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MOLECULAR LIGHT SCATTERING IN DENSE MIXTURES*
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Department of Molecular Physics, A. Mickiewicz University, Poznan**
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Additivity of the scattered light intensity IS holds only in mixtures of ideal gases, but
breaks down in rnixtures of real gases or liquids as a result of molecular correlations. Here, by
statistical methods, IS is derived for multi-component systems as a power series in the molar
fractions x, the first term (linear in x) describing the additive properties of an ideal mixture and
higher terms (nonlinear with regard to x) accounting for deviations from additivity due to va-
rious (pairwise, triple etc.) molecular correlations. The theory proposed is discussed in detail for
certain molecular models taking into consideration the various multipolar interactions.

1. Introduction

Over half a century has elapsed since Rayleigh [1], Smoluchowski [2] and Einstein [3]
laid the foundations of the theory of light scattering, and research on this molecular effect
is still proceeding intensely. Various monographs of the subject exist [4]—[7]. ‘Interest
therein has become greatly enhanced since laser techniques and certain specific properties
of laser beams (collimation, coherence, monochromaticity and high intensity) have provided
a novel and unfailing instrument of experimenial investigation of various optical effects
inaccessible to detection by earlier methods of measurement [7].

We restrict considerations in this paper to light scattering in a molecular approach
first developed by a number of authors [8] —[11] for the case of so-called isotropic.scattering,
defined by the Rayleigh ratio (in the direction perpendicular to the non-polarized incident

beam)
| 1 (27\* [ n242\? 9
Ris= 5\ 3 a2o(1+Gg), (1)

where g is the number density of molecules, n the refractive index of the medium, « the
mean polarizability of the optically isotropic molecule, and

Cr = 4me [ {go()—1} ridr )
0

* The present paper is dedicated to the memory of Marian Smoluchowski, born 95 and deceased 50 ye-
ars ago.

** Address: Uniwersytet im. A. Mickiewicza, Katedra Fizyki Molekularnej, Poznan, ul. Grunwaldzka 6,
Polska.
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a parameter related with the radial distribution function g,(r) of two molecules distant by r.
G is linked with the mean square density fluctuation Ag in'a volume ¥V given by Smolu-
chowski as [2, 12]

V{(40)*> = @*TBr = o(1+Gg). ©)

Thus, investigation of isotropic light scattering provides i. a. information on the radial
function g,. This is particularly true of studies on the angular distribution of scattered
X-rays [12]. If the scattering medium presents no molecular correlations, Gz = 0 and (1)
goes over into the well-known formula of Rayleigh, which provides information concerning
© or the mean polarizability a. ‘ '

If the molecules are not isotropic optically, an additional contribution comes from
anisotropic scattering, given by [13, 14]:

13 (27) * [ n212)?
Ranis = TG‘ (7) (nT) a? ”29 (1 +JA) (4.')
which contains the parameter of optical anisotropy of the molecules [4],
— %30y :
Ha = 3a (5)
and the integral parameter [13]—[15]
Ja = %— ) f (B cos? 0—1) g, (r, w) dr do (6)

accounting for correlation between a pair of anisotropic molecules whose axes of symmetry
subtend the angle 6.

The influence of angular molecular correlations on anisotropic light scattering has been
discussed by various authors [13]—[18], the parameter (6) accounting for these correlations
being accessible to calculation from experimental data [13], [14], [19].

The Rayleigh factor (4) describes anisotropic light scattering by a medium  whose
molecules have the optical anisotropy (5), which vanishes for », = 0. However, more exact
theories taking into consideration the influence of molecular interactions on optical polariz-
ability show [10], [17] that, in sufficiently condensed atomic fluids also, there can occur
anisotropic scattering, which leads to depolarization of the light according to the formula
117], [20]

6a%/r
D=+ -5 7
5(1+GR)+7(12JR ( )
wherein the parameter
Jp = 8o f r8g,(r)ridr 8)
0

accounts for interaction between the dipole moments induced in the atoms (or isotropic
molecules) by radial type microscopic fields. Obviously, as is well-known, isolated atoms or
isotropic molecules in the gaseous state do not depolarize scattered light. It is only in con-
densed media that depolarization occurs as a result of radial correlations given by the para-
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meter (8), which appears moreover in molecular refraction [9], [11], [20], [21] and in other
molecular effects [22].

