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A semi-macroscopic method is applied to derive the intensity tensor I, of light elastically
scattered in the general case by a dense isotropic medium on which an intense (laser) beam of
intensity I is incident: I3, = (P®+4P2@[4P30[24 ) [0, +(Q?+ Q%I+ Q32 +...) I,.; P%,
Q® denote linear Rayleigh scattering with the ground frequency ®, whereas P2®, Q%¢, etc. define
nonlinear scattering with the double frequency 2w and higher harmonics 3w, etc. The angular
dependence of nonlinear scattering is discussed, and Krishnan’s reciprocity relation is shown
to hold. A molecular-statistical discussion of the quantities P?** and Q%® is given involving
bi-molecular radial and orientational correlation functions. Applications to special cases, in
particular to interacting tetrahedrally-and axially-symmetric as well as dipolar, quadrupolar
and octupolar molecules, are given. A detailed analysis of the results allows to predict that
second harmonic scattering measurements will provide information concerning molecular
correlations, anisotropy of nonlinear polarizability of isolated molecules, and their quadrupole or’
octupole moments.

1. Introduction

Recently, Terhune et al [1] and Maker [2], recurring to laser techniques, detected
second harmonic light scattering by liquids and compressed gases. These first successful
experiments, in conjunction with theoretical calculations [3]—[7], provide a new method
of studying the nonlinear optical properties of aloms and isolated molecules as well as of
intermolecular interactions in dense media [7]—[9].

Here, a semi-macroscopic method, initiated by Kirkwood [10] in dielectrics theory,
will be applied for a quantitative description of nonlinear elastic light scattering in isotropic
dense media. Kirkwood’s method has proved efficient in many a problem i.a. with regard
to both linear [11], [12] and nonlinear light scattering [8], [9]. This semi-macroscopic
approach has the advantage of yielding directly, by a formal and at the same time simple
procedure, quite general expressions that hold for arbitrarily condensed, isotropic media,
and any conditions of observation. These expressions can then be specialized in a molecular-
statistical treatment to various cases, disclosing the acting microscopic mechanism of non-
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linear light scattering. Beside radial and orientational molecular correlations, particular
attention will be given to the part played by molecular fields, whose existence in dense
media can contribute to the appearance of second-order nonlinear scattering even in a me-
dium consisting of mol ecules presenting a centre of inversion (e.g.quadrupolar molecules).

Also, nonlinear scattering will be investigated in detail in its dependence on the angle
of observation (a problem already discussed in part in refs [5], [9] and [13]), and Krishnan’s
reciprocity relation will be shown to hold, as for linear scattering [11].

With regard to simplicity, however, we shall refrain here from considering explicitly
nonlinear dispersion and absorption, scattering with summation field frequencies, and
quantum transition frequencies, these having heen discussed quantum-mechanically by
various authors (see refs [3]—[7] a nd[14].) With these restrictions, it will be possible to
give a complete formulation of the present theory on a classical level, admitting of a solution
of the problem of correlations in nonlinear light scattering with sufficient generality by
way of simple methods of classical statistical mechanics and microscopic electrodynamics.
In this respect, the present theoretical considerations go much further than those of Terhune
et al [1], Cyvin et al [6], Bersohn et al [7], and this author [5], [8], [9], in that most of
the molecular correlation factors describing nonlinear light scattering in liquids are shown
to be accessible if one recurs to other, experimentally investigated molecular effects. The
latter circumstance would seem highly important for the development of the nonlinear
molecular optics of condensed systems.

II. General semi-macroscopic theory

Consider a medium of volume ¥, macroscopically isotropic in the absence of external
forces on which a light wave with electric vector E = E cos wt oscillating at frequency o
is incident. In a first approximation, E induces in 7 a dipole electric moment M, which
in the classical linear case is of the form [11]

M = % m®)(t) exp i(k—Ek) - r,], )
p=1

with m®)(z) denoting the dipole moment induced in molecule p distant by ¥, from the centre
of the scattering volume, and k, k, the wave vectors of incident and scattered light, respecti-
vely.

We introduce the intensity tensor of scattered light I}, which for dipolar scattering
in the wave zone, is of the form [9]

2L, @20,
)

Lo = (@) <T e

The symbol —' stands for averageing over the time ¢, whereas the brackets ( >, denote
statistical averageing in the presence of the electric field E.

