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MOLECULAR ANGULAR CORRELATIONS AND STRONG OPTICAL
NONLINEARITIES IN INTENSE LASER LIGHT PROPAGATION
IN LIQUIDS

By S. KiEericH
Department of Molecular Physics, A. Mickiewicz University, Poznan*
(Received March 16, 1968)

A formula is proposed admitting of direct calculations of 2n-th nonlinearities in the optical
permittivity &, for liquids consisting of anisotropic molecules. The &, values calculated taking
into account pairwise molecular angular correlations are in good agreement with measurements
of the optical Kerr effect. It is shown that &, can be positive or negative according to the sign of
the molecular anisotropy and type of angular correlations; this can be of considerable significance
for the self-focussing of laser beams.

1. Introduction

Some years ago, for certain macromolecular substances, the Kerr effect has been shown
to depend on higher powers of the DC electric field strength E when the latter is sufficiently
high, leading to saturation of birefringence [1]. Recently [2], [3] optical saturation has been
invoked as an important factor in the evolution of self-focussing of laser beams. Such consid-
erations go beyond the quadratic dependence of the refractive index on the laser light ampli-
tude E known from earlier experiments [4—6]. Tentative theoretical analysis of the latter
shows at once that — in addition to the wsak process of nonlinear optical molecular polariza-
tion and the strong effect of molecular reorientation [7—9] — an essential role therein
belongs to various angular molecular correlations [8, 10, 11] as well as to the effect of molecular
redistribution [8, 10—12].

It is the aim of this paper to give a more detailed analysis of the expression [10]:

Eor—gdor — % (AE28 0, + BEEy—E26)} (610-+ 2810) (1)

for the nonlinear changes undergone by the optical permittivity tensor ,, when intense
laser light propagates in a liquid.
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The constants A and B define respectively the isotropic and anisotropic optical proper-
ties induced in the medium and account for its structure and thermodynamical state; they
are even functions of E,. In particular, 4 is also related with the electrostrictional and electro-
caloric effects already discussed in a quadratic approximation [13, 14].

2. Higher-order optical Kerr constants

Here, we shall concentrate on the constant B defining the birefringence induced optically
in the medium. Excluding dispersion and absorption, B can be expanded as follows:

- 1 2n—1)
B= Zl st Bunkd" . 2)

The coefficients B,, are the following functions of the femperature T:
n
B B®
— ()ys _ RO 2n 2
B, = ZBz,,/T — BO + A (3)

s=0

The first term B, not explicitely dependent on T, is related only with nonlinear optical
polarization of the molecules (this effect can appear in any medium irrespective of the sym-
metry of its molecules, thus for the spherical symmetry also [7], [10]). The last, most strongly
temperature-dependent term in Eq. (3), B9/ T*, corresponds to the effect of optical molecular
reorientation. In the case of substances consisting of anisotropic molecules, it is this term
that plays the most essential role and predominates over BY and the other, mixed terms in
the sum of (3). For strongly anisotropic molecules, one can restrict oneself to the purely
orientational effect defined for axially-symmetric molecules by the expression (see Appendix}

ay—ay \"[e+2\*
anZZnQan(oz”—oc_L)( ||2le) (83 ) N (44)

where g is the number density of the liquid of optical permittivity & = n?, & and &, —the
optical polarizabilities parallel and perpendicular to the molecule’s symmetry axis, and

n
1 On—k

T Rl@e+d) A REED) (5)

Qn

For anisotropic molecules with principal polarizabilities &, , &, , a5 one obtains instead-of
Eq. (4) for n =1 and n = 2 [10]

2
By = o {(ay—ap)® + () (20— 0) (“gz) : ©)
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{(oy—ag) ¥ oty + g —20t) - 0ty —3) (ot + 03— 201y) +
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The expressions (2) and (4) can be applied for direct evaluations of higher-order non-
linearities of various liquids, as apparent from Table I. However, this kind of optical satura-
tion demands fulfillment of the condition (e —a J_)Eﬁ < 4kT. In most anisotropic molecules,
this in turn requires that E, <{10% e. s. u. This would bring us to the threshold of many-
-quantum photo-ionization. But even if nonlinearities in the region below 10° e. s. u. are
small, they may still be strong enough to affect various sensitive processes accompanying
e. g. self-focussing and self-trapping of light in liquids. From Eq. (4) and Table I, the sign
of B, is seen to be always positive [15] and that of By negative. B, and By can be positive or
negative, according to the sign of the anisotropy of the isolated molecule.