When viewed more closely, light scattering can be strongly affected by fluctuations in
the anisotropy of the molecular electric field [17], [22]—[24] and by hyperpolarizabilities
induced in the atoms or molecules by molecular fields [17], [20]. Finally, the influence on
light scattering of various microscopic factors e. g. interactions (dispersional, dipolar and
quadrupolar, etc.) in real gases can be studied by the method of virial coefficients [15], [25].
This latter method, which is apt to yield valuable data on the type and magnitude of the
intermolecular forces, has not yet been put to full use.

As seen, the theories stated above in brief involve but the two-molecule (pairwise)
correlation function g,. Higher approximations of light scattering theory make necessary the
appearance of multi-molecule correlation functions. Thus, in double scattering [26]
and non-linear light scattering [27] induced in liquids by intense light (e. g. from lasers),
three-molecule (triple) and four-molecule (quadruple) correlation functions, gs and gy,
appear. Such an extension of the study of light scattering will permit to gain information not
only concerning the pairwise function g, but moreover on those of multi-molecular correla-
tions which play so great a part in the statistical theory of liquids and highly compressed
gases [28], [29].

The thermodynamical theory of light scattering on fluctuations of the concentration
in solutions, initiated by Einstein [2], has also undergone development both in the thermo-
dynamical [30]—[32] and molecular [33]—[35] approaches. In this paper, we shall concen-
trate on developing a general, molecular-statistical theory of light scattering in multi-
component systems. It will be shown that Rayleigh’s ratio can be represented as an expansion
in powers of the molar fractions:

R =Y xR+ D x,-x]-Rﬁ—l—Z %200 R - ... 9)
i ij itk

The first term of (9) defines additivity of the Rayleigh ratio whereas the higher ones provide
a measure of its deviation from additivity. The coefficients R; involve only the optical polar-
izabilities of the isolated molecules. The R,
ties and electric moments; it is most essential that they are linked, respectively, with the
pairwise, triple, and multi-molecule correlation functions gff),gg’g,

The ensuing, detailed discussion of R;; and R, is primarily aimed at showing that the
role of molecular correlations in light scattering is by no means solely quantitative but
in many a case leads to qualitatively new types of scattering, which do not appear if inter-
actions are absent. Particular care will be given to establishing the conditions for the appear-
ance of anisotropic light scattering, the mechanism of which has to remain unexplained in
the thermodynamical approach.

R4, ... contain moreover the polarizabili-

2. General fundamentals of the theory

We consider an isotropic medium on which a light wave is incident with electric vector
E = E, & oscillating at frequency o = 2 ¢/2, and define therein a sphere of volume ¥
whose radius is small with respect to 2. Let n and n, be the refractive indices within and out-
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side the sphere, respectively. The mean macroscopic optical field E,, existing inside the
sphere is now related with E thus:

. 3n3

T nt2n3

Ey (10)
Since by assumption ¥ < < A3, we can restrict considerations to light scattering of the
dipolar type with electric field in the wave zone distant by R, from the centre of the scattering
sphere given as [5, 17]

1
Egp = R {Ryx (Ryx M)}, (1)

where M is the total dipole moment induced in the sphere by the field E of the incident
wave.

Assuming for generality that V" contains N = Z N; molecules of various species (V;
j

is the number of those of species j), we can write in a linear Approximation
M =73 > mPexp {i(k—K) 1.}, (12)
jog=1

Mm@ denoting the electric dipole moment induced in the g-th molecule of species j distant
by 7, from the origin of coordinates; k and k’ are respectively the wave vectors of the
incident and scattered light.

Let us introduce the tensor of scattered light intensity IS, defined as

t

s 1 o
I, = S {AM,AM, | (13)
where the symbol —' stands for time-averageing and { ) for appropriate statistical aver-
ageing.
The dipole moment M is a function of E, and can be written as the expansion
: oM, 1 { 92M,
M, = ( oK, )OE’+ 2 (aE,aEv>oE’E”+"" (14

wherein the first term leads to linear and the second and subsequent terms to non-linear [27]
light scattering.

