Vol. XX XI (1967) ACTA PHYSICA POLONICA Fasc. 5

CLASSICAL THEORY OF MAGNETO-OPTICAL PHENOMENA IN DENSE
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A semi-macroscopic theory of magneto-optical effects in dense isotropic media and its
microscopic interpretation on the basis of classical statistical methods is proposed. The non-
linear variation of the optical permittivity tensor, as due to a strong DC magnetic field H, is
shown to be given by the equation

'Sot_nzéar = FsarvHv+AH2(scr+C(3HaHz—H26¢n)v

where F is Faraday’s and C — the Cotton-Mouton constant, while 4 is a constant dependent i.a.
on magnetostriction. Other processes, such as the magnetic anisotropy induced in an isotropic
medium by an intense e.g. laser beam, the magneto-electrical or electro-magnetical cross effect,
and similar magneto-optical effects are also discussed. By classical statistical methods, it is
shown that for multi-component systems F, C, as well as other magneto-optical constants can be
expanded in power series in the molar fractions, the first coefficient describing the additive
properties of the perfect mixture, and the consecutive coefficients accounting for deviations from
additivity due to the presence of molecular radial and angular correlations. Moreover, within the
framework of molecular relaxational theory, the variations in complex refractive index in a strong
oscillating magnetic field and variations in magnetic permeability in an intense oscillating electric
field are calculated.

1. Introduction

Substances not naturally rotating the plane of polarization of light gain this property
when in an external magnetic field. This is the well-known Faraday effect when light propagates
within the medium parallel to the magnetic field lines. It is closely related with the Zeeman
effect, which consists in a change in frequency of the light emitted by atoms in a magnetic
field. The theoretical fundamentals (Lorentz’s electron theory and the quantum-mechanical
approach) have been established for either effect quite a number of years ago by various
authors (¢f. the paper by Serber and Groeneweg [1] and the earlier papers cited by them) and
are still being developed in application to various substances [2—6]. The effect of a magnetic
field on the optical or electric properties of substances is also apparent otherwise e.g. in
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the paramagnetoelectric effect [7], or inverse effects of optically induced magnetisation [2, 8]
and inverse Faraday effect [9].

Another important magneto-optical effect consists in the birefringence induced in
isotropic bodies by an intense magnetic field, thus in the Cotton-Mouton effect. In this case,
too, the early theory of Voigt and Langevin has been developed by a number of authors on
the basis of classical statistical mechanics [10-—14]. At present, owing to the lasers at our
disposal, it is possible to observe the inverse Cotton-Mouton effect consisting in the induction
of magnetic anisotropy in isotropic bodies by means of a strong optical field [15]. The rapid
development of laser techniques provides the experimental conditions for observing yet
other magneto-optical processes, e.g. DC magnetic field-induced generation of the second
harmonic, or the effect of a magnetic field on the optical activity, etc. [16].

Obviously, a theory of any magneto-optical process whatever has to be a quantum-
mechanical theory. On the other hand, the formulation and elaboration of the latter for the
case of dense systems involves considerable difficulties, which are conveniently avoided
by first developing a classical theory. In many a case (to the exclusion of paramagnetic
processes), this yields satisfactory agreement with the experimental results and permits to
predict what microscopic factors should be taken into consideration. Such indeed is our
intention in the present paper, which is aimed at proposing a classical statistical theory of
magneto-optical effects in dense media based on earlier papers [15, 17] dealing with non-
linear electrical, magnetic and optical phenomena in gases and liquids,

In order to ensure sufficient generality of the theory, we at first proceed by the semi-
macroscopic method developed in the theory of dielectrics [17, 18, 19] and then go over to
the microscopical picture, which brings forth the specific mechanisms of the magneto-
optical effects under consideration. Previous to formulating the semi-macroscopic theory,
we shall develop a formal molecular theory of magneto-optical effects in gases, as initiated
by Born [10]. We shall start by applying molecular relaxational theory for calculating the
effect of an intense oscillating electric field on the magnetic permeability and that of an
intense oscillating magnetic field on the light refractive index.

2. Molecular relaxational theory of nonlinear effecis due to an oscillating electric or
magnetic field

Consider an isotropic medium of volume V" containing NV electrically and magnetically
anisotropic molecules. We shall deal with the magnetic variations of its properties due to
the effect of a strong electric field E = E cos wt oscillating at frequency w. If the density
¢ = NJV is not excessive, the magnetic permeability of the diamagnetic medium is given
by the fundamental formula

pe—1 = dmp f g% hoho f(Q, E)dQ, 2.1)

where my is the o-component of the magnetic dipole moment induced in a molecule by the
weak measuring magnetic field H, whose direction is defined by the unit vector k. In Eq. (2.1),
f(R, E) is the statistical distribution function of molecules having the orientation £ with
respect to the strong oscillating field E.
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Assuming for simplicity that the diamagnetic molecules are linearly polarizable and
are axially symmetrical with regard to the 3-axis defined by the unit vector E, one can write

mm ].
m;n = Qor Hr = amHu‘I'(a33 "all ) (k k 60‘1)H19 (22)
a,, = ang'|3 being the mean diamagnetic polarizability of the molecule and afy* = ajy" as
well as afs’ — the diamagnetic polarizability tensor components ajr".

The statistical distribution function can be found by Debye’s method as developed
by Peterlin and Stuart [20] which, for axially-symmetrical molecules having the electric
dipole moment u, and electric polarizability aj] = a3, and ag3, yields to within the square
of the electric field [21]

f(‘Q’ E) f(Q O) {1 + ﬂ,uek Eoge wt

1+ior,

+£(“ e _Pud ) (e - ) Bkl 8u0) Eoo 2.3
12 a33—a11 1_|_in1 l_l_ 2 a'r) OoLi0r 4+ ... (> ( . )

where f(£2, 0) = 1/£2 is the statistical distribution function of the molecules in the absence
of an electric field, whereas 7, = BW]2 and 7, = BW]6 are the respective relaxation times;
B = 1/kT, whereas W is a frictional torque.

