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ELECTRIC AND MAGNETIC ANISOTROPY INDUCED IN
NONABSORBING ISOTROPIC MEDIA BY AN INTENSE LASER BEAM

By S. KieLicu*
Department of Molecular Physics, A. Mickiewicz University, Poznati
(Received January 7, 1967)

By a semi-macroscopic theory, intense light is shown to induce electric and magnetic
anisotropy in isotropic media. In diamagnetics, the magnetic effect is small as compared to the
optically-induced electric anisotropy, which e.g. in carbon disulphide or nitrobenzene should
be accessible to observation by using a giant pulsed ruby laser. Investigation of the two effects
in gases will yield new information on the electric and optical anisotropies, both linear and non-
linear, of various molecules; in condensed media it can moreover provide data on the molecular
correlations. The variations in electric and magnetic permeability due to optico-striction and
the optico-caloric effect are calculated thermodynamically.

1. Introduction

Recently, some papers [1—2] appeared on the theory and measurement of the in-
versed Faraday effect. We wish to draw attention to a similar effect, consisting in the induc-
tion of magnetic anisotropy in isotropic media by an intense (e. g. laser) beam. This, indeed,
is an inversed Cotton-Mouton effect, related with the previously considered non-linear
variations of magnetic permeability which can be induced in gases or liquids by a strong
optical field [3].

Similarly, an optical field of very high intensity can affect the electric properties of
isotropic systems [3, 4]. We have in mind nonlinear variations of the electric permittivity
and the optically induced electric anisotropy, which is indeed the inverse of the well-known
effect of DC field-induced birefringence i. e. of Kerr’s effect. At present the detection of
the electric anisotropy induced in an isotropic medium by an intense light beam is only
a matter of evolving appropriate ingenious measuring laser techniques.

From a phenomenological point of view, the above-mentioned effects are closely related
with the cirecumstance that a medium will become nonlinear when acted on by light of high
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intensity. In this case the electric (¢) as well as the magnetic permittivity (u) become non
linear functions of the intensity I, their nonlinear variations being given as

e—eq = Q°I+Q3 2+ Q3B+, (1
p—po = QI+ Q5 P+ Q5 P+.... 2
Here, the expansion coefficients Qf’, ... @7, ... describe the electro-optical and magneto-

-optical properties of the medium as well as its structure and thermodynamical state.

In the present paper, it is our aim to show that under the action of intense light the
medium becomes not only nonlinear but moreover anisotropic in its electric and magnetic
properties. In order to obtain results of sufficient generality, we proceed by the well-known
semi-macroscopic approach to linear [5] and nonlinear [6—8] phenomena in isotropic
dielectrics. The results thus derived are further subjected to a microscopic interpretation in
a statistical-molecular approach. Here, however, our considerations will be restricted to
variations in & and g linearly dependent on I, and thus to a discussion of the coefficients
Q% and Q7 in the expansions of Eqs (1) and (2).

2. Optically induced magnetic anisotropy

We consider a spherical, macroscopic sample of volume } within a dense isotropic
medium in which the weak (measuring) magnetic field H induces magnetization given by
the vector P,. Under the effect of the oscillating electric field E associated with an intense
light beam, the medium becomes anisotropic, with magnetic properties given by the magnetic
permeability tensor
OPpys
oH, '
where the indices ¢ and 7 relate to the axes X, Y, Z of the laboratory reference frame.

Since the magnetization vector P,, is defined by the ratio of the mean magnetic dipole
moment {M™) and the volume ¥ of the sphere, we have by (3) for a diamagnetic medium

4y [OMYT
Mor— 0or = 'I}; <—§}:—Ir—>!, (4‘)

where, in the classical case, the mean statistical value { ) in the presence of light intensity [

is defined as follows:
IM;" Ulz,I)
<aM:,"> f ‘ﬁ;e"l’{— R }d’ "

oH, [~
el fexp {— g('l;r;TI—)} dr

Here, the total potential energy of the system at configuration T may by expanded in
a power series in I and we obtain in a linear approximation (see Appendix A)