In the present paper, we shall discuss linear light scattering only. Moreover, as a simpli-
fication, we shall assume intermolecular distances much smaller than A. By (12) and (14), the
tensor {13) now resolves into two parts:

I = I +Ige (15)

the isotropic part being given as

4
I = (3) Fult, (16)
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and the anisotropic part as

4
I‘;‘:is = —é (%) Fanis(vglo(sat + Igf)‘ (17)

— ' .
Above, I?, = E_E, denotes the incident light intensity tensor, and I® = I% — its trace.

The factors Fig and F,;; characterize the molecular mechanism of isotropic and aniso-

tropic light scattering, and are defined as!

N; . N; .
1 . Omd? 2 Qm,(gq’ )
Fe=gp 2 <A oF, 4 275 | (18)
i =1 g=1
N; N; . . . .
1 I ngp') é)m‘(zlﬂ) megm ngﬂ)
Fanis = 1577 Z (Z (3 9Ly 9E;  OE; 9k, (19

once we take the differential polarizability tensors dm,/dE,; to be symmetrical and real,
which is the case for optically inactive molecules in bands remote from electronic absorp-
tion.

Eqs (16) and (17) are quite general and can be applied for calculating various quanti-
ties characterizing the intensity and polarization of scattered light (the Rayleigh ratio R,
depolarisation ratio D, turbidity, etc.) at well-defined conditions of observation. In partic-
ular, for non-polarized incident light propagating along the y-axis and scattered light obser-
ved along the x-axis of laboratory coordinates, Eqs (16) and (17) yield

is 15 1 :
Iyy - Oﬂlzz = '2— (—Ccu—) IOES (20)
4 4
e (_‘;i) 0 Funty 122 = & (%) I° Funi, 1)

On defining the Rayleigh ratio as

Ly + I, Iy + IS (n2+2)2

R = 15 0 3

22)

where, by (10), I§; denotes the incident light intensity for the interior of the sphere ¥ immers-
ed in vacuum (ny = 1), we obtain by (20) and (21) the isotropic and anisotropic parts in the

form
1 [w\*[n2+2)\2 13 {w\* [ n24+2\2
Ris—§<7) ("’3—) Es, Ranis:"m‘(‘—c“') T Fanis (23)

Likewise, Eqs (20) and (21) lead to the following, general expression for the depolaris-
ation ratio:
IJﬁ’ 6 F, anis

D, = S = i 24
[zi 5ﬁ}s+7Fanis ( )

1 Those of ref. [17] differ by a factor of 9V.
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In a similar way, Eqs (16) and (17) can serve for deriving expressions for R and D
at other conditions [17], also when observation of scattering takes place at an angle ¢ with
respect to the direction of incidence, yielding for the isotropic and anisotropic parts of the
Rayleigh ratio [17], [36]

4 2 2
ro® = 3 (2) (Z22) Qoo i )
1 4 2 2
Ranis ('19) = 16 (%) ( z ;—2 ) (13+0052 ﬁ) Fanis- (26)

The general formulas (16) and (17) provide moreover the basis for deriving certain
well-known relationships [4, 17, 36] between R (#) and D (8), and for proving the validity
in this case of Krishnan’s reciprocal relations between the various scattered light intensity
tensor components for vertically and horizontally polarized light (with respect to the obser-
vation scattering plane xy) [27], [36].

3. Discussion of the factors Fiy and Fipq

The subsequent discussion of this theory consists in applications of the molecular
factors (18) and (19) to particular situations, rendering the optical properties of the molecules
as such, as well as the micro-structure of various substances. We now proceed to consider,
one by one, some of the most interesting though simple cases.

3.1. Anisotropic, linearly polarizable molecules.

To begin with, we assume the molecules to polarize linearly only, with polarizability
unaffected by interaction, so that the component of the moment induced in the molecule is
given by the linear relation

n® = a$PE,, @7
where a%) is the optical polarizability tensor component of the p-th molecule of species i

in the absence of molecular interactions.