We furthermore assume for simplicity that the incident wavelength 1 is large as compared

with intermolecular distances and that w lies outside the absorption bands of the medium.

Also, E is assumed homogeneous, with intensity sufficiently large for the isotropic medium
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to become optically nonlinear. M is now in general a nonlinear function of E, and can be

satisfactorily approximated by the expansion [15]
1 1
Ma = AarEr’l' E BaruErEv+ g‘ CarngrEvEg+---y (3)

whose first term describes the linear properties of the medium as given by its optical
polarizability tensor A,,. The remaining terms of (3) account for the optical nonlinearity
induced in the medium by the strong field E, and contain the tensors B, C,, and so
forth of second, third and higher order polarizabilities.

By assumption, we have excluded dispersion and absorption from our considerations.
"This makes it unnecessary to consider the tensors 4,,, B,,, etc. in their explicit dependence
on w. With the above assumptions, we can write with regard to Egs (2) and (3)

L,=I0+I+ 1+ (4)
‘where

o 1 {0\ o, -

Ior:’l}' —c_ <AU”ATQ > [ﬂ'e (5)

is the intensity tensor of light linearly scattered at the frequency w of the incident light
beam of intensity I,, = Ey,Eq,/2. The higher terms in (4) define nonlinear light scattering;
here, we shall restrict considerations to second-harmonic scattering given by the tensor

2w 1 20 ¢ 20 H—20
ot — >\ ovADzou vod Apte
12 = o5 |22 ) <BEB L (6)

On averageing over all possible molecular orientations in the right hand terms of Egs (5)
and (6), we obtain (see Appendix A)

I7, = P°I8,, + Q% M

If:’ = (PZ“’I 56,—0—02“’1“)1, (8)
where we have introduced the notation:
° 1 [o\*

pe = 307 \ ¢ (5‘5aﬂ‘svﬂ“aaﬁvd)<AuyAﬂ6>v ©)]
" 1 [\

Q = W Z (So'ocﬂyd—‘S(Saﬁayd) <AayAﬂ6>, (10)
1 20 \*

p2o — 16807 (—C—) (75aﬂ‘7v56n_0aﬂv6€n) {BayeBgen, (1)
1 [20\

Q> = 16807 (‘c_) (30 apyscn—T0ap0yoen) {BayeBpony (12)

(the tensors 6,5, and 0,4, are defined in Appendix A).
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By (7) and (8), the tensors of both linear and nonlinear scattering are seen to consist
of two parts: a part independent of the state of polarisation of the incident beam, and a part
dependent thereon as well as on the conditions of observation. In order to make this fact
apparent, let us assume that the incident light propagates along the Y-axis with electric
vector oscillating in the XZ-plane at an angle y to the plane of observation X1

E = (@ cos y+zsin p)E, (13}

@, Y, z being unit vectors on the axes X, Y, Z of the laboratory frame attached to the centre
of V; the scattered light is observed in the XY-plane at an angle ¥ to the direction of
incidence (Y-axis), the point of observation baving attached to it the reference frame X',
Y’, Z' with unit vectors,

® =xsind+ycosd, Y =—xcosd+ysind, 2 ==z (14}
The horizontal (H) and vertical (V) scattering tensor components are now by definition
H=1ILyy, ad V=Izz (15)
i.e. by (7), (8), (13) and (14) we get for linear light scattering:
He(p, 9) = {P*+Q° cos? 9 cos? p)l,
Vy) = (P*+Q sin? )1, (16)
and fof nonlinear second harmonic light scattering:
H2(yp, 9) = (P24 Q% cos® 9 cos? y)l2,
V() = (P Q2 sin® )1 a7

Hence, quite generally, by analogy to linear scattering [11], [16] we obtain from
Eq. (17) the following components of nonlinear light scattering according to whether the
incident beam oscillates in the horizontal or vertical plane (lower indices & and v at the
capital letters H and V):

H2(9) = (P24 Q% cos? )12,
H2 = V2o — p2o]2, (18)
VEe — (P2 Q)R

Thus, in the case of nonlinear light scattering too, Krishnan’s reciprocity relation Hj”
= V2 is fulfilled. ‘
By (18), the depolarisation ratio for the two polarisations of the incident light beam are:

20 20
Df,”’ = IV{;w = }’E;P@, (19)
20 2w
U S (20)

. E{w P20 Q% cos?
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For unpolarized incident light, we get the scattered light components in the form:

H2(9) = HE+H}® = (2P 40 cos? )1, \

V2o = VE4Vie = 2P®4+0%)1, (21)
and the depolarisation ratio

Hy” 2P0 (20 cos? 9

D¥(8) =
(4) V'f“’ 2P2m+Q2w

(22)

The expressions (16)—(22) provide a full and quantitative description of the angular
dependence of both linear and nonlinear light scattering for an isotropic medium irrespective
of its state of condensation and molecular structure (in the absence of internal interference,
when the exponential factor in (1) can be put equal to unity).

HI. Molecular-statistical theory

The quantities (9)—(12), which account for the optical properties of the scattering
medium and for its molecular structure, will now be discussed. First, Eqgs (9) and (10)
can be rewritten thus:

po_ 3 2417. Qv = 245‘. Ly (23)
- 5 anisy —_ c 1s+ _5“ anis f »

c

where the quantities

1 1
Fi - W <Aw1Aﬂﬂ>’ Fanis = W <3Aa/3 Atzﬁ_AmAﬂﬂ>s (24‘)

which respectively define isotropic and anisotropic linear scattering of light, have been
discussed in a molecular-statistical approach in earlier papers [11], [17]. In proceeding
from the strict formulas (9) and (10) to (23) and (24), we assumed the optical polarizability
tensor of the medium A, as totally symmetric (this is so for optically inactive bodies in
the absence of dispersion and absorption).

By analogy to (23), one can transform Eqs (11) and (12) as follows:

3 2w)* (2w)* 5
20 R 20 . _ R 5
p2e = 980 ¢4 Gan1S7 Q 10 &4 GIS+ 7 Gams ) (20)
where the quantities

] .

Gis = Y4 (Capyoen—40ap Oysen) {Baye Bgsyy, (26)
1

Ganis = W (7 5aﬂ°'yéen— Uaﬂvésn) <Bave Bﬂf’n)v (27)

~define the isotropic and anisotropic parts of nonlinear light scattering.
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If moreover one assumes for simplicity the nonlinear polarizability tensor B, as
totally symmetric, Eqs (26) and (27) reduce to

1
G = 6’17 <5Bwﬂﬂ B"EW—'2BuﬂVBa/37> » (28)

1
Ganis == W <4"BaﬂyBa[37“Buﬂﬂ Baw>’ (29)

On substituting the relations (25) and quantities (28), (29) into the depolarisation ratio (19)
we get

Dzw - 3 Ganis — 4<Baﬂv Baﬂy>_ <Bmﬂﬂ Bavv> . (30)
° 7 Gis""‘ 8 Ganis 6<Baﬂv Buﬂv) +9<Bzﬂﬂ Bayy)

We shall discuss the above expression for a medium of N molecules, when by (1) and (3)

we have
AR (Zn2)
Bzﬂ? - aEﬁ aEy )0 = pe aEﬂ aEy 0 ’ (31)

wherein in the general case [11]

1 1
m = dPEg FP)+ 5 VG By FP) (B FP)+ 5 U Ep + B+

afy

1 1
+ = BBy T FP)E, + FP)(Ey+ FP) + 3 G Bt FPNE, +FD) +... (32)

In this expansion a% is the tensor of linear, b, )5 those of nonlinear dipolar, and g8,

q$8)s those of quadrupolar optical polarizability of the p-th isolated molecule. F® is the
molecular electric field acting on the latter in the presence of the external field E,, whereas E,,
and F® are their gradients, which induce quadrupolar polarizability.

A. Tetrahedral molecules.

In a first approximation, for a not too dense medium, the action of the molecular
field can be neglected and by (31), (32) we have with satisfactory accuracy

N
Buy = 2 )
p=

In/fﬁé case of molecules having the point group symmetry Ty, the tensor b,,, presents
,,A{nly 6 non-zero components by, and can be written as follows [8], [9]:

BB, = by {iP(jSPRD+KPIP) + P UPID + PP + KPP + PP} (34)

i (%,§, k are unit vectors along the axes 1, 2, 3 of molecular coordinates).