Ugy — Ogr = 4 3
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with U(z, 0) — the potential energy at zero light intensity I, which is defined as the trace
of the incident light intensity tensor I = 5 E_E;. In (6), A2, denote the o7 components

of the optical polarizability tensor of the medium.
Similarly, the magnetic dipole moment in (4) is a function linear in H and nonlinear
in E, and we can write in the same approximation as (6)

M = Mg+ %B;”f,,fw—k... +A%H, + —;— ComeH L+ (7
where M is the magnetic dipole moment of the sphere in the absence of external fields
(which vanishes in the case of diamagnetic media), and the tensor B, describes the magneti-
zation induced in the medium by light of intensity tensor I,. Thus, the second term in (7)
corresponds to the inverse Faraday effect, as introduced and discussed by Pershan et al, [1, 2].
Ay, is the magnetic polarizability tensor of the medium whereas the tensor C77,, accounts
for the change in magnetic polarizability due to the light intensity tensor I,

However, the medium is acted on by the intense field E too, and quite generally this
can affect also the volume V. If, for simplicity, we assume that the sphere changes its vol-
ume isotropically (without undergoing a change in shape) under the effect of the field E,
and that this change is a quadratic function of E, we can write (see Appendix B)

Vr=— { (%?)T —(nz——l)xT}I ®

for the change in volume due to the light intensity I (opticostriction); p denotes the pressure,
n — the refractivity and »; — the isothermal compressibility of the medium.

By Egs (5)—(8), we obtain from Eq. (4) for the change in magnetic permeability tensor
due to light of intensity [

N

Hor— o 60’1 = Amolaar +Bmo(3 Iarhlaor)’ (9)

where p, is the scalar permeability in the absence of light (I = 0).
The constant B,,, in Eq. (9) defines the magnetic anisotropy induced optically in the
medium, and is in general given as (see Eq. Al2)

T mo mo mo
B, = E_V <3C¢ﬂ¢ﬁ —}—3C¢,35¢—2C¢aﬂlg +
1 m o m 0o m 0 .
+ iT (3AusAes +3A%3A8. —2Au.4,35)> R (10)

where the brackets { ) denote statistical averaging (5) at zero light intensity.
The constant 4,,, describing the isotropic changes in y,, consists of two parts: firstly

2m

Ao = N {(CZ'Z,W + kl_T ((A4zeApsy — {Azay <A73ﬂ>)} 48y
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related with variations in magnetic polarizability and fluctuations in linear magnetic and
sptical polarizability, and secondly

o—1 ] {In? 5 ;
Azozﬂgn {(%-)T—(n —1)%7'} (12)

resulting from opticostriction (electrostriction at optical frequencies given by Eq. (8)).

For the case of light incident in the direction of the Z-axis of the laboratory system,
Eq. (9) yields the relative difference in diagonal components of the magnetic permeability
tensor in the form

lu'xx_:uyy = SBmo(Ixx_Iyy)? (13)
which defines only the magnetic anisotropy induced in the isotropic medium by intense
- - 1
light. For natural light I,, = [, = EI and the magnetic anisotropy (13) vanishes.

In the case when the incident beam is elliptically polarized and propagates again along
the Z-axis, equation (9) leads formally to the difference between the nondiagonal components
of the magnetic permeability tensor

By My = 3iBma(I+_I—)’ (14‘)
where I, and I_ are the intensities of right and left circularly polarized light with electric
amplitudes E = V_ (E,xiE,).

The magnetic anisotropy constant in the general form (10} can be written in molecular
form by recurring to classical statistics. Namely, for a medium of density g = NJV of
magnetically and electrically anisotropic molecules, one obtains

B,, = oBG)+* B+ ..., (15)

where
B _ 2% ]gm 3 16
mo = 7= Cuﬂuﬂ caaﬂﬂ + kT( a‘aﬂ a'aﬂ amaﬁﬂ) (16)

is a constant determining the magneto-optical properties of the medium in the absence of
molecular interactions. The tensors ajgand afj define the optical and magnetic linear polar-
izabilities of the isolated molecule, and ¢g , the — change in its magnetic polarizability under
the effect of the light intensity I.