With regard to (27), the molecular factors (18) and (19) become

3B E ) (F)Ee)

p=1 q=1

'
il
-

Ny

1 J : . ; .
ams - W Z < Z (3 a%) a‘%]) - ag&) agg)) > * (29)
if

=1 q=1

z

Y

By well-known methods of statistical mechanics [28], [29], [37], these can be put in the form

F,=o0 Z a;a; {%;0,+%;; G, (30

F_.— _% Z (3a8) a (;) —a® a(n) (%, 8+ %; % T, @31)
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where the following radial and angular molecular correlation parameters have been intro-

duced:
o = [ [ e, )

0 ff ajf;/; a%) {3 w(;bq,v) w,(epq’ij) __ 5“/3 5;;5} gl(,]?> (Tp5 Tq) d‘rp qu

J/(lij) —
V(S agg ;}/; (1) a(]))

(33)

(2)

with g1§1)(-,p) denoting the mono-molecular and gi”(z,, 7,) the bi-molecular correlation

function for molecules p and ¢ of species 7 and j, respectively, at configurations 7, and 7,;
a)gf,q’ij) is the cosine of the angle between axes o and y of reference systems attached to mole-
cule p of species ¢ and molecule g of species j.

The expressions of Eqs (31) and (33) are valid for any molecular symmetry, whereas
they undergo considerable simplification if the scattering meolecules are assumed to possess
the axial symmetry e. g. about their 3-axis:

ams =0 Z a’z%ata]%a] 1611 +x %, JW) (34‘)

with an axial correlation parameter of the form

T2 = %ff (3 cost 00—1)gD(r,, 7)dr,d, (35)

and optical anisotropy
o = (a53—ai])3a,. (36)

az

Formally, it is also possible to write down Eqgs (30) and (31) as follows:
F,= Z xl-F(')—l— Z xxF(”) . (37)

Fanis = Z xlFa(:l)lS_'_ Z x X, Fa(.gl)s N (38)
1
wherein the molecular factors

) 2
FY = eal, P = 45 (Gael—aQaf) (39)

define the properties of an ideal mixture of non-interacting molecules, while the expressions

Fi(sii) — Qaiangj), Fa (30,(’) @__ a(l)a(l)) J(t]) (40)\

anis

account for those of the real mixture presenting molecular correlations defined by the para-
meters (32) and (33).

In the absence of molecular correlations G¥ = 0 and J$? = 0, whence Eqs (37) and
(38) reduce to

Fls = Z xtFx(;)7 Fanis = Z ’Cng.‘)ls (4'1)‘
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which expresses additivity of the molecular factors, amounting to the statement that the
molecules of the various components of the ideal mixture scatter light independently. In
condensed mixtures, owing to correlations between molecules of the same as well as of differ-

ent components, the factors Fy, and F, ;, are no longer additive quantities.

18 anis

3.2. Isotropic molecules with effective polarizability

If, in particular, the molecules are isotropically polarizable, we have
5511’3,) - a’pz(saﬂ (42)

and the anisotropic scattering factor (29) is seen to vanish. Thus, anisotropic molecules of
constant polarizability cannot scatter anisotropically. However, the latter conclusion is
strictly valid only in the foregoing approximation of the theory 7. e. if Eq. (27) is postulated.
For isotropic molecules, by (42), it reduces to

mgpi) = apiErz . (43)

Now, this relation is strictly correct only when the atom or molecule undergoing polariza-
tion in an externally applied electric field is isolated with regard to neighbouring atoms or
molecules. Such conditions are ensured only in strongly rarefied gases, where the distances
separating the molecules are greatly in excess of their linear dimensions.