\\

AN
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By (33) and (34), we have

N
<B¢ﬂﬂB¢w> =0, <B-zﬁyBa:ﬂy> = <Z Z bgﬁzb%)ﬁ . (35)

N
p=1¢=1

[

This expression can be transformed to

{BogyBag,> = 6Vobigs+02 [ [ bfzf;;),bg%)vg(z)(rp, 7,)d7,dT, (36)

by recurring to the binary correlation function g® (> 7,) of molecules p and g having:
the configurations 7, and 7,, respectively.

In the absence of orientational correlations, the second term of (36) vanishes and we
get simply

<BaﬁyB¢ﬁy> = 6V9b§23 (37)'

a result that holds for light scattering by isolated tetrahedral molecules.

On substituting the result of (36) into Eq. (30) we obtain in the above approximation
[3] D3 = 2/3, irrespective of a specification of the statistical correlations. Measurements [1]
in liquefied CCly yield D3* ~ 1/3, a value almost twice smaller than that calculated on the
preceding approximation.

The foregoing calculations can, however, be rendered more exact by taking into conside-
ration the effect of the molecular field, which in the case of tetrahedral molecules, isotropically
polarizable in a linear approximation, can be represented by the expansion [11]

N N N
— F® P
RP = K- 0 908, 3} 30,0180 E . )
g=1 - ==
PES4 aFpri#g

where the tensor
TEO = 'rp_(zs(srpqarpqﬁ—rzqéaﬁ) (39)
defines dipole-dipole type interaction between molecules p and g distant by 7,

On neglecting in (32) higher-order nonlinear polarizabilities, we can replace (33) with,
regard to (31) by the expansion

N ©) @) o7
_ ® | or@ 9Fe @ IF" OF,

Bugy = ; {b,,,gwrzbmﬁe 3k, T SE ol (40)
which, significantly, implies in general the non-vanishing of the term (B, B,z > also.
Indeed, we have to within a2

N N N N

BegpBayy = 4<% 2 X0 20 WR0D,0,0,TOTL, (41)
p=1¢g=1r=1 s=1
r#q s7#q

or, on averageing over all molecular orientations and on restricting considerations to the
contribution from pairwise correlations only,

24
{Bapp Bayy) = 5 Ve a? bapy bagy Ry, (42)
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where we have introduced the following integral parameter [17] for n = 6:
R,=¢ f Tog 8(rp )Ny, (43)

containing the radial correlation function g(r,,).
In the same approximation, we obtain instead of (37)

82
<B¢ﬁ7’ Baﬁy> = VQ baﬁy baﬂy (1+ ‘5— a? RS) . (4_.4)

By (42) and (44), the depolarization ratio (30) now assumes the value

0 2 5 8 2 42
pr=d a2 (1-Rag,), )
14+ —=— a2 R,

which is slightly smaller than the previous 2/3 owing to radial interactions between the
induced dipole moments given by (43).

In addition to the indirect effect of the molecular field F? calculated above, one has
in general to consider also that of the molecular field F§?, which exists in very dense media
even if no external field E is acting. In this case, we have by (31) and (32)

N

B, =ﬁ21(bi§i+C§§iaF6§’+m) (46)
and, for tetrahedral molecules, we can write
N N

<B¢zﬂﬂB¢W> = 5’21 21 Ci%?eacii)yf gz’i)F E)%)>- (47)
=1 4=

Restricting ourselves as above to pairwise correlations, we obtain after averageing over all

possible molecular orientations

‘ 25
{BapsBayyy = E} c Vo <Fp, (48)
where ¢ = C,pg5/5 is the mean third-order polarizability, and.
1 ‘
D = o [}FEFED ), )

is the orientationally-averaged square of the molecular field F$? produced at the centre
of molecule p by the charge distribution of its neighbour g.
Similarly and with the same accuracy we have in place of (37)

(Beg,Bys,> = Vo(6blys +5c%Fp)). (50)
By substitution of (48) and (50) into Eq. (30), we get the depolarisation ratio of tetrahedral

molecules in the form:

2hant oo et <)
o — % 61
3b%as + 4 2 {F§>
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wherein the presence of the parameter (F3» still further lowers the D?* value with regard
to 2/3.