The other constants in (15) account for the influence of molecular correlations on the
magnetic anisolropy in a dense medium; in a first approximation [9, 10],

; oy 45VkT f (3008?02 —am ap} gty 75) drpdry, (17)

where g® (t,, 7,) is the binary correlation function for molecules p and ¢ at configura-

tions 7, and 7,
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By (17), B is non-zero only if molecular correlations are present; if not, it vanishes,

and the magnetic anisotropy is given by the constant (16), which consists of a temperature-

-independent part defining the effect of non-linear molecular deformation (a counterpart of

Voigt’s effect), and a temperature-dependent part related to the effect of molecular orienta-
tion in a strong optical field (a counterpart of the Langevin effect).

Since in the diamagnetic case the magnetic anisotropy constant B,, can be replaced

by the Cotton-Mouton constant, which for nitrobenzene is of the order of 1071 esu, Eq. (13)

yields 1, —u,, = 3x 1072 I. Hence, the optically induced magnetic anisotropy is seen to

be very small in the case of diamagnetic substances and is accessible to measurement only

by highly sensitive experimental methods and using a laser beam of intensity I ~ 108 esu.

Presumably, larger effects can be expected in paramagnetic substances e. g. in oxygen.

3. Optically induced electric anisotropy

In a similar way, the semi-macroscopic theory of optically induced electric anisotropy
can be formulated. We shall restrict ourselves here to writing out the equation for the change
in electric permittivity tensor due to light of intensity I: :

g9 +2

€z '—80661 = ( ) {Aeofaar ’I'Bea (3Iar Iam)}a (]-8)
where g, is the scalar dielectric constant at 7= 0.

The quantity A4,, in Eq. (18) describes isotropic changes in ¢ related with the linear
and nonlinear polarizabilities and opticostriction (8), whereas the constant B, defines the
electric anisotropy induced in the medium by intense light and is given by

B, = 45V (30ay0p5 +30450py —25aﬂ5w)< Copys +
]‘ € 20 e 0 13
T (M Bgys +AapAye) + szz M, MﬁAVﬁ> (19)

where MZ is the a-component of the electric dipole moment of the sphere and Af, the
components of its electric polarizability tensor. The tensors Bf, and (73, describe respec-
tively the change in M; and AZ; produced by the light intensity tensor I,

We now proceed from the foregoing semimacroscopic form of the electric anisotropy
constant of (19) to a molecular form aimed at gaining insight into the microscopic mechanism
of this phenomenon. Namely, by methods of statistical mechanics, the constant B,, can be
written formally as the following expansion in a power series in the number density @:

B,, = ¢BY +0*BY +0*BY + ..., (20)
where

27
¢} e 7e
Beo) 15 {3cwﬂaﬁ Cuzﬁﬂ + 7 k (3ﬂu ﬁuﬁ /“ubuoﬁﬁ) —+

]‘ 3 (4 e o ]' e e o e e 0
+ BT (B%ap Gap —aa @pp) + 2Te (Btapts®as _ﬂac/‘«za’ﬂﬁ)} (21)
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is the electric anisotropy constant for an ideal system of noninteracting molecules having
permanent electric dipole moments u°. On interchanging the indices e and o, Eq. (21) be-
comes analogous to the Kerr constant [3, 11—14].

The remaining constants in (20) are non-zero only for systems in which molecular
interactions occur and are of the form (for comparison see Ref. [14])

Bﬁf):;LEJZ—T(3%6&,+36¢aaﬂy—2aaﬁaw) f f {,,;<v>bg;<g>+

[

+ bay ‘uﬁ(q) +da z(é’) a,,(q) 4 — e(p) e(p) 0(q) + [u;(m‘ue(q) 0(p) +

kT (He

D 90 } &D(t,, T,) dupdr,, (22)

Bl = 45 k2T2 f f [ {3/“’(?) 50 O(r) (p)/‘;(q) a,‘;%’)} g¥(tp, Tg, T) dTpdr dTy,  (23)

where g® (Tp» T4 7,) is the ternary correlation function for triples of molecules p, g and r,
The expressions (21)—(23) hold for systems of interacting molecules of arbitrary sym-
metry, and their further simplification can be achieved by assuming a particular type of
molecular symmetry, e. g. spherical, tetrahedral, axial or other point group symmetries
[8, 14].
The general Eq. (18) leads to the electric anisotropy

g+2
Exx—Eyy = 3 ( 03 ) BeoLx—Ly), (24)
and the difference between the nondiagonal components of the electric permittivity tensor
2
Exy—Eyx = 3I (80; ) Beo(I—L). (25)

Hence, the electric anisotropy induced optically in an isotropic medium is independent
of the constant A,, containing i. a. the opticostriction given by (8).