We now write Eq. (2) as follows:

B =3B, " ®)

e

with I = EZ/2 denoting the incident laser light intensity; by (4) and (5), the induced optical
anisotropy is now given by the series

2b 452 853
= B DA ¢ DA i
B =B, (1 + 5] I 315 I 5079 I —i—...), 9]
where
ooy e+2 2
=t (422 (o)

1s a molecular reorientation parameter.
In the case of colloid systems, higher-order nonlinearities are incomparably larger [16].

Coll
2n

For such systems, we get instead of Eq. (4) in satisfactory approximation By>* = ¢"B,,,

where ¢ is the ratio of volumes of the colloid particle and molecule and lies in the range of
1< g< 108 For example, in the case of gold colloid particles in water [16]

BAY = By(1+6x 10-8]—5%x 10-1172—9.4x 101613+ .. ),
while for CS, from Eq. (8) and the values of Table 1
BCS: = B,(1+414x10-12[—105x 10-24/2—916 X 10-3813 4-...).

As can be seen from Eq. (1) and the above expansions for BA* and B®S:, after an initial
steep increase the refractive index can decrease as negative terms By and Bg come to play

TABLE 1
‘Calculated values of contributions B,, B;, B, and B to optical saturation in liquids, without angular correlations
Liquid B,%x 1012 B,x10% B;x 1038 Bgx 1048
‘Carbon disulphide 15.4 211.1 —1618.6 —14104.8
‘Chloroform 0.52 —1.5 —24.6 47.5
Benzene 3.3 —23.6 —-100.4 452.0
Nitrobenzene 6.6 —66.4 —374.1 2375.5
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a part. Thus a laser beam propagating in a colloid solution will at first undergo strong narrow-
ing and subsequently exhibit divergence; as a maiter of fact, this has been observed recently
in gold-water colloid at sufficiently high power of the beam [17].

3. Role of molecular interactions

In order to have better agreement with experiment, one has to take into consideration
molecular correlations of the angular type, leading to the equations

B; = By(1+oly), (11)
Bf = B,(1+30f,+0%]y), (12)

with
Jo = 21_ij(3 cos? 0,,—1)g®(1p, 7o) drpd7,, (13)

Js = ;—fo[{Q cos B4 cos 04, cos 0,,—3(cos? 0,,+cos? 8, + cos? 0,,) +2} X
X 831y, Tg, T,)dTdT A7, 14)

where 0,, denotes the angle between the symmetry axes of molecules p and g at configura-
tions 7, and 7, and g® and g® are the binary and ternary correlation functions.

J, and J; are respectively pairwise and triple angular molecular correlation parameters;
their values can be determined from light scattering data [8], [18]. In the present context,
it is noteworthy that angular correlations can cause a change in sign of B, as well as a decrease
or increase in the value of B, as compared with B, calculated without correlations; as apparent
from Table II, this leads to better agreement with experiment [4—6].

The effect of molecular redistribution also plays a part (essentially in liquids consisting
of symmetrical molecules [8], [12]); instead of Eq. (6), we now obtain in the absence of

angular correlations [19]

CoAme [ sl 28 e 2, 6T o, ol fe+2)°
Bz—4skT{é+@[9oc +T“6 —|—§a6 +E6 Jr+0(0% 3 ,

(15)
where o is the mean polarizability of the molecule, § = & —a, its anisotropy, and
Jr = 8n [ r;te(r, )dr,, (16)

a pairwise radial correlation parameter whose value can be computed from data on light
scattering [8] or calculated directly [12]. If one puts d = 0, Eq. (15) takes a form appropriate
for isotropically polarizable molecules, e. g. for CCl, and the like.

In the case of substances consisting of axially-symmetric molecules, the effect of molec-
ular redistribution raises the effect of molecular reorientation by about 10—50 per cent.

If both molecular redistribution and angular molecular correlations are taken into
account, new mixed contributions to B, are obtained, raising or reducing the optical bire-
fringence according to the model assumed [11], [19].
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TABLE II

Numerical calculations of BY and B} taking into account angular molecular correlations, and comparison with:
the experimental data!

Liquid o/, % B,x 1012 B;" X 1012 Bgxpx 1012 Byx10% Bf X 1024
. . 9.122
Carbon disulphide —0.40 15.41 9.25 6450  8.17¢ 211.1 —42.2
' 0.422
Chloroform —0.36 0.52 0.36 0.39b , -1.5 0.1
A 0208 : 1.1 0.4
cetone -0.33 0.48 0.37 0.95b -1 —0.4
0.112
Cyclohexane —0.76 041 0.08 0.15b —-1.1 1.5
B 1 0.7 23.6 1
enzene —0.52 3.33 .60 1256  1.57¢ —23. 3.2
Tol 0 2268 36.1 21.3
oluene —0.53 4.25 2.0 1.44b  2.03¢ —36. 3
Chlorobenzene —0.34 4.03 2.66 2.13b —33.9 0.8
Bromobenzene 0.23 3.54 4.35 3.00b —23.7 —40.1
Nitrob 6.90 6732 66.4 197.9
itrobenzene 0.04 6.64 .9 5475 6.06¢ —66. —197.