Since the lowest octupolar moment of a tetrahedral molecule is given by the octupole
moment £2,,5, the parameter (49) is expressed as follows if interaction is assumed to be of
the induced dipole-permanent octupole kind (see Appendix B)

16
CF3) = 2> O Ry, (52)

where R,, is defined by (43) for n = 10.
Above, in the case of the tetrahedral symmetry T}, the tensor of the octupole moment
is expressed as follows:

Qo = aa{i(jsk, +jgk,) +ialkgl, +kgt,) + kg, +igl,)} (53)
with

5
.Q123 — 5 Z €iTyiTei Iy (54)

where ¢; is the i-th electric charge of the molecule and #; is its radius vector.

B. Axially-symmetric molecules.
On assuming that the tensor bygy s totally symmetric, we get for the case of molecules

having the axial symmetry with regard to the molecular 3-axis [9]:

BE) = b(L— ) (kP 8y, +K§D 8, KD 8,y — ZEPRPED) +-Bho KPKPIP  (55)

afy
with
b = (bsss +2by35)/3  and #p = (bgyy—by13)/3b (56)

denoting the mean nonlinear polarizability and its anisotropy.
Assuming in a first step the approximation (33), we have by (55)

N N
<BaﬁﬂBocw> = 9b* <Z Z cos 6pq>’ (57)
p=1g=1
N N N N
(B Bap,> = 3b2(1 +dsey,—5x2) ¢ c0s 0,5 +b%2—5) X3} 37 cos? 6,5,  (58)
p=1g=1 p=1g=1

0,, being the angle between the symmetry axis of molecule p and that of molecule q.
Recurring to the bi-molecular correlation function we have

N N
(Z Z cos” 9M> = Vo(l1+1), (59)

p=1g=1

where

' J, = % f f cos” 0,,87(z,, 7,)dv,dr, (60)
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is an integral parameter of angular correlations. In particular, for n = 1, Eq. (60) gives the
well-known Kirkwood correlation parameter [10] for the dielectric polarisation of dipolar
liquids.

Substitution of (57) and (58) into Eq. (30) yields the depolarisation ratio for axially-

symmetric molecules in the form

3(1+ 1605 —20%8) (1+J7) +4(2—55)% (L+],)

Dy = ;
O(T1 85— 10:8) (1 J5) 1-6(2—57a)% (1 1 J) 1)
in the absence of angular correlatlons, when J; = J; = 0, this reduces to
Dgw: 19—32s¢ +4053 62)

3(41— 162 -+20x3) "

In the case of chloroform [9] x, = —0.074, and Eq. (62) yields approximately D2 ~ 0.13.
Measurements by Terhune et al [1] for CH;CN led to a depolarisation of about 0.1.

The angular correlations parameters (60) can be calculated numerically if one makes
the approximation [17]

8Ty ) = 278(1ry) exp (—Pupy), (63)

Upg = Upg(T'pg» @yp» @,) being the potential energy of angular interaction between two molecules
having orlentallons 0, and o, with Q = f do, = f do, and f = 1/kT.

In particular for molecules with a permanent dlpole moment g we have

pg = —p3(3 cos B, cos B, — cos b,,)r,, PR (64)
so that with regard to (60} and (63) one obtains
_2E 8ut oy S 4y
~—7g1@ (Rs)‘*‘E/g Rm"‘mﬁ Ry +... ], (65)
58 P s 44

with Ry, Rys and Ry given by Eq. (43) for n =9, 15, 21 respectively.

C. Molecules of arbitrary symmetry.

We finally proceed to consider the general case of arbitrarily symmetric molecules,
for which in the approximation of Eq. (33) we have, to within pairwise correlations,

<Ba/3ﬁwa> - ngaﬂﬂbaw"l'@ f f b,(,ﬁf); g})yg@)( Tq)drpdrq’ (67)
<Baﬁy rzﬁv> - VQbaﬁv uﬂv"l'@ f f bfféi gr%)yg@)(rp’ Tq)d'”pd":q' (68)

Taking into account the tensor components b, appropriate to each point group

apy
symmetry [5]—[7], one can apply the expressions (67) and (68) to various experimentally
studied cases. Thus e.g. in dealing with dipolar molecules, the energy (64) is conveniently

replaced by
— WPTYu ©)
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and on relaining the approximation (63) one gets by Eqs (67) and (68)