On certain assumptions, the electric anisotropy constant B,, can be replaced by the
Kerr constant. Since for nitrobenzene the latter is of the order of 10~ esu, the electric aniso-
tropy by (24) is of that of 10~® I and is accessible to measurement at [ = 10~4—10° esu.
It is noteworthy that, recently, measurements of induced intensity-dependent rotation [15]
and optical birefringence [16] in some organic liquids have been performed by laser tech-
niques.

4. Magneto-optical phenomena
As stated at the outset, optically induced magnetic anisotropy is an inversed Cotton-

-Mouton effect, related with the Faraday effect by the equation [10]

n2,—ngdy, = (”" +2> {FomtorrH, + AomOurH®+ Bon(3H,H,— 8, H?)}, (26)
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which determines the linear and non-linear changes in optical permittivity tensor (electric
permittivity tensor for optical frequencies) due to a strong, homogeneous magnetic field H.
£, 15 the Levi-Civitd extensor.

Thus, Eq. (26) now describes both the linear effect of magnetic rotation of the
polarization plane as given by the Faraday constant

» 271: om ]- o m
Fom= 37 Eapy <Baﬁy + T AesM,y > 27

and the quadratic effect of magnetic birefringence given by the Cotton-Mouton constant B,,,,
whose shape in the diamagnetic case coincides with Eq. (10} provided we interchange therein
the indices m and o. A detailed discussion of B,,, is given elsewhere [10].

Also, the constant A, consists of two parts analogous to (11) and (12); however, the
change in volume is now related with magnetostriction (see Appendix B).

Applying in particular the Faraday constant (27) to a gas consisting of noninteracting

molecules, one obtains directly Born’s formula [11] (derived by formal molecular theory [12]):

2'.7'5 om ]- o m '
Fom= 3 OFapy (baﬁ7+ T aaﬁ/‘y) > (28)

where 4™ is the permanent magnetic moment of the molecule, and b33, — a tensor defining
the change in optical polarizability tensor due to the linear magnetic field. The first term
in (28) accounts for the diamagnetic effect, whereas the second term — for the paramagnetic
effect directly dependent on the temperature.

From (26) we obtain for magneto-optical rotation:

2
ndj—nd = 2 (”3—+-2-) FunH, 29)

if the incident light beam propagates parallel to the magnetic field acting along the Z-axis,
whereas for magnetic birefringence we have

: 2 \2
nZ—nd, =3 (”L;_) Bom(H2—H}) (30)
if propagation is parallel to the Z-axis and perpendicular to the XY-plane containing the
strong magnetic field vector H.

5. Application to special cases

Eqs (15)—(17), when applied to isotropically polarizable atoms or molecules, yield the
simple formula

2m
Buo = 0lcht— i) (31)

meaning that in atomic substances magnetic anisotropy can arise solely as a result of the
anisotropy induced in the atoms by the light beam of high intensity. The optical molecular
orientation effect is in this case absent [3, 18].
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For the case of axially symmetric molecules, the result on omitting the nonlinear defor-
mation term is

B = s (0= ) g —ag) (1+5), (32)
where [10]
1
7P = 5% f (3 cos? f,,— 1)g®(,, 7,)drsd7, (33)

is an integral parameter describing angular correlations between molecules p and ¢ whose
symmetry axes subtend the angle 6, .

The parameter (33) occurs also in the theory of molecular light scattering, thus in the
depolarization ratio [19]

6(as3—a)® (1+J5)
4'5(1/OQICT%T + 7((‘1:33 — G:ll) 2 (1 + (2))

(34)

and can be calculated numerically from the experimental data [20] (e, is the mean optical
polarizability of the molecule).
Similarly, Eqs (20)—(23) yield for atoms

2n
B,y = 3 0(C53a—C§3as) (35)

whereas for dipolar axially-symmetric molecules (on omitting nonlinear deformation terms)