On substituting (2.2) into Eq. (2.1), we obtain

i1 = 4:1 f {Bam - (amm— am)(3kok— Oor) hohis} f(2, E)d (2.4)

whence with (2.3) and the following mean values computed from f(£2, 0) at zero electric

field:
1 1
'ﬁ fkokr dQ = g 601:7

% / bk e kg dQ — 11—5 (Bor0yp+ 0oy g+ O D), (2.5)

we get finally

270 o mm_ qmm) L gse _qee . _BHE
HE— Mo = == plagg"—afy {a, ag+ Ttior X

et2wt
2
(1—!— R ) {3(h - e)2—1}E2 (2.6)
where 1, is the maguetic permeability at E = 0, and e is the unit vector in the direction of
the electric field E.
The foregoing expression defines the change in magnetic permeability as due to the

square of the strong oscillating electric field. If, in particular, the latter’s oscillation frequency
is zero (w = 0), Eq. (2.6) leads to the expression [15]

BB~y = ﬁ(a"’"'—a'"'” (agg—a%s -+ pud){3(h - €)*—1}Epo, 2.7
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which defines the non-linear change in magnetic permeability produced by a strong DC
electric field.

Conversely, if the oscillation frequency of the electric field is sufficiently 'high for us
to write wt; - oo and wr, - oo, Eq. (2.6) reduces to the simple form

2
UE— g = 47? Blazm—amm) (agy—as){3(h - €)2—1}E2, (2.8)

On computing herefrom the magnetic permeability values for the cases when e and h are
parallel and mutually perpendicular, one obtains their difference in the form

ﬂn—/u— 5 ® Blagm—aym)(ah—ats) B3, (2.9)

The expression thus derived defines the magnetic anisotropy induced in the medium by
an intense optical field (electric field at optical frequencies).

We now proceed to discuss the change in light refractive index due to the effect of
a strong oscillating magnetic field; this can be calculated from the fundamental equation

ni—1= 4dmp f JL. % eqe. f(2, H)dQ, 2.10)

where m; is a component of the electric dipole moment induced in a molecule by the electric
field E of the incident light wave. In a linear approximation, Eq. (2.10) yields for axially-
-symmetrical molecules

1= 4y [ ot gk el a0, @1

where a, = aZ,[3 is the mean electric polarizability of the molecule, and afj = a$; as well
as a3z — its electric polarizabilities along the principal axes 1, 2 and 3.

In the case now under consideration, the statistical distribution function f(2, H) in
the presence of the oscillating magnetic field H is again of the form (2.3) provided one replaces
the electric dipole moment y, by the magnetic moment u,,, the electric polarizabilities %5
and agy by the respective magnetic quantities ay” and ajy", and E by H. Thus, (2.11) yields
the expression

2n9

2 2 __ ee ee mm mm ﬂlu?”
nf—nd = Blag—a%) Japm—amm + ——=— X

1+iwt;

(1+ 1+22 ) {3(e - h)*—1}H2 2.12)

which defines the effect of a strong oscillating magnetic field on the refractive index of light;
ng is the refractive index at H = 0.
From Eq. (2.12), the magnetic birefringence is obtained in the form

2ng Bu gi2wt |
2_ 2 ee ___ qee mm__ mm m 2 2.13
n—rL plagy—a ){“ o 1+ioT, 1+ 1+ 207, Hy  (@213)
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For the case of a DC magnetic field (w = 0), Eq. (2.13) goes over into the well-known
Langevin-Born formula [10]

4
nf—nd = - flags—ag) (o — o+ B2 Hhc. (214)
Eqgs (2.12) and (2.13) show that in the case of an oscillating magnetic field the refractive

index is a complex quantity and can be resolved by the well-known procedure into real
and imaginary parts. For diamagnetic substances, by (2.12), these are respectively:

2
Re (n%{_ng) _ ﬂ@ /3(0,” eel)(amm___amm {]_+
cos 2wt +2wT, sin 2wt D2 TV
T+ dotsl }{3(6 h) 1}H0, (2.15)
Im (nf—nf) = 2”@ Blase,—azs) (agm—amm)

2071, cos 2wt—sin 2w
1-4+4w27d

{3(e - h)2—1}H3. (2.16)

Similarly, one can resolve the magnetic permeability (2.6)into areal and an imaginary
part:

cos 20t +2wT, sin wt ]

Relpz—po) = 45 > lagy—agy {(aee_au‘) [H 1 +40?73

2 1—2m21,7,) cos 20t +o(T +27,) sin 2wt
g [ e e i or . 1o
Im (ug—uo) = ﬂ(a”""wam’” {1&_3:4 ‘12112 (2w7, cos 2wt —sin 2wt) +

Bus (7, +27,) cos 20t —(1—2w27,T,) sin 2wt e >
+ T oty + e {3(h-e)>—1}E5. (2.18)

Eqs (2.15—2.18) define nonlinear dispersion and absorption of the refractive index
and magnetic permeability.

3. Magneto-optical phenomena in gases

Let us first consider a gaseous medium presenting no interaction between microsystems
(atoms or molecules) and let us assume that it is acted on simultaneously by an electric
field E and a magnetic field H. We moreover make the assumption that E and H are homo-
geneous; thus, we can restrict the problem to considering polarization of the dipolar type
only. We assume, however, that the field strengths E and H are sufficiently great for produc-
ing not only linear but also non-linear polarization. On these assumptions, the potential
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energy of a microsystem at configuration 7 can be expanded as follows in a series in p owers

of E and H:
1
U(Ta E7 H) = U(Ta 0)—/'L§'EU_/‘?HU—— —2— (a‘zfrEaE‘r_l_

oY oty

1
+2a'§r:EcHt+a’:n:nHaHr)—— g (beee EaErEv+3beemEvErHv+

+3b¢"™ F H,H,+ b H, H_H,)—

oty [i x4

1
—(c* E,E,E,E,+4c“"E,E,E,H, +

- 2% oTYE oTve

6 E, E H,H, + 4 B, H HH, + ™, H HH)—..., 3.1)

oTYQ

where the physical meaning of the expansion coefficients will be given further on.
The expansion of Eq. (3.1) provides the basis for calculating the electric dipole moment
components for a microsystem subjected to the fields E and H:
oU

1 1
£ — =y ta’E +—b“EE+ o E EE +...
mg, <’~)E6 ,ua+ag-r 1+ 9 ovliz v+ 6 oy t’rly q+

1 1
+arH A+ o b HH, o+ o HH H,

1 1
+o5mE H, + 3 i O 5 Coomg B Hy+- ... 3.2)

Here, pf is the component of the permanent electric dipole moment, whereas ag; — those
of the electric linear polarizability tensor of the microsystem. The term a7 H, above defines
the electric moment induced in a molecule by the magnetic field [22, 23].

