of oscillations of the field, becomes (4)

<u(97 E)>t = u(Q7 I) = —%A,,e,,e,], [7]

where e, i1s a unit vector in the direction of
the electric field E, .

If reorientation of particles in the field ¥
is not too strong, we can write in a good ap-
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proximation (4), with regard to [5] and [7],
1@, 1) = f(Q,0) {1 + 248(34.. -
- AVV6d7)60611 + ct '}7

where f(Q, 0) is the distribution function in
the absence of light-induced perturbation
(I =0).

On introdueing [1] and [8] into the funda-
mental Eq. [4] and on performing an averag-
ing procedure with equal probability over all
components of the unit vector e, , one has

Iff = Vhwao'-r + (va - Vhw)eﬂe7 A [9]

where we have introduced the well-known
intensity components of scattered light:

Vil = H* = 3(PI + PP+ - ),
V. = (" +4P")I

+ (@ + 8P )+ - .
Above, the quantities

(10}

(1)

Q= %(9) (A + A, + A" [12]
C )

P = i@)“{(m — As)’+ (4, — Ay)*
¢ [13]

+ (A5 — A1)}
define, respectively, isotropic and anisotropic

linear Rayleigh scattering, whereas the quan-
tities

Q" = 45 B(41 + Ar + APy, [14]
o_ I8 <w>4 2
Py = 2 [ 2 (4 — 40)(A 1+ As
1890 \¢ [15]

—245) + (Ay — Ap)(As + A5 — 24,)
+ (A5 — A) (A + A1 — 24,)}

define, respectively, the isotropic and aniso-
tropic nonlinear changes in Rayleigh scat-
tering induced by light of high intensity I.

In order to specify the experimental set-
tings, we choose the incident light beam as
propagating along the Y-axis of the labora-
tory coordinate system, with observation of
scattered light taking place in the X Y-plane
at an angle 6 to the Y-axis. The general equa-
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tion [9] now yields the horizontal component
of scattered intensity in the form

H = Vi + (V,* — Vi) cos” 6, [16]
or

HY = V., cos® 8 + V,° sin® 6. [17]

In particular, for observation at right angles
6 = 90°, we have by [10], [11], and [16]

Vil =H'=H'"=#V), (18]

which signifies that the reciprocity principles
of Krishnan (3) are fulfilled for linear and
nonlinear light scattering alike.

2. SECOND- AND THIRD-HARMONIC SCAT-
TERING DUE TO NONLINEAR POLARI-
ZATION OF THE PARTICLES

Above, we assumed for simplicity that the
particles underwent only linear polarization,
as given by equation [1], in the electric field
E = E; cos ot of the incident light wave.
This assumption, however, is reasonable
only as long as F is not large, and cannot
be maintained in the case of a field of in-
tensity sufficiently high for producing non-
linear polarization of the particle as given
by the equation (5)

m, = A% Ey cos wt + Y4{(Bo,
+ B, cos 2wt)Ee.Ey,
+ 1464(3 Ciryp cOS wl
+ C3%,, cos 3ut) Eo,Fo, Bo,
+ sy

involving the tensors By, C,r, of nonlinear
polarizability of the particle (second-order
and third-order polarizabilities).

On considering the series expansion [19] we
see that, under the influence of light of high
intensity, the particle radiates not only with
the ground frequency « but moreover with
higher harmonic frequencies 2w, 3w, and so
forth. It is precisely scattering at second and
third harmonic frequencies (described by
the tensors B, and Cif,,, respectively)
that presents the most interest. In the case
now under consideration, in accordance with

[4] and the expansion [19], the total scatter-
ing tensor can be expressed as the sum of
first-, second-, and third-harmonic (and still
higher) scattering processes:

157 = I:T + sz + I:: _'I'_ = Z I;L'rwa [201
where, in addition to the tensor I, already
discussed, we have the following tensor of
second-harmonic scattering

re = —%(27‘")4 r

: f B,

On replacing herein for simplicity the dis-
tribution function f(Q, I) by the nonper-
turbated function f(£, 0)—which means
that we neglect the statistical effect of re-
orientation of the particles discussed previ-
ously—we obtain, after an averaging pro-
cedure, an equation analogous to [9] wherein
the previous components [10] and [11] have
now to be written in the form of

Vie = H)* = 3PyT,
Vi = (@ + 8P I

[21]
12';;1 e €, e ey f(Q, 1) ds.