4 e e o [
Bog = Eyjk—gf {(033——(111) (a3s—aan)(1 +JP) +
kT (033 a)(1+2J4 TP+ (2) (3)) } (36)

where, in addition to (33), we have the correlation parameter

I = f f c0s Bg (33, 7o) dT3d7, 37

occurring in Kirkwood’s theory of linear dielectrics [5], as well as the triplets angular correla-
tion parameter

TP = f[f 3 cos Opy €05 04— 05 0,) 8375, 74, Tr) dTpdT AT, (38)

appearing in that of the Kerr effect [14].
Applying Eq. (36) to non-dipolar substances (4, = 0) and recurring to Eq. (34), one
obtains a relationship between the electric anisotropy constant and the depolarization ratio:

D
B,, = Amo2al (a55—afy) #r
e (agg—a3,) 6—7D° (39)
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which can be checked experimentally.
Considering the relation

IM—( 3 )21 40)
T \n242 (

between the light intensity within the medium (/™) and in vacuum (I), Eq. (24) can be
rewritten thus:

bre—yy = 3 (80;2) (" ; 2) Bu(IM—1™), (41)

For CS, we have [19] at ¢t = 20°C: n = 1.636, ¢ = 2.26,! 0 = 9.99x 102 em3, s = 92X
% 10~12 cgs, D = 0.62, a, = a,= 8.77x 10~ cm?, whence Eq. (39) yields B,, = 3.3x 10712,
and in accordance with Eq. (41)

6ra—byy = 55X 10712 1. ). (42)

Using a laser beam of intensity 10° esu, one has an electric anisotropy of 5x 1073, which
is accessible to measurement by present techniques.

6. Conclusions

By semi-macroscopic theory, an isotropic medium is shown to become anisotropic
in the presence of intense light, the variations of its electric and magnetic properties being
described by the tensor equations (9) and (18), which contain i.a. the constants of optically-
-induced electric and magnetic anisotropy B, and B,,,. Eqs (10) and (19), which define
these constants, are of sufficient generality for application to various special cases, such
as rarefied or dense one-component systems (gases or liquids) or multi-component systems
(gas mixtures, or solutions) consisting of mutually interacting or non-interacting molecules
of arbitrary symmetry. The evaluated order of magnitude of the electric anisotropy in the
case of carbon disulphide or nitrobenzene lies within the range of measurement by existing
laser techniques which, ingeniously applied; have already permitted to measure certain
other, equally subtle nonlinear effects [1,2,15—17]. Investigation of the phenomena
considered above, in conjunction with work on the Cotton-Mouton and Kerr effects which has
continued successfully over a period of many years, can provide information much fuller
than has hitherto been possible on the linear and nonlinear electric, magnetic and optical
properties of atoms and molecules subjected to intenese optical fields.

A detailed discussion of these effects, on a quantum-mechanical level and based on
the foregoing general nonlinear formalism [21] will be given in a separate paper.

APPENDIX A
Derivation of Egs (9), (18) and (26) from the free energy in external fields

All nonlinear effects discussed in this paper can be derived from the free energy

F(E, H) = —fIn Z(E, H), (A1)
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related with the partition function of the system
Z(E, H) = Q f exp {—BU(, E, H)} dr, (A2)

which involves the total potential energy of the latter U(z, E, H) when its molecules are
at configuration 7 in the presence of external fields E and H; §= 1/kT, and @ is
a normalizing factor such that 2 f dr = 1.

We consider the system to be in the DC magnetic field H and in the optical field E
of the incident light wave of intensity I. In the case of a non-dissipative medium, the following
expansion can be written, to within terms quadratic in H and linear in I (see Ref. [1]):

U(‘L’, H, I) = U(T, 0)—M0':Hu_ %A?,HGH.,— % Ag'l[d‘t—

5 B % G HH Ly .. (43)
where the part of the mechanical energy has been omitted.

Since the energy (A3) does not depend explicitly on the time (the rapidly-variable
terms vanish on time-averageing), it can be inserted into the partition function (A2) which,
obviously, holds for systems at thermal equilibrium.