Taking the derivative of the expansion (3.2) with respect to the electric field strength,
one obtains the tensor of-differential polarizability in the presence of the fields K and H as

follows:
dmg ee coe 1 eeee
dF, = Gyt bo“rva + 5 ‘””QE”EQ toeo
1
B, 4 S Hy - o H .. (33)

2

The tensors by, and c¢5yy, are thus seen to define the non-linear variation of the electric
differential polarizability tensor due to a strong electric field, whereas the other tensor of
(3.3) — that due to a strong magnetic field.

Under the influence of a strong external electric and magnetiz field, the gas becomes

anisotropic, with electric permittivity tensor
IPes

Egr— 601 = 457t—9_E: » (34:)

where P,, = o{mjyg g is the electric polarization vector component.
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Now, since we are interested here in the electric permittivity of the gas at optical fre-
quencies, Eq. (3.4) can as well be rewritten as follows:

dmg
E5r— 00z = 4o <arg >E i (3.5)

wherein, for the case of classical statistical mechanics, the statistical average in the presence

of the fields E and H is given by

9 e
<9m§> f&F exp {—pfU(z, E, H)} dz
OE/en [ exp{~pUG, B, H)}dr

Eq. (3.5) together with (3.1), (3.3) and (3.6) provides the basis for a formal
description of a variety of magneto-optical effects in gases. We shall now proceed to a discus-
sion of these effects one by one.

(3.6)

A. The Faraday effect and Cotton-Mouton effect

Let us begin by considering the influence of a strong magnetic field on the optical
permittivity tensor, which by (3.3) and (3.5) is defined by the expansion

1
Egy— Ogr = 47:9( as + oy H, + — f;e,’;’g'Hng+...> . 3.7
H

Taking into consideration the expansion (3.1) and definition (3.6) at E = 0, we obtain with
accuracy up to the square of the magnetic field strength (see Appendix A)

188y, = Frey H,+ A% H?2S,,+ By (3H,H,— H?6,,), 3.8)
where n, is the refractive index in the absence of a magnetic field,
2n
Fo= @Eaﬂy(b:ﬁy+ﬁaui9ﬂv (3.9)
is the Faraday constant,
mm 2n eemm eem
Aee = ? Q( uaﬂﬂ +2/3baa,31uﬂ (310)

is a constant determining non-linear variations in optical permittivity of an isotropic %ind,
and

m 759 eemm e
By = 15 Kapys(Capyo +Bagpans” +2Bbeus + Bagsity, ps (3.11)

— a constant accounting for the anisotropy induced in the gas by a strong magnetic field,
also known as the Cotton-Mouton constant.

In Egs (3.8) and (3.9), &, and &, are Levi-Civita tensors, whereas the tensor y,s,s
appearing in (3.11) is of the form

XQﬁV(s = 36ay6ﬁ§ +35a55ﬁy—25¢/35y5. (3.12)
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In Eq. (3.9) of the Faraday constant, the first term, which does not depend directly
on the temperature, defines the diamagnetic Faraday effect consisting in optical variations
of the microsystems directly due to the linear magnetic field, whereas the second, tempera-
ture-dependent term describes the paramagnetic Faraday effect related with orientation of
the magnetic dipoles in the strong magnetic field. For the case of diamagnetic substances,
Eq. (3.9) leads to the well-known result of Born [10, 11]:

w2 ~
Fee - ?ﬂ 0 {beem _peem _I,beem __peem +beem _beiegg . (3]_3)

123 213 231 321 312

Similarly, Eq. (3.11) consists of a diamagnetic and a paramagnetic part. The former
consists of an effect of non-linear deformation (Voigt effect as described by the first term
of (3.11)) and an effect of molecular orientation (Langevin effect as described by the second
term in (3.11)).

In the case of microsystems having the spherical symmetry,

:u:zn =0, G’ZS = a’eam‘h a;n};n = a’méaﬂ’
mm em 1 eemm eemm
Capys = C1133 0aplys + 5 (c3s53 —C1133) (OayOps+ Sasdpy), (3.14)
and Eqgs (3.10) and (3.11) reduce to the simple form

2n
mm eemm eemm:
Aee = 3 o (casss +2c1133 )

2n eemm  eemm (3 15)

B:';m = 73* e (03333 —01133)-

Hence, in substances consisting of spherical microsystems, magnetic birefringence appears
due solely to the anisotropy induced in the microsystems by the square of the magnetic
field (Voigt effect [10—15]). Similarly, Eqs (3.9—3.11) can be applied to microsystems
of other types of symmetry.

Assuming the incident light to propagate along the Y-axis perpendicularly to the
XZ-plane containing the strong magnetic field vector, Eq. (3.8) yields the following expression
for the magnetic birefringence:

€2 Exx = 3B:ZM(H§_H3) (3.16)

For light propagating parallel to the magnetic field e.g. along the Z-axis, Eq. (3.8)
yields the tensor components of the optical permittivity characterizing the Faraday effect
in the form
Eyy = —Eyy = FH,. (3.17)

xy
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B. Electro-magnetic cross effect
On neglecting in (3.3) the terms in E2 and H?, we get on substitution into (3.5)
Eor— Oor = Amelag, + b0 E,+ O H, +cCn EH, 4 D s (3.18)
whence on averageing, retaining the terms in EH,
Egr— 1905, = 2ATHE - H)4,,+B™[3E,H,+3H,E,—2(E - H)$, ] 3.19)
Eq. (3.19) defines the cross effect consisting in a non-linear variation of the optical permitti-

vity tensor due to simultaneous action on the gas of the electric field E and magnetic field H.
The constants appearing in (3.19) are of the form

2m
Ay = 5 oA cGaps + Bbagsds + uabim) }» (3.20)
ne £ & & € {4
BY = = Yapyst Capys T Bagsans +B(bas, 15 + ubie) +BPassul ). (3.21)

If both E and H are static fields and if they are mutually perpendicular (E - H = 0), Eq.
(3.19) reduces to

gat_nzao'r = 3Bz’en(Eo'H‘r +H0Et)’ (322)

which means that in this case electro-magnetic anisotropy is alone induced in the medium.
Formally, Eq. (3.22) still holds as above when the fields E and H represent mutually
perpendicular vectors of one and the same light wave; however, the field strengths E and H

have now to be replaced by the amplitudes EO/]/Q and HO/VQ, and the constant (3.21) by
em ne eeem ee em
Bee = E Zuﬂvﬁ(caﬁyd +ﬂa’uﬁa’yd . (323)