1 BExP s calculated from the formula B, = 6nAB;(n?+2)2, which results by Eq. (31) with n= l/a K
aB; from Paillette’s [4] measurements of optical Kerr effect.
bB, from static Kerr effect extrapolated to optical frequencies by Shen [13].
¢ Data from Wang’s [6] rotatory-power measurements.

2 Values J, are calculated from the depolarization data [8], [22].

4. Electrostriction

By dielectrics thermodynamics [20], the change in pressure p caused by the effect of’
a strong electric field E on a liquid of volume ¥ (neglecting the contribution from anisotropy

¢f the stress tensor) is
1
P =Ty f f e (
VE

At constant number density of liquid molecules p and if the optical permittivity tensor-
£,, = £0,, is isotropic and independent of the electric field strength, Eq. (17) leads immedi-.
ately to the well-known formula [21]

_ 0 (%) 18)
Ap_87z(9@)TE' (18)

In the preceding approximation, electrostriction causes changes in refractive index.
that are isotropic irrespective of other molecular effects (nonlinear polarizability of the.

96"?) E.dEdV. 17).
Jo Jr
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molecules and their optical orientation) contributing to the optical Kerr effect described
by the constant B of Eq. (1). In reality, when acted on by the strong laser field E, the liquid
becomes both nonlinear and anisotropic (in accordance with Eq. (1)), and consequently the
electrostrictional changes occurring therein with some delay [21] will in general also be
anisotropic. The part played by electrostriction can become especially apparent in cases
when a very intense light beam gives rise to nonlinearities of higher orders in the liguid,
involving cross-effects due to interaction between electrostriction and molecular reorienta-
tion and molecular redistribution. If the electrostriction is related with a deformation in
shape of the specimen [20], a cross-effect is given rise to already in the quadratic approxi-
mation resulting in anisotropic changes in refractive index. Isotropic electrostriction, by
Eqgs (1) and (17), entails anisotropic changes of the refractive index only in approximations
higher than quadratic, namely we have

_ Bre® (2 (_,96_ V(%)
ASQ-— 167 9@ T 99 T+714— 9—0- TE() +... Eo, (19)

where &, is the quadratic change in optical permittivity and B the isothermal compressi-

bility coefficient of the liquid.
If experimental values of (9&/dg); are not directly available, they can be calculated
from the well-known Lorentz-Lorenz formula [13]:

de e+2
0 (9—Q>T_ (e=1) ( 3 )7 (20)
which yields values by 5 to 10 per cent in excess of the experimental results [22].
From the general equation (1), the total nonlinear change in electric permittivity is
. Ae = Ae,+ Aep, (21

where in addition to the variation de, due to electrostriction, we have the following variation

due to optical birefringence:

o o0

Aeg = ~21_ e Eo" = Z Eanl", (22)
n=1 n=1
wherein, by Eq. (2) or (8),
B e+2 2
Eop = 2 3 B2n' (23)
By (19) and (20), the quadratic change in refractive index due to electrostriction is
given by [13]:
ﬁng de 2 /3T 8—|—2 2
E _ 5} =P a2 |22 . 24
K 8z \d¢/r 8= (e—1) 3 @4

5. Nonlinear refractive index calculated from light scattering data

Eq. (1), in its mathematical form, can be derived either by the semi-macroscopic
method [10] or by the molecular method of the local field (see Appendix). Albeit, within the
framework of the semi-macroscopic method the field E has the physical meaning of a field
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E° applied ex wacuo, whereas in the local field molecular method E stands for the mean
macroscopic field EM existing within the medium. By electrostatics, the relationship between
the two fields is:

30 = (e,,420,) M. (25)

If in particular e,, = £d,,, Eq. (25) reduces to the well-known formula [20]

3E° = (¢+2) EM. (26)

On the other hand, the relation between ¢,,, EM and the electric polarization vector P is
of the form
(861’_60'1) EIrW = 4n‘Pa" (27)

Eqs (25) and (27) jointly provide the starting point for deriving the general Eq. (1),
whence we obtain the ensuing expressions for the permittivity tensor components in the X-
and Z-directions:

Exx—1 _ g—1 1 ., 1 -
twi2  r2 3 AL T g BOE-EY, (28)
€x2—1 g—1 1 o, 1 s o
P i gAE + §B(3EZ—E ). 29

On the assumption that ¢, and e, differ but little from gy, we can write

80+2 2 —t —t S -t —t
Eon—Exx = 3 ( 3 ) B(EE —E,%) =2lVeOB,1(E§ —-E,%), (30)
where B, is the birefringence constant measured in experiment [4]; symbol —t denotes
the time-average.