Dealing with the H- and I-dependent part of the energy (A3) as a perturbation to the
energy U(t, 0) of the non-perturbated system, we obtain from (A2) the consecutive approxi-
mations

Zy= 2 [ exp {—pU(, 0)}dr,

Z, = BZ, <M5';H,,+ % AnH.H, + —;—Af,,f,,,+
1 1 o
+ 5 BooHolw + 7 ComelH:lyp+ ... ),
1 -m m m 40 m 0 m 0
’ Zz = E 5220 <M06M01HGHT +MoaAvQHGIW +M0°B'::’QH0H‘KL’Q + %AatAveHthIve + .. > »

]' m -m 0
Zy= 6 BPZeBMoc Moz Ay H H Ly + ..., .., (A4)

neglecting approximatioas of higher orders. The symbol { > stands for the statistical average
calculated in the absence of external fields:

(G = Z71Q f G exp {—BU(z, 0)}dr. (A5)

We assume the summation indices o, 7, %, ¢ in (A3) and (A4) to refer to the laboratory
coordinates in which the direction of the magnetic fields is given. For further calculations,
it is convenient to transform the tensors My, A,,, B,.,, ... from the laboratory reference
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system to one attached to the medium (or to any single molecule) with axes labelled by the
indices a, §, 9, 8. The transformation formulas are of the form

M,=o, M, A Augs oo (A6)

ot waawrﬂ

where, if the axes of either reference system are rectangular, the transformation coefficients
Wggs Wops --- have the meaning of directional cosines of the angles between the respective
axes.

For the case of an isotropic medium in the absence of external fields all orientations
of the axes a, f, ... with regard to the axes o, 7, ... are equally probable, and averageing
yields [22]

1 1
{Weay = 0, {Woag) = 3 6::;‘3661’ {Woa7p0yy) = 3 EapyEarvy

1 .
<waawrﬁw:yw96> = 30 {(4’5#36?6“ OayOpo— 0asdpy) o7 Ong + (40ay Ops—

— B85S — 0a58,5) Bon D+ (46,2505y— B dys— Oy 35 DagBune (AT)

Here, d,5 is the Kronecker unit tensor, and &,, — the Levi-Civita pseudo-tensor.

By the transformation formulas (A6) and mean values (A7), and on adding up the
consecutive approximations of the partition function (A4) and ordering according to powers
of the field strengths, we have

Z(H9 1) - {1+ /9 <A:lu +ﬂMOGM0¢>H2+ 18 <A u>I+

1 no m 40
+ 1_2 ﬂ€¢57<B¢ﬂ’y +ﬂM0¢Aﬁv> gawHalrv +

1
360 P

X (315x—1857)]1{ Capys + 2 MoaBfys + BAzs Ays + B2 MoaMopAysy H.H + ...} (A8)

v [106¢ﬂl§y¢5]6m— +(36uy6,3§ —|—36¢(§557—-261ﬁ 675) X

Now, since the magnetic polarization vector component is
1 (9F
Puo=— % =2
m 14 (E)H(,)T,V (49)
we have by (A8) in the present approximation

1 m m
Pma = 3_17 <Aau+/3M0¢M0’:> Hc+

]' mo m o
+ Ty eapy{Bagy +BMocApy) orl v +

+ [105,,9670[(50,—1—(36“,,655 +36¢56137—2 6‘:‘363,5) X

180V
X (8ox—I8,2)) CCafys+ 26 MiaBls+ B Am Ao+ MM AL ot oo (AL0)
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In (A10), the first term defines linear magnetisation, the second — magnetisation due
to light alone [1,2] and the third — magnetisation due to the simultaneous action of the
magnetic field and the intense light beam.

Inserting the magnetisation (A10) in the fundamental equation (3) one obtains im-
mediately Eq. (9) for the permeability tensor; however, the constants 4,,, and B,,, are now
of more generality, and formally applicable to paramagnetics as well:

27t mo m pmo
Apo = o {{Caaps) +2B {MoaBasp) +

+ B {(Aue+ BMoaMog)(Ass—<Agsd) }» (A1l)
42 = Q1% SR T mo
Buo = 1z37 (30ay0p0+3 2305y —20a50,0) Capyo+
+28MozBhys + B AzsAns + 2 Mo MopAys). (A12)

If in particular M* = 0, as is the case of diamagetics, (All) and (A12) go over directly
into Eqs (10) and (11).