C. Optically induced magnetic anisotropy

By analogy to Eq. (3.4), the magnetic permeability tensor of a gas acted on by fields E
and H is given as follows:

&P

Sy (3.24)

Uor— ad‘t = 4n

Restricting our considerations to a diamagnetic gas in a strong electric field, we can
rewrite Eq. (3.24) thus

. dmyg
o1 Oz = ). 2
Hor—0 4no <9Hr >E (3.25)
Withregard to the fact that the tensor of differential magnetic polarizability is defined as

dmy  9:U(x,EH)
9H, — ~ T OH9H,

(3.26)
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we obtain from the expansion (3.1) retaining terms dependent on the electric field only

am;n mm mme 1 mee
QH, = Qgy +ba-w Ev+ E c;nrvg EvEe+ (327)
Introducing (3.27) into Eq. (3.25) and taking account of (3.1) one gets on averageing
:uo"r_fuoéar = Af:mEzdo'r +B:rfm(3Ea'Er—E2(sdr)’ (328)

where p, is the magnetic permittivity in the absence of a strong electric field. The constants
A% and BZ, are given by (3.10) and (3.11) on interchanging the indices ee and mm.

A case of particular interest arises when the field E is the light vector of an intense
beam incident on the gas. Once again, one obtains Eq. (3.28) wherein E has been replaced

by EO/V§ and the constants A7 and B, are of the form [15]

ee 275 mmee
Arm = 5 Q> (3.29)
€ 7EQ mmee mm __éee
B¢ = yE Kapys(Capys -+ Bgg Gys)- (3.30)

In the case considered, by Eq. (3.28), one obtains the magnetic anisotropy induced in the
gas by the intense light beam as follows:

Mzz— Mxx = % Ber:m(Egz_ng . (331)

In this case, too, one can calculate a magneto-electric cross effect, given by an equation
similar to (3.19) on replacing therein electric by magnetic quantities and vice versa.

4. Magneto-optical effects in dense media

The shape of magneto-optical phenomena in dense media depends not only on the
optical and magnetic properties of the isolated microsystems, but moreover on their electric
properties (permanent and induced dipolar, quadrupolar etc. moments) and, essentially,
on their interaction and the presence of molecular fields. To take into account the influence
of the various factors of a microscopic nature on magneto-optical phenomena in dense
media, it is convenient to start by a semi-macroscopic approach to the theory and then to
go over to its statistical-molecular interpretation. Such an approach provides for vast
possibilities of deducing from the thus generally formulated theory various special cases,
in which the role of the various statistical-molecular factors appear clearly. In this way, one
can achieve an explanation of the microscopic mechanism of magneto-optical processes,
whose occurrence is in fact dependent on a great variety of factors.

A. Semi-macroscopic theory

We consider a dense homogeneous medium, isotropic in the absence of external fields
and having the shape of a spherical sample, of dielectric constant g,. At its centre we consider
a smaller, albeit still macroscopic sphere of volume 7 and dielectric constant &. When the
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medium is acted on by an external electric field E of low field strength, the mean macroscopic
electric field existing within the sphere of volume V7 is given by [24]

M 3e,
e+2e

(4.1)

We now assume the isotropic medium to be acted on, moreover, by a strong magnetic
field H under whose influence it gains the properties of an anisotropic medium with electric
permittivity tensor dependent on the field strength H:

IPes %Py
ear—aar - 4‘75 {(E)({F (QEVC,‘)HQ)OHQ +

1 ( 93P, OE,

(4.2)

ty aE,aHQé)H)o HQH“L”'} sEN"

Assuming that the field E is that of the electric vector associated with a light wave incident
on the medium, we can write

QPea _ ]- aMea
oK, <V OF, >H (4.3)

as now the dipole electric moment M, induced in the sphere of volume V is a linear function
of the field strength E, and the volume 7 is not affected by the weak field E. We shall
moreover assume that the light wavelength 7 is very large as compared with molecular
dimensions and that the oscillation frequency of the field E lies outside the electronic
absorption bands of the medium.

We now define, by classical statistical mechanics, the mean statistical value od (4.3) in
the presence of the field H:

(4.4)

<<9M,;,,> _ [ % exp {—BU(z, H)} dv
o [ exp {(—6U, H)} dr

where U(z, H) is the total potential energy of the medium when its microsystems are at
configuration 7 and the magnetic field H is acting on it.
By (4.3), the first external field-independent term is

OP,, 1 [OM,,
where the symbol { ) stands for statistical averageing in the absence of the external field
as given by (4.4) at H == 0.
When calculating higher coefficients of the expansion (4.2), it should be kept in mind

that as a result of magnetostriction the volume Vis in general a function of the field strength H.
For simplicity, let us assume that under the effect of the strong magnetic field the spherical
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sample changes its total volume J isotropically, undergoing no change in shape, and that
this variation is a quadratic function of H [14]:

1 {92V 1 ]2
ViH)—V = Pl (a—hﬁ)oﬂz =~ T 8x {% [(Mfl)V]}THZ

o

Above, u is the magnetic permeability of the medium, f; — its isothermal compressibility
coefficient, and p the pressure. Hence, by (4.3), (4.4) and (4.6) we obtain

9P, \ 1 [ M, OM,, U
OE.9H, é)E,@Hv—/g OFE, 9H,/[’

0o V

93Py 1 o2 OM,, 1 <5)Mw oy 5 i

PEAHSH, )0 V \0HIH, \ 9F, [u)e VE\OE, [\OHZ o™ (4.8)

It is thus seen that the coefficient (4.8) is related with the change in volume of the sphere
and in its electric polarizability as due to the square of the magnetic field:

92 <<9Me,,> )_< 9B3M., 26 9M,, U
SH,AH, \ 9F, [n)o \OEAHoH, 3ESH, oH, +
M, (92U 29U 3U
T 9FE, \OH0H, " 9H, 9H,

OM,, \[ 92U aU U
+h < oL, ><9HV<9HQ B 9H0>- (4.9)
On taking the mean values of (4.5) and (4.7—4.9) over all possible directions of the

vectors € and h with respect to the axes of the laboratory coordinate system and on intreduc-
ing the results into Eq. (4.2), one obtains the following, general equation:

(4.7)

- OF,
Eo“l’_n%dr = Fifoer (:9 AQ,I) H,+
0

y O
OF OF OE
+Ave" >\ H2+ B" > | H.H,— °\ [ 4.10
(555, b (o), (aw)o | @10
where
OM,\ [ OF
n20‘r_66t - é?;[_ <_‘—ei 2 411
* 37 \ 9. [\oEM], (4-11)

is the optical permittivity tensor in the absence of the magnetic field,

27 <92Mw M., 9U>

=, -
3V "% \OE,9H, 9E, 9H,

(4.12)
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is Faraday’s constant, and

Amm 27 I3M,, ...i <9Metz 02 25 J Mew oU
“ oV \\oEom[ V \ L, 9F,9H, 9H,[ —

P
IM,, U o m><92U
—P\\%E, am2) ~\om, N\am/ | *
OM,, oU oU M, U U\
2 ea _ ex
b [( 9E, 9H, 9Hﬂ> < 9L, ><<9E,s aHﬂ>J}’ (4.13)
g I3M,q 5 I*M,, U,
o 451/"“57" SESHH, " 9E,0H, OH,
oM, [ 92U oU U
= JE, (aHyaHa“ oH, é)H,;)) 14

are constants which define non-linear variations of the isotropic and anisotropic kinds in the
optical permittivity tensor.

Eq. (4.10) provides a general, semi-macroscopic description of the effect of a strong
homogeneous magnetic field on the optical permittivity tensor of an arbitrary isotropic
medium. The latter is seen to become optically anisotropic when in the field, as it is then
characterized by different values of the refractive index for various directions of oscillation
of the electric light vector E with respect to the applied magnetic field H. In general, in
the case considered, we have anisotropy both linear in the magaetic field strength (magnetic
rotation) and quadratic (magnetic birefringence). The former is given by Faraday’s constant
(4.13), and the latter — by the Cotton-Mouton constant (4.14). These constants are dependent
on the averaged optical and magnetic properties of the medium as well as on its thermo-
dynamical state. The above effects are moreover accompanied by magnetostriction as
implied by the constant (4.13) and defined by (4.6).

We further assume that both in the weak electric and strong magnetic field the linear
and isotropic relationship (4.1) is fulfilled. Let the sphere of volume ¥ now be in vacuum,
g, =1 (instead of in the medium of dielectric constant ¢,); in the optical case (¢ = n?)
we now have

dE; n%+4-2 5
R A 015
On the foregoing assumptions, the definition
U
My = — o, (4.16)

defines the total magnetic moment of the sphere of volume V" acted on by a strong magnetic
field.

By recurring to (4.15), the fundamental equation (4.10) together with (4.11) can be written
in the form

2
sor_ngaat = ( no_'_

3

){Feesmﬂ + Az "H?5,.+ B, (SHH —H27)}, (4.17)
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where

2
ng—1  dm 9M3“>
N R W( oF, (4.18)

is the refractive index of the isotropic medium in the absence of a strong field.
We now obtain from Eq. (4.17), in place of (3.15),

nd--2

Epy = —Eyx = < ) FeH,, (4.19)

where, by (4.12) and the definition of (4.16), the Faraday constant is of the form

m 27 DM, I M,y

Fgg_?’—fs,ﬂy<aEﬂ9Hy+/3 oz M > (4.20)

Similarly, Eq. (4.17) yields for the magnetic birefringence

2 2
foe — Eex— 3 (”“ ;2) B™(H2—H?) (4.21)
with the Cotton-Mouton constant in the form
mm 9 Meu a MEW
B = g7 Ketwo <9E 5H,0H, 2 5E,0m, Mme T
OMeq [ @ My,

T ( st ﬁvaM,ms)>. (422

In a similar way, the semi-macroscopic theory of other magneto-optical phenomena
can be formulated. We shall restrict ourselves here to writing out the equations for the non-
linear change in magnetic permittivity tensor induced by an intense optical field of ampli-
tude E;:

1 . ee
,uo'r“,uoacrr = b3 AmmE Ogr + +- Bmm(3 EooEogr— EO or) (4'23)

2

A% 27 <93Mmz 3 a-Z‘Jma o2y
oy \\oHQE: TV OE2/,
O Mg O M, OMyg\ [ 9MY
—F [( 5H, 9L, > - < oA, >< 5%, >]} (1.24)

g o T 3 M g 8 O Mg O M,,
45V X\ QM0 R, 0, U 9H, oF,

Above,

(4.25)

are constants determining respectively the isotropic and anisotropic non-linear changes in
magnetic permeability tensor due to the effect of an intense light beam.



943

The term [21]

1 (o2 1 (o
U [ 2 — 2 72
o7 (aEz)oE 8l {ap [ DV]}TE

1 [{on \ \
=5 K%)F (n —1)/3T}E ‘ (4.26)

appearing in (4.24) determines the quadratic change in volume V' produced by intense
light i.e. opticostriction, which is the counterpart of electrostriction [24].

B. Molecular-statistical theory.

We now proceed from the foregoing general theory to a molecular-statistical theory
aimed at gaining insight into the microscopic mechanism of the phenomena under considera-

tion. To this aim, we assume for generality that the macroscopic sphere contains N = NN,
7

microsystems of different species (IV; being the number of microsystems of species i), so
that the macroscopical dipole moments M, and M,, can now be expressed as follows:

N, N,
M, =3>>m®, M,=7>m, (4.27)
i p=t 7 g=1
with Mm@ and m® denoting the electric and magnetic dipole moment of the p-th and g-th
microsystem of species ¢ and j, respectively.