In the general case, the Rayleigh ratio R consists of an isotropic part R, and an aniso-
the latter being related with B, as follows [8], [10]:

. ]'4Ranis
27 26a%kT

tropic part R

anis?

(31)

On the other hand, the depolarization ratio D is expressed by R;, and R, ; as follows:

6Ranis
P BR AR, 2
If R, is not available experimentally, one can recur to the formula
ADR;,
2T 233k T(6—7D) (33)

in place of Eq. (31).
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With regard to Eq. (32), we have
6--6D 646D

R = Ris+Ranis = 'B—D Ranis = m Ris (34')
and Eq. (31) can be rewrilten thus:
DR
By = tomrra ) - (35)

This formula yields good agreement with the experimental data [14].

Egs (31), (33) and (35) are valid for arbitrary moleculra substances in the condensed
state consisting of optically isotropic or optically anisotropic molecules.

On expressing the isotropic part R,  of Rayleigh’s ratio in thermodynamical form [22]:

? Je \?
2 —_ — V02 ——
R 974 ETpro (90 )T (36)

the change in permittivity of Eq. (24) induced by electrostriction can be written as

ALR;,

E_
0= LT (37)
Similarly, inserting (31) and (35) into Eq. (23) we obtain the formulas

MR [e+2)7

B __ anis

™ 134%T ( 3 ) (38)

A*DR e+2\*
21 6% (1+D) ( 3 ) (39)

enabling us to calculate the quadratic change in eleciric permittivity due to the optical
Kerr effect from light scattering data of liquids.

In Table II1, the nf values calculated from Eqs (24) and (37) are seen to agree satis-
factorily. Similarly, as seen in Table IV, those of nJ calculated from Eqs (38) and (39) agree;
however, in the cases of CS, and C4H;NO,, they are more than twice larger than the values

TABLE IlI

Calculated values of variations in refractive index due to electrostriction

- 0 B 1012 n=\g for A nf = &fj2n in 10712

Liquid 102Yem3 | em?/dyne | 5460 A 6940 A 5460 A 6940 A 5460 A

Eq. (24) | Eq. (24) | Eq. (37)
Carbon tetrachloride 6.22 106 1.460 1.457 3.49 345 3.09
Carbon disulphide 9.99 94 1.634 1.614 7.73 7.03 6.51
Chloroform 7.51 87 1.446 1.430 2.65 2.40 2.67
Benzene 6.74 95 1.503 1.495 4.05 3.89 348
Toluene 5.65 92 1.499 1.490 3.85 3.61 3.09
Nitrobenzene 5.89 49 ! 1.560 1.542 2.86 2.56 2.90
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calculated from measurements of the optical Kerr effect [4]. In the case of CS, Eqs (38)
and (39) yield values in accordance with recent results from intensity-induced rotation
measurements [24].

TABLE IV

Calculated values of variations in refractive index due to optical Kerr effect?

Rayleighs ratios in nB — &Bj2n in 10-12
Liquid D 10-8 ¢cm~? for 4 = 5460 A 2 2

Rg | Ruws | R |Ea (3®)|Eq.(39)|Eq.(11)| Exper[4]

Carbon tetrachloride 0.042 5.09 0.29 5.38 0.10 0.17 — 0.17
Carbon disulphide 0.64 12.00 71.9 83.90 29.07 28.69 13.94 13.89
Chloroform 0.22 4.36 2.80 7.16 0.98 0.91 047 0.54
Benzene 0.42 5.90 9.9 15.80 3.62 3.70 2.16 1.30
Toluene 0.48 5.23 13.2 18.43 4.09 4.72 2.69 3.02
Nitrobenzene 074 | 510 60.7 65.80 23.18 23.16 9.75 943

1 Values of D and R for chloroform are from Ref. [23], whereas for other liquids from Ref. [22].

6. Conclusions

With light propagating along the Y-axis (its electric vector oscillating in the Z-direc-
tion) Eq. (1) leads to the following ratio of changes in optical permittivity in two mutually

perpendicular directions:
Aey [ €5+2 A+2B
Aoy (exx—|—2) ( A—B ) (40)

By Eqs (1) and (40), the induced anisotropy B raises the value of Ae,, but lowers Ae,;
the latter can be negative if 4 < B, as is the case in such liquids as CS, and CgH;NO,.