In condensed media such as compressed gases or liquids, the atoms or molecules po-
larize one another by way of their intrinsic microscopic fields, even if no external field is
acting on the medium. In the general case, a given molecule is acted on by the externally
applied electric field E and moreover by the molecular field I due to the charge distribu-
tion of the other, polarized molecules of the medium. '

We now have to replace Eq. (43) by

m®D = 4, (E,+FO), | o)

where the molecular field existing at the centre of molecule p of species i is given in the
dipole approximation as [17], [38]

Ny
F;Pz) —- — 2 Z Tg;lI)m}(SQJ)’ (45)
J g=1
where
Tgfq) = (3 Tpqa pap ™ qéuﬁ) (46)

is the dipole-dipole type interaction tensor of molecules p and ¢ distant by r, , vanishing for
p = g but non-zero for p #q. '
By Eqs (44) and (45), the method of successive substitutions yields to a?:

N; N
FO = —% Z aq]Tg;‘I)Eﬁ—}—Z Z >} g TEOTENE, — (47)
J g=1 Jk g=1r=1

It is seen that, on inserting_ the molecular field (47) into (44), the polarizability @ of the
isolated molecule relates the dipole moment and field E inducing it in the first approxima-
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tion only. In higher approximations, this polarizability is affected by multipole interactions
of the induced dipole-induced dipole type, so that the atom or molecule now presents some
effective polarizability.

We shall now consider once more the molecular factors in the form (18) and (19). First,
let us discuss F,,;;, which takes the form

F(Pi) aFéQf) aF;Pi) 9F,§qj) >
*"‘“:181/;<Z; # “’{ d9E; 9Eg @k, 9k J[° (“49)

The foregoing result states that owing to fluctuations of the molecular fields, anisotropic

light scattering takes place even when the molecules are isotropically polarizable [10], 171,
[20]. With molecular fields of the form (47) and on neglecting terms in higher powers of the
polarizability we obtain the result

N;

Ny N Nj
Fop = ?117 Y <Z Z Y y a,,,.aqja,kas,T%T;g)), (49)
= =1 s=1

iskl p=1 g=1 r=1

which, by statistical methods, can further be written down in expansion form:

s = B 3T + 3 P £
i
where to within ternary molecular correlations we have
F@, = oala] TR, 1)
F3® = ga,ala, 2 J ), (52)

Above, we have introduced the following binary and ternary correlations parameters:

Jh=2= f f 1,288z, , 7,)d7, dt,, (53)

s 2
TP = QI_/_ f f [ By T Ty e T 8 P81y, Tp» TAT, AT, (54)

with the ternary molecular correlation function gﬁ?ﬁ(rp, Ty Ty)-
The radial correlation parameters (53) and (54) occur moreover in the theories of mo-
lecular refraction [21] as well as magnetic [22] and optical [39] birefringence of atomic

fluids.

The expansion (50) fails to contain the additive term Z xF&., since by what has

been said, isolated atoms or isotropic molecules fail to produce anisotropic light scattering.
In the condensed medium, as a result of interaction between induced molecular moments,
anisotropic scattering appears. Indeed, such a medium will present binary or ternary assemb-
lages of atoms or molecules coupled more or less strongly by radial forces. As long as they
hold together, such assemblages behave like optically anisotropic elements on which light
can undergo anisotropic scattering. This slight anisotropic scattering suffices for light
depolarization to appear.
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Similarly, one can calculate additional contributions to the isotropic scattering factor

which, in the second and third approximations, will involve the correlation parameters (53)
and (54).

3.3. Nonlinearly polarizable atoms

Although we consider but linear scattering due to a weak light beam, one would be wrong
in concluding that the atoms or molecules of dense media reveal linear polarization only,
as is the case in rarefied gases. Indeed, within dense media there exist molecular fields F,
whose strength is quite considerable as compared with that of the weak light beam E and
which can induce not only linear but moreover nonlinear polarization in the atoms or
molecules. One now has to push further the expansion of Eq. (44), yielding for atoms im-
mersed in a dense medium the tensor of differential polarizability

amgpi) 1 uu) (pz) i) p(pi) (p1)
—Q‘E—g“ = apiazﬁ'}' sz (605/3 Fy +2F F ) + e QPl FOwﬁ +. (55)

where, in addition to the atom’s mean linear polarizability a,; we encounter its meannonlinear
polarizability c,; induced by the square of the molecular field F¥” and mean quadrupolar
polarizability ¢,; induced by the molecular field gradient F((,ﬁ'ﬂ).