With regard to (3) and (A9), the permeability tensor can be linked directly to the
free energy:

, 4 d2F
1 __
Hor—0ov = — —> ( SHAH. )T’ . (A13)

if ¥ is assumed independent of H.

On replacing magnetic by electrical quantities in (A3) et seqq., one comes to Eqs (18)
and (19) for the variations of the electrical properties of the medium under the effect of
intense light. Similarly, the method leads to the fundamental equation (26) for magneto-
optical phenomena.

APPENDIX B
The optico-strictional and optico-caloric effects

When the medium is acted on by light of high intensity I, the variations of its electric
(1) and magnetic (2) permeabilities are given as [3]

Ae = Aeg;+ Aey,+ Aey (B1)
Ap = Apg+ Apy -+ Apir. (B2)

The variations de; and Ay, due to the optical field have been calculated in Appendix Aj;
here, we shall derive those related with optico-striction (dé,, Auy) and with the optico-
-caloric effect (Aeg, Auy). We begin by introducing the total thermodynamical potential @
related with the free energy (Al) as follows [23]:

d® = —SdT+Vdp+dF, (B3)

S denoting the entropy, T — the temperature and p — the pressure.
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The increase in electric permeability related with a change in volume AV = V,—V is

Ney = (%)TA v, (B4)

where, by (Al), (A8) and (B3), and on neglecting higher order terms, we have

QD 12 o
= (G ) v ol -

17)9 m m n rm
- 6‘ {% <Aaa+/3M0uM0a>}TH2—'“ (BS)

Since in the absence of external fields (All) and (A13) yield
n:—1= A {Azey and p—1= Ao {Aza+ BMoeMosy (B6)
3y 3y T e

the change of volume can be expressed in the form of

1 (8 1 (9
a7 = — o {% [(n2—1) V]}TI — & {51; [(u—1) V]}TH% (B7)

where the term proportional to the light intensity I defines the effect of optico-striction
(electro-striction [23] at optical frequencies), whereas the one proportional to H? defines
magneto-striction [6, 10].

Restricting further considerations to optico-striction, we have by (B7)

V| [dn? 9
— ) e B
av 8n{(8p>T (n l)MT}I, (B3)
Mg == — 1(er being the isothermal compressibility.
V Qp T
Since by analogy to (B6) we have
4‘7! e e €
e—1= W <Am+/3MOuM0a>a (B9)
%) _ el nd Bqs (B4), (BY) ﬁnali; vield
oVir vV
V)[on? e
— MY e hl
== g (5 o055,
e—1[{on? 5 n? +2\2
= =) —me— B10
1 ) (5 o
where I, is the light intensity within the medium given by Eq. (40).
Similarly,

2
Aer = (ﬁ)v AT, (B11)
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where the rise in temperature due to absorption of heat by the system when the external
fields are switched on adiabatically is

T (@ T |2 9
AT = G (QT A@)p ~ 8l {Q_T [(n —-l)V]}pI—
T [@
2 1% nu— 2
8, {QT [(e—1) V]}pH . (B12)
Here, the first term defines the optico-caloric and the second — the magneto-caloric effect.
C,= T(g—“;: is the specific heat at constant pressure.
?
Considering solely the rise in temperature due to the optico-caloric effect we have
TV 9
AT— 8aC, {( ) + l)ozp} I (B13)
where a, = Ly fad is the volume oeficient of expansion.
vV \oT/,

The expressions (B8) and (B13) are counterparts of electro-striction and the electro-
-caloric effect [23].
From (B9), (B11), (B13) the variation in electric permeability resulting from the optico-

-caloric effect is .
o VT | ¢ dn 2
Aer=— 8C, (QT) {( ) + (n%2— l)ocp}l. (B14)

Quite similarly, one calculates the changes in magnetic permeability and refractive
index due to optico-striction and the optico-caloric effect. In particular, the change in
refractive index from optico-striction, by (A8), is

, dn? n2—1|[dn2 n? +2\2
2 — R 2__
Anf = (a————V )T AV = o {( o ) . (n l)HT} ( 3 ) Iu. (B15)

Numerical evaluations for optico-striction [24—26] show that in liquids its contribution
is of an order comparable to that of optical molecular orientation [3, 18], whereas in isotropic
solids it is predominant [24]. ’
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