9t
{BappBaryy = Vobagsbsyy ( O+ 7‘% B3 e Me R9+-~-> ’ (70)
B3
{Bapy Bapyy = Vo bagy bsen | 0as Oge Oy + 3675 Mapts (5Tut gy Oen -+

+60py t4® tetin—SHplythe in) Ry + } (71)

In particular, for dipolar axially-symmetric molecules the preceding formulae lead
to the results (57)—(66) with an accuracy to within §2

Similarly, one can effect calculations of the quantities (67) and (68) with a correlation
function (63) containing other types of interactions, thus dipole-quadrupole, dipole-
octupole, octupole-octupole interaction, or the like. But these being of rather involved
form (see Appendix B), effective calculations tend to become very tedious, and results
are intricate. Recently, Bersohn et al [7] dealt with the problem, for liquids, by reeurring
to an approximation which consisted in assuming such a form of the orientational part of
the correlation function as to obtain a non-zero result from the averageing procedure, in
the first approximation of perturbation calculus (term f v,,). Compared to theirs, the present,
dipole model based on Eqs (63) and (69) yields a non-zero contribution only in the third
approximation with g%

Now let us consider the expansion of Eq. (46), starting with the assumption that the
molecular field F® appearing therein is due to odd order electric moments (dipoles, octu-
poles, etc.) Restricting the problem to pairwise correlations, one gets in a satisfactory
approximation

<BtzﬁﬂBazyy> = Vg(baﬁﬂbzyy_'_czﬁﬂécuyyé <F3>), (72)
B oc/SVBaﬁy> = Vg(bmﬂvbaﬂy'l"czﬁvécaﬁyé (F, §>)’ (73) -
where with regard to (49) we have (see, Appendix B)

2 8 :
<F§> = 3 u2 R+ 15 QapyLasy Ryg+... (74)

£,5, denoting the molecular octupole moment tensor.

For molecules having a quadrupole moment tensor @, one obtains by (46), in place
of Eqgs (72) and (73),

2
{BappBayyy = Vo {buﬁﬂ bayy + 15 (scdﬁﬂﬁcawé Oy @En_gcaﬁﬁv @avcﬁwn@dn)Rs} ’ (75)

2

147 (49¢apysCapys Osy Oo— 18cappy @avcdesn Os) Rs} . (76)

{Bagy Bagyy = Vo {baﬂvbaﬁy+
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This latter result is of interest inasmuch as the expressions (75) and (76) applied to
molecules with a centre of inversion as well as a quadrupole moment are non-zero and,
in the case of the axial symmetry, take the form

25 19
{BagpBayyy = 3 c¢* Ve (1—%5-‘— 195 %3) O* R, (77)

51
{BapyBagyy = 5¢*Vp (1 + 515 %?) 0?2 R, (78)

where %, = (cygg3—C1111)[3¢ defines the anisotropy of third-order nonlinear pelarizability.
On inserting (77) and (78) into Eq. (30), the depolarisation ratio resulls as

7—l—7+6—1%%2
D — 2657 1112, (79)
0 (7—net 1o o ’ !
He 175"’50

On neglecting the anisotropy of nonlinear polarizability x,, the depolarization ratio
amounts to 1/9, which is just the value derived previously from Eq. (51) with byes = 0
for atomic substances.

IV. Discussion and conclusions.

The general, semi-macroscopic theory of nonlinear light scattering by isotropic bodies
developed in this paper is seen to yield, in a first approximation of the molecular-statistical
approach, when no molecular correlations intervene, results that are valid for gases whose
atoms or molecules retain their individual optical properties affected only by interaction
with the strong electromagnetic field of the light wave. Thus, investigation of second-
or higher-order light scattering in gases provides direct information on the nonlinear optical
properties of their molecules.