Insertion of (55) into the anisotropic factor (19) shows it to be in general non-zero,
amounting to

Ni Nj
ams = 162V Z { <Z Z [3(Fé§l)F(()%1)) (F(()sz)F(()/(fIij))_
=1 ¢g=1

N; Nj
~EPREPRPNY + 2 0 (33 ke E . )

=1 ¢g=1
Hence, nonlinearity in the dipolar polarizability of atoms on the one hand and qua-
drupolar polarizability on the other give rise to anisotropic light scattering at E = 0 due

to fluctuations of the molecular fields.

Assuming for the sake of simplicity that two atoms interact with dispersional London
forces, we get [40]

(o N B v
a’iFéi‘)Fo/gl) = “jFégz])thlgl) = — a,ajrpq (3rpqa pqﬂ+rpqaaﬂ) (57)
’V,'—I-'Vj
hy; and hv; being characteristic energies of the species i and j respectively.

Omitting in (56) the term related with quadrupolar polarizabilities and taking into account
the fields (57) one obtains the anisotropic scattering factor for pairwise atomic interactions
in the form

2
F - L LA )

2.2 2 2.2
6 +2aiajci 4 clay)
vitv;
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where the radial correlation parameter R{? is given by

R(U) =e f ngl(f) o) ATy, (39)

for an exponent of n = 12.

3.4. Tetrahedral, nonlinearly polarizable molecules.

In the case of tetrahedral molecules (e.g. CH,), the differential polarizability tensor

expansion contains a term linear in the molecular field:
am(Pi) (
i = e tHEFE (60)

which involves the tensor bg’g’g having non-zero components b;yq = b and describing the
change in polarizability of the molecule due to the field F¢,

Insertion of (60) into (19) vields in the relevant approximation the following result:

N; Nj
bg,ggb;ggmom»} (61)

X

whence, in general, mutually interacting tetrahedral molecules are also seen to scatter
light anisotropically.

Let us first assume that the tetrahedral molecules interact with dispersional forces
of the type (57); considering pairwise correlations only, Eq. (61) yields

” 1 hyy;
‘FééZs =50 (H J ) (a:b? -+ blay) R, (62)

where the radial correlation parameter R is given by Eq. (59) for n =6.
On the other hand, tetrahedral molecules are known to possess an octupole moment [37]

5
959123252%%3’7;%, (63)

n

e, being the n-th electric charge of the molecule.
The electric field due to octupole moments of molecules is of the general form [41]

Nj
. 1 .
i)
=3 X Y, rehe 2
o
where ;. is the octupole moment tensor, and T3 = —V VWV, Vs (1r,,) that of dipole-

-octupole (or quadrupole-quadrupole) interaction.
Substitution of the field (64) into Eq. (61), in the tetrahedral case, yields

F& — % (TH3QF +6b;5,02:0,+ 70277 RSP. (65)
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3.5. Anisotropic, nonlinearly polarizable molecules.

For anisotropic molecules of arbitrary symmetry, the differential polarizability tensor
is given by the expansion [34]

Im@? 0D | 1oh g . L o)) ped) ped)
oF. Tgg” T baﬂvF o T Ecaﬂvé K oy Fos” +
X
1 i . aF(Pi)
a0
X

byp, and cyp,5 denoting the dipolar nonlinear polarizability tensors, and g,4,4 the quadrupole
polarizability tensor.
The molecular field F is now of a more general form than that of Eq. (45); to within

quadrupole type interaction, we have namely {40], [41]
| N . Nj
FOD = — Z Z TED(ule) +m@) 4 T Z Z TSN O@+ QW) — ..., (67)
J e=1 i e=1

M, and m, being respectively the permanent and induced dipole moment of the molecule,
and 0,5, Qg the tensor of its permanent and induced quadrupole moments.
One notes that in the present, general case the problem of effectively calculating the

‘molecular factors Fy, and F, ;. becomes highly complicated, the more so as we now have

anis
-also to take into consideration the energy U of intermolecular interaction inherent in the
sstatistical mean values marked in (18) and (19):

fX('L’) exp {— [;;(;) } dt
(XY = . . (68)
/ exp {— —(—]—(ﬂ} dr
. kT
The energy U(7) is a function of the positional variables * and orientational variables @
., electrostatic

‘of the molecules, and comprises contributions {rom central interaction U,

interaction Uy, inductional interaction U4, and dispersional interaction Ugg,:

U(T) = Ucentr + Uel + ljind + U-disp ’ (69)

With the exception of central interaction energy, which depends on the variables r
only, all the other energies are moreover in general dependent on the orientational variables @.