[22]
(23]

involving the following eonstants of second-
harmonic light scattering:

W
Q" = 365
"N [24]
(%) o, - 2, 55
20 _ §
P2" = 3530
[25]

<2w>4 (4BZw 2w 2w Bzw )
' o afy Papy = Papf Payy /s
containing the tensor of second-order polar-
izability Bhs,, which we have assumed as
being totally symmetric. It is thus seen that
second-harmonic scattering, too, does not
affect the validity of the relations [16-18].
In order to render simpler the discussion
of the constants [24] and [25], we assume
that the scattering particles have spherical

Journal of Colloid and Interface Science, Vol. 27, No. 3, July 1968



436 KIELICH

geometry L, = L, = L; = 14, while being
optically anisotropic without a center of
symmetry. In this case, the tensor Bgs,
possesses nonzero components. For example,
if the symmetry is tetrahedral, there are six
such components By, all equal; the con-
stants [24] and [25] now reduce to the simple
form

4
Qi = _%@69) (B,

P§w= %5( > (3125)2

For lower symmetries, the number of inde-
pendent components of the tensor Ba.g, can
be quite considerable. It is only for rotational
ellipsoid symmetry that they reduce to two,
namely Biy; and Bs , in terms of which the
constants [24] and [25] are expressed as fol-
lows:

(26]

20 __ { 2w 2w 2

Q2 = 3_—240 <?> {31(3333 + 25’113) 27]
+4(13 115 B%swa)( 333 Bus }
2w 2 w

Pé = 2—2—28_0 (7“)) {19(B§Jd + 2311% 28]

- 8(13B113 B§?3)(BSS3 113)}

Third-harmonic scattering can be dis-
cussed along similar lines. But in the general
case the resulting formulas are rather intri-
cate, and we refrain from adducing them
here. Since the respective tensor Cor,, has
nonzero components Cifs; and Ciss even in
the case of optical isotropicity, third-har-
monic scattering can be exhibited by spheri-
cal, optically centro-symmetric particles, for
which we obtain the scattering tensor in the
form

I = Vi‘ee,, [29]
with

yio = 5 (3—"’> (C30s + 20%,)T

144
§' 3w 2 2
144( > o
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[30]

as 2035 = Ciss — Cihs  with notation
Cisss = Cs,. On comparing the preceding
result and equation [9], we see that optically
isotropic particles, both linearly and nonlin-
early polarizable, scatter light only isotropi-
cally since by equations [9-15] and [29]
one has

It = (V.2 + V¥)e,e, [31]
where obviously for 4; = A, = 4; = 4,

4
v, = 5(;) (As + 45 + 45)°

9
4
= ;(‘i’> Ay 1.
C

Consequently, whereas by investigating the
linear scattering of equation [32] one can
determine the linear polarizability 4 of an
isotropic particle, investigation of the third-
harmonic seattering [30] should permit to
determine its third-order nonlinear polariza-
bility C.

[32]

3. HIGHER-ORDER SCATTERING PROCES-
SES DUE TO STRONG ORIENTATION
OF THE PARTICLES

In Section 1 of this paper, in deriving the
scattering tensor [4] we made use of an ap-
proximated expansion (Eq. [8]) for the sta-
tistical distribution function. We shall now
free ourselves of that restriction, valid for
weak orientation of the particles, and shall
perform calculations with the distribution
function in the form [5] with energy given by
[7]. However, to carry out calculations to the
end, we shall make an additional simplifica-
tion consisting in the assumption that the
particles, linearly polarizable, present the
symmetry of rotational ellipsoids so that the
polarizability tensor can be written in the
form

A;"r - AJ.wau‘r + (A Hw - AJ_G)SUST [33]

with 4 and A . denoting respectively polar-
izabilities parallel and perpendicular to the
symmetry axis of the particle given by the
unit vector s.