On substituting the moments (4.27) into the general expressions (4.20) and (4.22), we
obtain the Faraday and Cotton-Mouton constants in molecular form:

2n o QZmEff)
rls(Ei).

| +8 Z <i Z %";: mf,%">=, (4.28)

=1
N, N, . :
d2m &P @ omEH Qm,(,f{,)
+h Z( (2 5Eom, "™ T oE, om, || T

J 21:’) j r
+p <Z Y a”gﬁ m%)mf,,,’f)>}, (4.29)

which holds for an arbitrary multi-component system.
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The expansi;)ns (3.2), (3.3) and (3.35) utilized previously are strictly valid only if the
external fields E and H produce polarisation in an isolated molecule, as is the case in a rarefied
gas. In a dense system, like a strongly corapressed gas, a liquid, or a liquid mixture, molecular
electric Fy and magnetic G fields exist even in the absence of an external field E or H, due
to the permanent or induced dipolar, quadrupolar etc. moments of the microsystems. In the
presence of an external field E or H, as a result of polarisation of the microsystems and of
the system as a whole, the fields Fyy and G, undergo modification and have to be replaced by
fields ' and & which, in general, are functions of B and H. Thus, a microsystem of the
medium is acted on, in addition to the external fields E and H, by the molecular fields F
and H, so that the momentsm, andm,, are now functions of the local fields E4+F and
H+G. We thus have in place of (3.2) the following expansion (we write the relevant terms
only [14]):

m3D = WEP+H{a D+ YR 1 Y(E, + ) +

+O 5 B+ P (H,+GP0) +
1 emm( pi (pi (pi (pi
+ s B+ FE) (H,+ GPY) (Hy+ G + .., (4.30)

where the polarizability tensors retain their former physical meaning, with the proviso that
they now refer to the p-th microsystem of species i.

Similarly, one can write the expansion of the dipole magnetic moment of the g-th
molecule of species j:

m@ —= plD + {qrman 4 U PRS- Y (Hy + G). (4.31)

In the case of not too dense media, in a first approximation one can neglect the direct
effect of molecular fields, and with regard to (4.30) and (4.31), Eqs (4.28) and (4.29) yield

N, N; N
r= Sl L(Lome) s DY el
i p=1 ij  Vp=1g=1

4
2,

{ J

Nt
mr = gpro| DL o) YL S cupoomg+
i =1 i

p=1 g=1
N, N, N,
raggage))ip Y (Y YY) a5 mgm) ) @.33)
ik =1 g=1 r=1

We shall first discuss in some detail the Faraday constant (4.32) now to be denoted by F.
By statistical methods, it can be represented formally as the following expansion in powers
of the mole fractions:

F= Y xF.+ Z'xiij,-j—I—..., (4.34)
i i
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where the expansion coefficients F;, Fj; are of the form

F 27 beem(t)__l_ﬁ ee(?) (')) 4.35
Qe«zﬁv( Cag oy ( ) )

afy

i'“ 213 f f Eapy0 ;ﬁ}”')yf,‘f’/)gff)(rp, 1,)d7,d7,, (4.36)

with x; = N;/N denoting the mole fraction of the i-th component of the mixture and
82(z,, 7,) — the binary correlation function of molecules p and ¢ of species ¢ and j at con-
figurations 7, and 7,, respectively. The configurational variables 7, involve the variables
7, and w, defining, respectively, the position and orientation of the p-th molecule.

If, in particular, no intermolecular interactions occur within the system, all molecular
configurations are equally probable in volume V" and we have

1
gl] )(TPQ Tq) nd 92’ (437)

where the integral 2 = [dw, extends over all possible orientations of the p-th molecule.
It is easily verified that, by (4.37), the binary correlation constant (4.36) vanishes and the
expansion (4.34) goes over into the additivity principle for Faraday’s constant:

F= Z x; 1, (4.38)

which is fulfilled only for the perfect mixture exhibiting no molecular correlations.

On applying the expressions (4.35) and (4.36) to diamagnetic molecules (i, = 0),
F; = 0 and the approximation adopted there is also seen to yield fulfillment of the addivity
of the Faraday constant (4.38), albeit we now have

25 eem(i
F; = g 0y b, (4.39)

If, however, one takes into account higher approximations of the theory under considera-
tion, the Faraday constant ceases to be additive even in the case of diamagnetic molecules.
In order to prove this statement, one has to go back to the general expression (4.28) and take
into consideration in Eqs (4.30) and (4.31) the molecular fields neglected when proceeding
to Eq. (4.32) (see Appendix B).

Analogously to the Faraday constant (4.34), one can derive from Eq. (4.33) the following
expansion for the Cotton-Mouton constant (to be denoted by C):

C = 2,0+ D x5, C5+ D %22, Cip+ -5 (4.40)
i i ik
here, in the case of diamagnetic substances, the expansion coefficients are of the form

ﬂ@ eemm(d i) mm(i
Ci - 45 Xuzﬁyd( aﬁy'g( )+ﬂa’ieﬂ( >a’yd ( ))’ (4’4’1)

anﬂ ee(Ppr mm
Ci= 57 f f xzﬂyaa,ﬂ(" daly (‘”)g(f)(rp, 7,)d,d7, (4.42)
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The first term in (4.40) defines additivity of the Cotton-Mouton constant, whereas the
remaining ones provide a measure of its deviation from additivity as a result of molecular
correlations. The constants (4.41) and (4.42) are already well-adapted for application to
various special cases, when a given symmetry and type of interaction of the molecules is
assumed, [14].

A similar discussion could be made for the case of Eq. (4.25), which defines the magnetic
anisotropy induced in a medium by an intense light beam.

5. Discussion and conclusions

By a semi-macroscopic approach to magneto-optical phenomena, we have derived the
general equation (4.10) (or its special case (4.17)) determining the variations to which the
optical permittivity tensor is subject under the influence of a strong homogeneous magnetic
field. The term linear in the magnetic field is related with the effect of magneto-optical
rotation as described by the Faraday constant in the general form (4.12) or (4.20). The
quadratic terms are related with magnetic birefringence as defined by the Cotton-Mouton
constant (4.14) or (4.22). From Eq. (4.17), the diagonal elements of the optical permittivity
tensor are obtained as follows for an arbitrary direction of the magnetic field with respect to
the axes X, Y, Z of the laboratory reference frame:

2
Exy—Tll = (”°3+2) {AH? 4 C(3H2—H?)},

2
P F—
2
Egp—nk = ( ”°3+2) {AH? 4 C(3H2—H?)}, (5.1a)
whereas the non-diagonal elements are
2
bry — ”°3+2) (FH,+3CH,H,},

2
£y = <”°+2) (—FH, +3CH,H,),

bye — ”3;' 2) (FH,+3CH,H,),

bay = ( ”‘2’;2) (—FH,+3CH,H,},

by = (”‘2’3+2) (FH,+3CH,IL,),

e — (—’%J.r_z) (—FH,+3CH,H,). (5.1b)
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From the expressions (5.1b), we obtain the difference of non-diagonal components:

2
fxy—tye — 2 (”°3+2> FH, (5.2)

which characterize magnetic rotation of the plane of polarization, a linear function of the
magnetic field, independent of the Cotton-Mouton constant and of the constant A involving
magnetostriction.