In condensed media such as compressed gases or liquids, nonlinear light scattering
is to a larger or lesser extent influenced by various molecular interactions, ultimately leading
to the emergence of radial correlation parameters R,. The latter, as defined by Eq. (43),
can be effectively computed only in the case of real gases [19] on the assumption of e.g.
a general Lennard-Jones potential. In that of liquids, their computation presents difficulties
since an analytically given radial correlation function g(r) is not available. Luckily, however,
these difficulties can be circumvented if other, actually measurable effects involving the
parameters R, are taken into account. Thus, in studying substances consisting of isolropic,
linearly polarizable molecules, the parameter R can be determined from:

(i) the formula for molecular polarisation [20] or molecular refraction [11]

R, = 4?” oa (1+24® Ry), (80)



101

(i) the formula for the molecular Kerr comstant [11] or optical birefringence [21]

_ 8m
B, =7 9 Ry, (81)
or
(i77) the formula for the depolarisation ratio of linearly scattered light [11]
2
D, = 2 Bs (82)

50 kT xr+14a® Ry’

(%7 being the isothermal compressibility).
Similarly, the other parameters, such as Rg, Ry, and so forth, can be determined from
the expression for the molecular orientational polarisation of multipolar substances [22]

_ 8mpa®
KT
if the molecules have only isotropic dipole polarizability a.

Thus, considering separately spherical, quadrupolar, octupolar, and other kinds of
molecules, and basing on various measurable effects, one can determine numerically the
quantities R, and hence evaluate the contributions to nonlinear scattering resulting on the
assumption of a particular molecular model. One can then make conclusions about the
values of molecular multipoles and compare the results with those obtained by other methods,
as reviewed recently by Stogryn and Stogryn [23]. In this context, special attention should
be drawn to the role of molecular fields in nonlinear scattering. E.g. in the case of substances
consisting of tetrahedral molecules, the depolarisation ratio does not in the least depend
on statistical orientational correlations (thus, with the present model, on the energy of
induced dipole-octupole, or octupole-octupole interaction), but is constant, amounting

. 4
P, = {@uﬂ Ous Rs"’ -Q apy8apy Rig+ = = Dapys Dapys Ryp + } (83)

to 2/3. It is only when molecular fields are taken into account that the depolarisation ratio
is in general dependent on the density, temperature and molecular structure of the medium
as rendered by Eq. (45) or (51). At normal conditions, in CCl,, the effect of the molecular
field upon D2 as given by Eq. (45) amounts to several per cent if Eq. (82) is recurred to.

It is a main point of interest that the role of molecular fields is not restricted to contri-
buting quantitative corrections, but that they lead to the emergence of new scattering
effects, which otherwise could not be expected to take place. E.g. by Eqs (72) and (73)
if applied to molecules for which in the ground state by, = 0, the anisotropic component
of second harmonic scattering (18) and depolarisation ratio (30) is non-zero.

In principle, isolated molecules with a centre of inversion do not (in the absence of
mutual interactions) give rise to second harmonic scattering, but can cause third harmonic
scattering whose ratio, however, with regard to the one-photon process is of the order of
10724 I2. This would be accessible to observation only by using a very strong laser beam
(I =~ 10° ¢gs).

Similarly, as seen from Eqs (77) and (78), some amount of second  harmonic scattering
can occur inliquids of centro-symmetrical molecules if the latter have a permanent quadrupole
moment. Significantly, both scattering processes mentioned above are anisotropic and thus
depolarize the scattered light nonlinearly.
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Although it is too early to make far-reaching conclusions in the present, initial phase
of nonlinear light scattering investigation, both experimental and theoretical, it can never-
theless be said with assurance that such studies will provide much interesting information
concerning the nonlinear properties of isolated molecules and their mutual correlations
in condensed media. Most certainly, the study of multi-photon scattering processes in
gases and liquids is a basic factor in the rapid development of nonlinear molecular optics.

APPENDIX A

Averageing of directional cosines

The scattering tensor (2) and dipole moment (3) components are referred to ihe labo-
ratory axes, which are labelled o, 7, #... We introduce another system of coordinate axes,
labelled «, B, 9, ..., mobile and attached to a given point of the body (e.g. to the centre
of one of its molecules). We next proceed to a transformation of the various tensors in ex-
pansion (3) from laboratory to mobile coordinates, as follows:

Y Ay B (A1)

ot wozwrﬁ o woo;wrﬂwv Baﬁy’ e
With Cartesian reference frames, the transformation coefficients @, @, ... have the
meaning of cosines of the angles between the respective axes and fulfil the orthonormahty
conditions