On introducing the energy [7] together
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with the polarizability in the form [33] into

the distribution funection [5] we obtain

exp {(s- €)%, I}

Q1) =

fexp {(s-e)%. I} dQ [34]
where
1 w » Ay —AL° .
Yo = b5 ﬁ(A I —Al ) = ! ‘)k_T—J; [35]

denotes a parameter of orienfation of the
particle.

Similarly, by introducing [1] into [4] and
taking into account [33], we obtain

Ifr—§‘< > If Ailee,

+ A4} — AL (s e)es, + se.)  [36]

+ (A I A-L)2<S' e)2SGST }f(Qy I) dQ.

Recurring to [34] and [36], we obtain in
place of [10] the following expression:
Vi = H = 32, P,°I", 1371
n=1
wherein the constant of nonlinear n-th order
scattering has the form

pe= 5 () (= ata b
with expansion coefficients
P .
" nl2n + 1) (Znn—l— 3) 291
; ‘jf ~ 1)

Likewise, we get instead of [11] the fol-
lowing series expansion for the vertical com-
ponent:

= (" + 4P")1

+ Z_I{Q‘:»H + 88 I, [40)

where we have introduced the following
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constants of nonlinear scattering of arbitrary
order:

8¢

Qn+1 = 1—33

) [41]
<cc£> (A" +24.°)(4,° — A"y,

Sn+1 = 42l_§<_> (A ”w et A.l.w)2 bn ywn, [42]

with the following expansion cocfficients:

b — 4n’ + n.
Tl 4 1) 2n + 3) 2n + 5)

(43]

=Ek2E+ 1)
y [38] and [42] we have

w()m“—Am%MM

Pt = %"= gtz

One readily verifies that the formulas [10-
15] derived previously become identical, in a
quadratic approximation, to the general
formulas [37-44] if applied to particles hav-
ing the symmetry of rotational ellipsoids.

4., DEPOLARIZATION OF NONLINEARLY
SCATTERED LIGHT

Using the expressions obtained in the pre-
ceding Sections for the intensity components
Vs, Vi, H,, Hy of scattered light, we can
easily caleulate various experimentally meas-
ured quantities, such as the Rayleigh ratio R,
or the depolarization ratio (3): D, = H,/V,,
D, = Vh/Hh and ])u = (H,, + Hh)/
(V, + V). For the case of linear scattering,
the formulas giving these quantities are
generally known, so that we shall not cite
them here. But we shall discuss D for non-
linear scattering. We begin with second-order
seattering due to orientation of the particles.
Thus, by [10], [11], and [16], we get

o_ 3P -

])v - QQ"’ + 8P2w bl [401
@ 3Py

= 46

D 3P + (@ + H5Px) cos? 6’ [46]
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P + (Q° + 5P5°) cosd
Q + 111y ’

with constants @," and P,” defined by [14]
and [15] or [44]. If observation 1s at right
angles (6 = 90°), we have similarly as for
linear scattering Di” = 1 whereas [47] now
takes the form

p®» " [47]

6P,
Q* + 11Py "
If the constants [14] and [15] are applied to

c¢he case of rotational ellipsoid symmetry, the
Jepolarization ratios [45] and [48] reduce to

DY = (48]

@ _ Ay — A,

D = 4(3A4) + 4A4L)° [49]
@ _ 24 — 4AL)

Du T 134y + 154L° [501

1'hese formulas make it immediately ap-
parent that investigation of the depolariza-
tion of second-order scattering will permit to
determine directly the optical anisotropy
Ay — A, not only as to its magnitude but
also as to its sign, i.e., to determine whether
the particle has positive anisotropy (like the
CS; molecule) or negative anisotropy (like
CsHs). This 1s an important refinement, since

20 _ 19(B3%s + 2B1%)" — 8(13Blfy — Bij

KIELICH

not demanded by formulas {49] and [50],
which are thus easy to use for gaining rapid
information concerning the sign of optical
anisotropy of the colloid particle under in-
vestigation.