With accuracy up to quadrupole-quadrupole interaction, the energy of electrostatic
interaction is of the form [37], [41]

-1y

i

N,

i Np

] 7

. Y (o
{ Mg‘m) T,,(,%q' M,(sq])—
=1 g=1

3
"

1 o oo o o 1 ; .
— 5 WO —OPUP) TG — - 05T, @53,”—...}, (70)
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whereas that of inductional interaction relating to the same approximation (omitting the
quadrupolar polarizabilities) is [37]

. & .
{ M?')T%)Oﬂgy ) T%q) Iugﬂ)_.

1 - " . , " .
o T TS O — O TRAPTEO) —
1 oo " ;
— 5 OPTRAPTEROD ..., (71)

oz%e) being the electric polarizability tensor of molecule r belonging to species k; the inter-
action tensors T, , Tps,s and electric multipole moment tensors @4, £, are to be found
e.g. in refs [40], [42].

The calculation of the factors (18), (19) with Eqs (66)—(71) is thus seen to involve
very great complications, and is feasible only if appropriate simplifying assumptions are
made. Usually, all non-central interaction energies, U, = Ugy+Uypg+Uyigp, can be dealt
with as a small perturbation to U, , and the averaging procedure of Eq. (68) can be
replaced by the approximation

(XD = (XKoo (XU X>oCUpdo)+
b g KEUD X U2 (XTpg—<K3o Ty ol = (72)

where (> symbolizes statistical averaging with non-perturbated central interaction energy.
When the expressions (66)—(72) are applied in calculating the anisotropic factor (19),
one obtains for pairwise correlations of axially-symmetric molecules the following contribu-

tions to F,;; which result one by one from permanent dipole-induced (first-order) dipole
interaction
ﬂ—uF ;i)is = —2-5%—]—, Q¥qiCiHgs {(ac;zu,-y}’ -} y? Ocj%g,j) Rg’:")—l—
b 721156 12+ ulor(7 41103 R (73
+ W [“z( + Han) i+ ‘xj( -+ %aj)] 19 -+ } )

from permanent dipole-permanent dipole interaction

Fa) ouiu? o, 12uie ey | 1Buin o
u—u" anis = Tergr i Kai Oj Kaj Rg” + A05E T Rig + A AT Rig + ..., (74)
and from permanent dipole-induced (second-order) dipole interaction
; Qouii; "
wtFads = {[M,-ama,-bj(nzs )+ bi(1 + 255) i) REP + (75)
6ulul i ”
+ 49/22?2 [iiraib(2+51 2) + b2 +510) pa; x| RSD + }
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wherein
Hp; = (bg§3“b(1i1)3)/3bi and b, = (b §l§3+2b(111)3)/3 (76}

stand for the anisotropy and mean value of the second-order polarizability.

Similar calculations for quadrupolar, axially-symmetric molecules vield successively
the following interactional contributions to F{):
permanent quadrupole-induced dipole

30

) _
Q—aFams 35 IZCT

Ui%aiOina; (XinaiOF + OF ;) R (77)

permanent quadrupole-permanent quadrupole

4o

_QF9
O— O Fuis = 55357

i2t4i Q0 O; 92 R, (78)
and permanent quadrupole-induced (third-order) dipole

@—cFaEgi)s = L

) {a.maz (20 @7 ¢; +49¢,;67) -+ +(20¢,07 +4967 cﬂq)%%a]} R, (79)

where we have used the molecular parameters

Hey = (C(3i§33~0¥1)11)/30i and ¢ = (05333 +25?1)11)/3 (80)

defining the anisotropy and mean value of the third-order dipolar polarizability.
Analogous calculations, which are of a somewhat lesser degree of complication, can
be carried out for the factor of isotropic scattering (18).