The generalized relation of Havelock (40) yields —2 if only Langevin’s reorientation
effect intervenes, since in this case 4 =0, and a value of 3 if only Voigt’s nonlinear
deformation effect is present, when 24 = 5B [10].

It would be highly desirable to measure ¢,, and ¢, independently of one another and to
use the results in conjuction with Eq. (40) for deciding which of the mechanisms predomi-
nates in the liquid under consideration: electrostriction, nonlinear polarizability, or molecular
reorientation. The last word would then belong to measurements of the temperature-de-
pendence and dispersion of nonlinear changes in refractive index. The information gained
in this way could provide better insight into the hitherto not fully clarified details of ‘‘small-
-scale” and *‘large-scale” beam trapping [2], [3], [21] as well as of stimulated Rayleigh and
Raman scattering [21], [25—28].

The author wishes to thank Dr K. Grob and Dr P. Kelley for their discussions of the
present problems when at the Erivan Conference on Nonlinear Optics. The author is indebted
to Madame G. Rivoire, to Professors N. Bloembergen and R. Y. Chiao, and to Dr M.
Takatsuji for making available their papers previous to publication.
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APPENDIX
Reorientation of axially symmetric molecules

Consider an isotropic medium, not excessively dense, of number density o, subjected
to an electric field E which, if very intense (as is the case of a laser beam) will induce aniso-
tropy given by the permitiivity tensor of Eq. (27)

(801—601:) E{[VI = 4o Po' = 47ZQ <7na>E’ (A]')
where

myg = [ m, /2, E)d2 (A2)

is the statistical mean value of the dipole moment component induced in a molecule at
orientation £ with respect to the direction of E.
In the case of a molecule anisotropic and linearly polarizable in the local Lorentz type

field

F,= Ea -+ '4‘?”‘ P, = ";‘ (86,+2(56,)E£w (A3)
we can write
m, = “urFr? (A4)

where ¢, is the molecule’s polarizability tensor.
Inserting (A3) and (A4) into Eq. (Al), we get

4
sar—Bx = — - 0{&YE (e +2010). (A5)
Assuming the statistical distribution function in a first approximation [10]:
A 1
f(@, E) = f(2,0) {1 + 557 (otor—000r) Fol'x +} (A6)

one obtains immediately with respect to (A5) an equation of the form (1), where B = B,
is defined by (6).

Since it is our aim here to calculate nonlinearities of higher orders, we have to start
from a distribution function in the form

u(@, E)

2,E) = , (A7)
/@, B) @
exp —T
where the potential energy of an anisotropic molecule is given as
w2, B) = — 3 bl (A8)

Our further calculations will proceed on the assumption that the molecule is symmetric
about its 3-axis (unit vector k), so that [10]:

Uor = A0gr+ (o) —]) (kukr — % 60‘1) . (A9)
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If the electric field E acts along the laboratory Z-axis, we have by Eqs (Al) and (A9) for the
permittivity along the Z- and X-axes respectively

£,—1 80—]. 2

=
12 60+2 5 BE?Z, (Al10)
Exx—1 go—1 1 ¢
i — = — — BE2 11
Eex+2 go+2 3 g2 (ALD)
where we have introduced the constant
_t 1
BE2 = 2mp(o)—a]) { cos? & — 5/ (A12)
E

with & dencting the angle between the symmetry axis of the molecule and the direction of
the electric field E,.

Time averageing of (A8) over the oscillation period of the optical field and taking into
consideration (A9) leads to the distribution function now in the form of

A0.D) — _ exp (b cos? ) , (AL3)

27 [ exp (b] cos? @) sin 9 dd
o

where b is a reorientation parameter of the molecule given by (10).
We now introduce integrals

Yo = — f cos?* 9 exp (bl cos? ) sin 9dd = Z ~b~l" cos2k+mf (Al4)
n=0
with
oG = = | costbempsinddf = (A15)
2 2k+n)+1
We thus have
- pnl
Yo = Zo n12(k+n)+1]’ (A16)
whence by the definitions of Eqs (A2) and (A7)
i b
Y. o @t n!(2rn+3) ©
Ceos? By = 2 = 3 — Z anbnln, (A17)
0 b I n=0

n' (2n+1)

SMS

Eq. (A17) on insertion into (Al2) yields Egs (4) and (8).
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In the case of optical saturation {cos® &) has to be calculated without series expansion,
as in Refs and [3]:

-1
{eos? Opp =+ {V}e%’ fe:ttﬂdz} F -2%7, (A18)
-V

upper and lower signs relating to positive and negative reorientation parameters y = bl.
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