By [22] and [23], the expressions [45-48]
for the depolarization ratios are still of the
same mathematical form in the case of sec-
ond-harmonic scattering if one replaces
therein the constants @,° and I.° by the
constants Q5° and P;° given in the general
case by the expressions [24] and [25]. In this
context, it is of particular interest to con-
sider the case of particles presenting the
tetrahedral symmetry, as now formula [26]
substituted into [45-47] yields the following,
quite simple expressions:

20 2 2w 2 5
D, -3 Dt =5 T cos? o (53]
DY = 14(4 + cos’ 6), (54]

which are valid for any angle 8 of observa-
tion of scattered light.

For nonlinearly polarizable axially sym-
metric particles, we have the expressions
[27] and [28], which if substituted into [45]
yield:

(B333 - B%;"} [55]

v

investigation of depolarization of linear (that
is first-order) scattering yields information
regarding solely the square of the anisotropy,
as is seen from the well-known formulas

o 3(4) — AL)°

b= B(Ay + 247+ 4(Ay — A2’ [51]
1) _ 6(A | — A.L)Z

Du o 5(A fl +2AJ.)2+7(A I — AJ-)27 [52]

which, by the way, result from [10-13] in a
linear approximation. Obviously, the sign of
optical anisotropy has been hitherto deter-
mined, e.g., by studying orientation of par-
ticles due to flow; however, Maxwell’s con-
stant is dependent on certain dynamical
properties of the liquid which have to be
known beforehand (18). Such knowledge is
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123(3333 + 23113) - 12(133113

333)(B3'33 Blli) .

On neglecting herein the anisotropy of non-
linear polarizability of the particle, one gets
approximately D3 ~ 19/123 ~ 0.15. For
strongly nonspherical particles, formula [55]
will provide information not only concerning
the mean nonlinear polarizability (Bs; +
2B113)/3, but also concerning the anisotropy
of nonlinear polarizability By; — Bus and
its sign.

In the general case, for arbitrary sym-
metry, we obtain with regard to [24], [25],
and [45]:

Dzw _ 4B an Baﬂv - aBﬁ B?xw'w . [56]
GBaﬂv aﬂv + gBi‘Eﬁ Biﬂiﬂ
5. APPLICATIONS AND DISCUSSION

In concluding, let us still inquire how the

intensity of scattered light changes with that
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of the very strong incident light wave. For
the sake of simplicity, we shall approach the
problem from Eq. [37], which we now write
as follows:

Vil = VO awyn I [57]
n=1

where the vertical component

4

$)=~2<?>(A-—ALYI, [58]
15 \¢

defines linear (first-order) scattering.

In a satisfactory approximation, we obtain
by [39] and [57] the following expression for
the nonlinear variation of the vertical in-
tensity component of anisotropically scat-
tered light:

th B . ﬁz 242
yo =51 — g5
; 159]
_ B s
07901 T

where by 6 = A — A, we have denoted
the optical anisotropy of the particle, and
B8 = 1/kT.

Assuming that the linear dimensions of
gold colloid particles in water amount on the
average to 300 X and using the parameters
of shape (2) L, = L, = 0.365, L, = 0.270,
we get for A = 6500 A

Ay = 1378 X 107" em®,
A, =831 X 107" em’

On substituting the resulting value § =
5.47 X 107" em’ into the expansion [59], we
have

AVE/VEY = 65 X 107°T — 5.7

X 107" — 12 X 107 + -
JFor comparison, the same calculations ap-
plied to benzene yield a value of
AV VP = =72 X 107°T — 30

X 1077 4+ 137 X 107°°° 4+ .- .