We have shown that in the case of a multi-component system the Faraday constant F
and Cotton-Mouton constant C obey the additivity rule only for perfect mixtures wherein
no molecular correlations exist. In dense mixtures (real gases, liquid solutions and so forth),
as a result of correlations existing between microsystems, the constants F and € are no
longer additive. In this way, investigation of the deviations of F and C from additivity can
be a source of information on the nature and size of the intermolecular forces as well as on
the structure of the systems considered. Such information is all the easier to obtain owing
to the fact that similar data can be gained from the study of analogous phenomena, e.g. of
molecular light scattering [25] and electric [26] or optical [27] birefringence where, too,
the additivity rule fails to be fulfilled generally.

As an example, let us consider here the case of a two-component system, for which by
(4.40) the Cotton-Mouton constant is obtained in the form

C = %,C;+%,Cy ’H‘icu +23%5(Crg+ Coy) +xgczz o (5.3)

Particularly interesting is the case of a mixture wherein the molecules of componenent 1 are
spherical and those of component 2 are anisotropic but present the axial symmetry and are
linearly polarizable. By (4.41) and (4.42), this case results in

€= S el O —Tm®), (5.4)
v= 2 e ot ol P — o), :5)
Cr=0, Cip= Cyy =0, Cpp= Cylra, (5.6)
where [14, 26]
Jog = 2% f (3 052 By — 1) g7y, To)d Ty, (5.7)

is a integral parameter accounting for correlation between molecules p and ¢ whose symmetry
axes subtend the angle 0,,. In general, the effect of non-linear deformation is negligibly
small i.e. C; =0, and by Eqgs (5.4—5.6) the Cotton-Mouton constant (5.3) takes the
form [28]:

C = 23Cy+23Co0 = 23C(1+2p5). (5.8)

This theoretical dependence of the Cotton-Mouton constant on the concentration of the
solution is found to be in good agreement with the experimental results obtained by Surma
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[29] in a number of solutions of dipolar liquids in carbon tetrachloride. A similar discussion
of Eq. (5.3) would also apply to solutions in which the molecules of the solvent as well as
those of the solute are anisotropic, suchas e.g. solutions of dipolar liquids in benzene, in
which case also satisfactory agreement is obtained between the theory proposed here and
the experimental results [28, 29].

Investigation of the Faraday and Cotton-Mouton effects and other magneto-optical and
optico-magnetic effects in gases permits to gain data on the optical and magnetic properties
of the isolated atoms and molecules, particularly their non-linear properties in strong
optical and magnetic fields.

Defining the intensity tensor of incident light as

Io'r - ’;— EOoEﬁr (59)
we can write Eq. (4.23) as follows:
luar_.uoaur = A::m Iaaz +Brerfm (3161'—1—6“)9 (510)

where I = I, = I, +1,+I, is the total incident light intensity.

If, in particular, the light incident on the medium propagates in the Y-direction, we
have I,, = 0 and by Eq. (5.10) the diagonal magnetic permeability tensor components
result in the form

Box— Mo = A::m('[xx +Izz) +Bfrfm(2fxx_jzz)’
Pyy—Ho = (Ainem'—B:;m)(Ixx +]zz)’
Moz Mo == A::m([xx +Izz) +Bfrfm(2jzz—lxx)v (5113‘)

whereas the non-diagonal components in the form

Py = Pyx = Pya = Hay = 0,
fhoy = 3B, = 3B%, L. (5.11b)

miznr Uxz =

Form the preceding expressions, the relative difference between diagonal magnetic
permeability tensor components is

Moz Mxx == SB:rfm([zz_Ixx) (512)

defining the magnetic anisotropy induced by an intense light beam propagating along the
Y-axis. This, as a matter of fact, is the inverse Cotton-Mouton effect for which in the case
of a diamagnetic substance the constant B%, can be replaced by the usual Cotton-Mouton
constant C and Eq. (5.12) yields

Mz Hxx = 3C(Iz — L) (5‘13)
This effect has become accessible to experimental investigation owing to the availability and

steady progress of laser techniques which provide light beams of very high intensity of the
order of 1010 e.s.u.
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APPENDIX A
Classical statistical perturbation theory

Here, we shall derive Eq. (3.8), which results from the expansion of Eq. (3.7) and the
definition of Eq. (3.6).

Consider an arbitrary function @(z, E, H) describing the physical state of the system
at configuration 7 under the effect of the external fields E and H. If the system is at thermo-
dynamical equilibrium, the mean statistical value of the function @ in the presence of the
fields E and H is given in classical statistical mechanics as follows:

[ &, B, H) exp {—BU(x, E, H)} dv

(A1)
[ exp (U, E, H)} dv

(DPopu=

The total potential energy U(r, E, H) of the system can be resolved into a part U(z, 0)
independent of E and H and a part W(z, E, H) dependent on E and H. In cases when the
energy W(t, E, H) can be dealt with as a perturbation to the energy Uz, 0), the Boltzmann
factorsinthe definition of (A.1) can be expanded in series in powers of 8%, and with accuracy
up to 2 we obtain

{Pop = {P)—BPW)—LD)W))+
+ —21- BRIKPW ) — (DY Wy — 2K DW Y — L DYLWHOK W )]+, (A-2)

where the symbols { > denote non-perturbated statistical averageing with the Boltzmann
factor exp {—pU(z, 0)}.

The expansion (A.2) is a result of classical statistical perturbation theory. We now
proceed to apply it to the calculation of the statistical averages (3.7).

Since we are interested only in the terms dependent on the magnetic field, we obtain from
the general expansion (3.1) with accuracy up to the square of the field

Wie, H) = —u2H, — - a2, Hi .. . (A3

Consequently, in the same approximation we obtain by (A.2) for the consecutive terms of
the expansion (3.7)

{agn = <ag) +B(ag > —ag i), +
1
+ 5 Bagay”y —<ai ey +Blas iy ) —

—ag X ul gy —2(Kag )y —<ag > K1 L H,, (A4)
bgz e, = <bo Y H, + BB pg > —<b5afo{uy D) H, H,,
Le&mms o HH, = (™S HH, +...