=0, and @0, = 0 (A.2)

waazwcrﬁ

Thus, in going over from (5), (6) to (7), (8), calculations reduce to the averageing of avpro-
priate products of directional cosines over all possible orientations of the mobile axes with
respect to the laboratory axes. For the intensity tensor of linear scattering, the following

mean value [24] is relevant:

1
<waawrﬂwvwa'5>w = gb_ {(4'605,5676_ 6¢y6ﬁd- aadaﬂ‘y) 60161:@ +
-+ (4:6ay (5,35 — O 5/37 — 5aﬂ6y§) 66,,619 + (45@ (Spy — g5 6;}7—- 60;,3 (Sya) 6696,v}, (AS)

which, denoting the components of the unit vector of E by e,, yields

1
(D 5o pWyy005) € rEq = 30 {56:;,8676 (601—668,) + Gapys(3 6’061——6,,,)}, (A4)
where we have used the notation
Oupys = Oy 0ps T Oy Ops 05505y~ (A.5)

By means of (A.1) and (A.4), Eq. (5) transforms directly to (7).

Nonlinear second-order scattering as given by the tensor (6) involves the averageing
Of {04159, 0,50 3,0, The general result of this averageing procedure is to be found
in a previous paper [24], and leads to the here relevant expression

<waaw’rﬁwvywwwls'wlm>w eveee;»e;: 210 {7 6a(3(7y6611 (501 eaer) +Guﬂyden(3 eaer ar)}, (A6)
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where we have introduced the notation
aaﬂyéen = 6“/3”;:637] + 6ay668nﬂ + 6a66817137 + 6aeanﬁ76 + aam Gﬁyds‘ (A7)
In this case also, (A.l) together with the mean value (A.6) transforms the tensor (6)
into Eq. (8).
APPENDIX B.

Mean square of the fields of molecular multipoles

The discussion given in Section III shows that if anisotropy of nonlinear third-order
polarizability is neglected, the effect of the molecular field F; on second-order nonlinear
scattering is expressed in a first approximation as

25
BappBayryr, = - Vo g, (B.1)

<BzﬂyBaﬁy>F,, = 5C2VQ <F(2)>’ (B2)

with the mean square of the molecular field defined by (49).
The electric field existing at the centre of molecule p as induced by the electric multipoles
of molecule ¢ is 19, 25]

. 27n ! " 7
FOO — Z (—1 (E’;)_T (I)Tj(,q) [n] M; ) (B.3)
n=0
where
Mq(") — Z equ;zqu(;z) (B.4)
j

is the 2"-pole electric moment of molecule g, which is assumed to consist of charges e,

with radius-vector 7 ;;

Yg;) — (—::-)" r;t]jf‘l [» (i) and @ Tg;) — __l71+n<_1_) ; (BS)
n.: Tgj Tpq
the symbol [n] in Jansen’s notation [25] denotes n-fold contraction of the product of the
tensors VTG and M,
The square of the field (B.3), averaged over all possible orientations of molecule ¢
with respect to molecule p, amounts to [19]

x

2” +1 ! 2 n n —an
CFEP . FEOy, — Z %(n ) MY [n] M 7 20t (B.6)

n=0
In particular, if the multipolar molecule ¢ is axially-symmetric, Eq. (B.6) reduces to

<F(()pq) . Fapq)>w — Z (n+1){Mq(")}2r;12(”+2)

n=0

= 2ulr, 0 +30%, 8+ 40210 L 502 12, (B.7)

2q [ q g qpq
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where u, 0, Q, @, etc. stand for the dipolar quadrupolar, octupolar, hexadecapolar, etc.
molecular moment.

In the case when molecule ¢ is tetrahedrally symmetric, the general expression (B.6)
becomes '

48 - 240 -
<F8pq) M ngq)>w == ——5" -91223 rpqlo @1133 rpqlz' (B‘8)

Clearly, it would still be desirable to consider how the molecular miltipoles affect
nonlinear scattering by way of the energy v,,, which appears in the bi-molecular correlation
function (63) and is in general defined as follows (on neglecting inductional interactions)

[19, 25]:
- Z (=1 (27;;' (’;',Z;v M [n] O T3 [m] M. (B.9)
n=0 m=0

However, simple results are obtamed in the dipolar approximation only, as seen from (65)

and (66).
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