We thus see that, whereas the experi-
mental observation of higher-order scattering
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processes in molecular liquids requires the
use of very strong light beams of intensity
not less than 10° esu, their observation in
colloids is quite easy.

It is noteworthy that the optical bire-
fringence inducible in a colloidal system by
strong light of intensity I varies by analogy
to the nonlinear variation of V, ; we have

indeed
[60]

Ny — Ny = noBI,

where for particles having the symmetry of
rotational ellipsoids (19)

B = B aws 1", [61]
n=1
with
Bi= - 2™ (4, — A0 [62]
15ng2 kT ’

denoting the optical Ierr effect constant;
its form is analogous to that of the DC Kerr
effect constant Kpc caleulated by Peterlin
and Stuart (12).

Kaczmarek (11), studying experimentally
the self-trapping (autocollimation) of laser
beams in gold-water colloid, and recurring
to Kelley’s (20) formula for the ecritical
power of the beam, obtained for the nonlinear
change in refractive index n;, — n, =
24noBi] = 0.75 X 10°* at a flux density
1.6 X 10° W/em of the beam, whence
By = 1.2 X 107" esu whereas for water
measurements by Paillette (21) yielded
B; =0.1 X 107" esu—a value by three orders
of magnitude smaller.

Denoting by AB = B — By the difference
between the constant B(I), dependent on
higher-order optical nonlinearities, and B,
we obtain with regard to {57} and [61] the
following relation:

AV AB z
V}(})“E_Z

n—Lyn—1
n Yw I y

‘ [63]
n==2

between the nonlinear variation of the aniso-
tropic scattering component and the constant
of optically-induced birefringence. On the
basis of the preceding numerical evalua-
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tions for gold—water colloid, it should be
easy to achieve optical saturation, that is
total orientation of the particles, in colloids.
In molecular gases and liquids it is essentially
not possible to achieve optical saturation,
sinee a laser beam of intensity larger than
10® esu will cause electric breakdown (11)
as a result, e.g., of multiquantum photo-
ionization. Consequently, one is inclined to
consider colloid systems as quite exceptional
bodies, in which strong optical nonlinearities
can be indueed that may find practical ap-
plications in the near future.

In addition to various previously investi-
gated nonlinear effects due to orientation of
colloid particles in electric (12-15) or mag-
netic (12, 16, 17) fields, these novel non-
linear optical phenomena (as nonlinear seat-
tering of light, optically-induced birefrin-
gence, nonlinear optical activity and di-
chroism, ete.) will be a source of much fuller
data concerning the size, shape as well as
the linear and nonlinear optical anisotropies
of colloid particles. Based on earlier papers
(22-24), the present theory can be extended
to comprise particles of arbitrary size and
shape, as well as to the dependence of the
studied effects on the angle of observation.

The probability of occurrence of multi-
photon scattering processes (involving more
than three or four photons) is exccedingly
small; however, other scattering effects, of
multipolar type (25), can occur as a result of
strong inhomogeneity of optical fields within
the space occupied by a macromolecule or
colloid particle. Such multiharmonic scat-
tering effects are expected to be easily de-
teetable in the neighborhood of regions of
resonance absorption, where the nonlinear
variations of scattered light intensity and of
other processes, such as dichroism, can be
considerable. Obviously, in proceeding to
such experiments, it would be helpful to have
two or more incident light waves differing as
to their frequencies, wave vectors, and in-
tensities. The tunable parametric amplifiers
now being rapidly perfected (26) and which
provide for easy adaption of the emitted light
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to the wavelength demanded by the regions
of transparency or resonance absorption of
the medium under investigation would seem
most appropriate for this purpose. The non-
linear optics of colloidal media thus extended
may permit better insight into the finer de-
tails of the geometrical and electromagnetic
structure of macromolecules and colloid par-
ticles than was hitherto possible within the
restricted framework of linear optics (27).
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