4. Applications to mixtures of real gases

For moderately compressed gases, the binary and ternary correlation functions can be

written as [28], [37]

. 1, 9 1 T,Tr
s <o [ G {0 Yo [ o (- 257 ]

X [exp (— —Elﬁ%g)—) ~—1] dTr+O(Q2)}7 8Ly

Uiit( Ty T Ty
Befllsptor) = exp |~ 2] 1o, )

where u;i and Uy, are the total potential interaction energies for two or three molecules,
respectively; 2 = [dw.
By (81) and (82), the factors F@ and F® can in general be certain functions of the

molar fractions. However, if pairwise interaction alone is considered, F¥ and F&),
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will not depend explicitly on the latter. In this approximation, it is convenient to separate
a radial part g,(-f)(rpq) from the binary correlation function, as follows:

02 ) = & ) exp | — 0 | )

with v (g, ©,, ®,) the noncentral potential energy of interaction between two molecules
bhaving orlentatlons w, and w,

Using the approximation of Eq. (83), one can effectively compute the correlation
parameters (32) and (33) for various molecular models. Indeed, the parameter (32) can
now be expressed directly by means of the second virial coefficient of the equation of state for

gases:

1 71 1 3 9
Bj=—5 VCR = — 55 f f f {exp[ ”’(’qu‘}”’ 4)] 1} dryq deoy desy  (84)

which has been discussed in full for various models of noncentral forces [42].
With regard to the approximation (83), the angular correlation parameter (35) can be
written as

P = f f f 62 (rpe) (3 cos? 0 —1) exp [— ﬁ’——k;‘i—“’l] Ay des, deo, (85)

a form well-adapted to direct computations for appropriately chosen models.
In particular, in the case of molecules that are anisotropic and non-polar, the only
noncentral interaction energy is that due to anisotropy of dispersional forces. This can be

put in the form [40]

vdlsp i h”i”j
Y o4 vty

o0y {%m'-l- %uj'—?’%zi(l_%zxj) cos? 01,——

— 35ai(1—45) €082 04— Botairta; (3 cos B, cos O,—cos bpg)?} Toa- (86)

On inserting (86) into Eq. (85), one gets with an accuracy up to the second approximation
of perturbation calculus

i 3 hv,-v- )
19 = 0T (ﬁ) “i%zi“j%aj{Rg‘]) +
i T Vj

3 ( hv;

98 BT ) [49—14 (%g; -+ #4j) + 382qiai] RSP + } 87)

The above expression still contains radial parameters given by (59) which can be calculated
if the form of g} 2)( o) is known explicitly. In cases when

Oy ede {95\ _ (o)
cnlalls] 1)
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one derives from (59) by the Lennard-Jones method [42]

3—n
RY = LU (), )
S ¥i
wherein
5 — s+3—n)/s 1 s—1}/s tm—l—n—3
H () =y Y yameoip (—) (90)
m=0

are functions discussed for s = 12 and ¢ = 6 by Pople [43] and for s = 18 and ¢ = 6 as
well as s = 28 and £ = 7 by Saxena and Joshi [44]; ¢; and o;; are central forces parameters
having the dimensions of an energy and length, respectively; y; = 2(g;/kT)%.

Eq. (89) permits to calculate numerically not only the correlation parameter (87), but
moreover the other expressions (58), (62), (65) and (73)—(79) containing the radial corre-
lation parameters Rffj). Since most parameters such as Ejs Oy» Oy %y My, O ete. are known
for a large variety of molecules, evaluations of the various contributions to the factors
F, and F_;, can be made and point to a rather essential role of noncentral interactions,
particularly nonlinear polarizability [25]. It is to be regretted that as yet there are no mea-
surements on light scatiering by compressed gases and their mixtures. Once light scattering
measurements in real gases become feasible, it will be possible to determine the values
of molecular multipoles and to compare them with the values obtained by other methods
{42], [45].

In recent years, a number of papers [46]—[50] have been published on the experimental
study of light scattering in various liquid solutions. A discussion of their results with the.
present theory will be given separately.

The author is indebted to K. Flatau, M. Sci., for the English translation of this paper.
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