(2 70] oTVQ
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The tensors w, aZ,, ... appearing above, which are given in the laboratory reference

frame X, Y, Z, are conveniently referred by means of the following transformation formulas
to the molecular reference system 1, 2, 3 attached to the molecule:

Uy = Wyalhgy Cgp = Wog®rplag, .- (A.5)

Here, the transformation coefficients w,g, ... in the case of rectangular reference frames
have the meaning of cosines of the angles between the axes o and & of the laboratory and
molecular reference frames, respectively.

With the transformational formulas (A.5), the expressions (A.4) become

<a’ger>H - a’::?<waawrﬂ> + ﬁa';eﬂ;u;n(<waawrﬂww> - <wauwrﬂ><wvy>)Hv +

1 \
+ E ﬁ{a:‘lazlgn(<waawtﬁwww96> - <wcmw1ﬁ> <www96>) +

+B “Z%M;”Ma [<wauwrﬁwww96> - <wauw1/3> <wvng(5> -
—2({ 05050, ) —{0oq025) <0y, )0 s) | HH,, (A-6)
Kben>uH, = b5 wae 50, ) H,+
+p b;eﬂr;lugz( 1ﬂwvngd>_<wuawrﬂww><wgé>)HvHQ7
{eomme vt H, = g {woq® 0,0 HHy + ...

For a gas, calculation of the statistical averages in the absence of H reduces to averageing
over all possible orientations of the molecule with respect to the axes of the laboratory
reference frame, and we have [30]

1
(W) =0, <waawrﬁ> = Bl 51/360'19

1
{Woq g Wyy) = 3 Eapy€orvs

<w0'¢w'rﬂ wvy w96> ’I_ {(4'6¢ﬂ676 6uya/35_ 6!156[37) 601:61@"{"

+ (45.,;, 6/55—- (3,,,5 5ﬁy— 5,,367,5) 60,,619 + (456“5657—“ 6@;;3(37;6— 6ay6ﬂ(5) 6096111}7 (A7)

where 0, is the Kronecker unit tensor with components equal to unity for = f§ and zero
for a +~ 3, whereas Eapy is the Levi-Civita extensor with components equalling +-1 if all indices
a, B,y are different and their permutation even (sign +) or odd (sign —) and zero if at

least two of the indices are the same.
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With regard to the mean values (A.7), the coefficients of the expansion (A.6) finally
assume the form

1 o
<a;i'>H = @00z + g ,Beaﬁyafiﬂ,u;n EorwHy -+

b 15 eSO+ B BH,H— HE0,0),

eem 1 eem ‘8 eem m ﬂ eem , .m
<baw>HHv 6 wﬂy aﬂysvthu+ 9 bzaﬂ ﬁH26 T oo 90 Xazﬂyébaﬁwud (3H0H1:—'H2601)?

1 1 1
2 < G‘rvg >HHH 18 uaﬁﬂH260r+ 180 Xuﬁydc;i‘}';?('gﬂaﬂr_ﬂzaﬂ)’ (A8)

where the tensor y,s,s is given by (3.12).
On substituting the expressions (A.8) into the expansion (3.7) and on ordering accord-
ing to powers of the field H, we obtain Eq. (3.8).

APPENDIX B
Effect of molecular fields on the Faraday constant

On introducing the expansions (4.30) and (4.31) into the general equation (4.28) for
the Faraday constant, we obtain, for diamagnetic substances, the expression

F(Pl) Pl G(Pi)
eem(pi) 7
F= 3V Euﬁr E < E basy ( s+ QE > (5w+ ‘QH___V > (B.1)

which contains the influence of the electric and magnetic molecular fields on the Faraday
constant. In general, that of the magnetic molecular field is by far the smaller, and can be
neglected in subsequent calculations, so that we can rewrite (B.1) in the form

N,
. ?i‘z_ - eem(pi) eem(pi) QF‘S
F= 35 eany 2 <; (b HE S ) (B.2)

We shall restrict our further calculations to the electric molecular field related with inter-
actions . of the dipolar type defined by [14]:

Fa(‘m') N Z Z T(pq) ('II) (B.3)
J ¢=1
. aFp
where the tensor
T? = —150 3rpaalvasTpgOp) (B.4)

characterizes dipole type interaction between molecules p and ¢ mutually distant by r,,



952

On substituting the expansion (4.30) into (B.3) and on retaining only terms linear in E

we get
Fém‘) — Fo(:i) Z Z T(Pq) ee(qJ)E +
i g=1
aFp
N; Ny
(P ) ( ( (rk)
+ ; Z}l Z q ee q/)T qr)ar E,— (B.5)
g=1r=1
aFp rq
where
N, N; N,
(p?) (pa),,(a5) j k
B = = 0 5 TP+ 5 3 3 IO TP (B9)
j q= jR g=1r=1
aFp qFEPrFq

is the molecular electric field in the absence of external fields.
Taking into account the expansion (B.5), we can write out Eq. (B.2) as follows:

N; Ny Ny

p=1 7 Vp=1 g=1
aFp

N, N, N
+ Y <}: Yy b;eg:;<m‘>T§f‘1>aggf>T,§g”af,j;e>>—...}. (B.7)

ik p=1 g=1 r=1
aF#p rFg

The above expression can formally be expanded in a series in powers of the molar

fractions:

F= Z xF+ Z xFp+ D) wF 4 (B.8)
i

Here, the constant F; is given by (4.39), and the other constants are of the form

H
F — b‘em(Pl) l (Pq 22((1])
[ E ff lﬂV { )

beem(pz>T(1>q> (q/)T(qp) (pz) 4. } g<2)(rp, Tq)drpdrq, (B.9)

f f f 0, DT T PO D TGP 7, T, T)dT,dT,dr,s  (B.10)

where g)(t,, T,, 7,) is the ternary correlation function of molecules p, g and r of species
7, j and k.

Thus indeed, in highly dense systems, as a result of interaction between the induced
electric dipoles, the Faraday constant is not an additive quantity even in the case of diamagne-
tic substances.

Quite similarly, the Cotton-Mouton constant (4.29) with Egs (4.30), (4.31) and (B.3)
can be discussed for the various cases involving the effect of molecular fields [14].
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