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An arbitrary isotropic medinm in an intense optical field is shown to gain optical anisotropy,
L d
defined by the tensor of optical permittivity:

”3‘1“‘"’265: = A6a1E8+B(3E00E01_ (50..,E§).

The quantities 4 and B are generally even functions of powers of the field amplitude E,, with A
accounting for the isotropic properties of the medium related with non-polarization and optico-
-striction, and B accounting for the optical anisotropy induced in the medium by the intense
optical field. In the quadratic approximation of the theory, B is field independent and represents
a constant of optical birefringence consisting of a term resulting from the effect of nonlinear
optical deformation and a term due to that of optical molecular orientation. The constant B
is discussed systematically for cases of gases, liquids and multi-component systems whose mole-
cules are generally anisotropic of arbitrary symmetry or of well defined e.g. spherical and axial
symmetry, possessing permanent dipole or quadrupole moments or otherwise. It is moreover
shown that the orientational part of B is strictly related with the anisotropic part of the intensity
of Rayleigh light scattering. Also, the relaxational theory of non-linear changes in the complex
optical permittivity due to an intense oscillating electric field is reviewed.

1. Introduction

Several years before the earliest lasers became operational, a paper by Buckingham
(1956) appeared predicting the possibility of inducing optical birefringence in an isotropic
medium by means of an intense light beam. It was only quite recently that Paillette (1966)
published the first quantitative measurements of optically induced birefringence in several
organic liquids subjected to a laser beam (see also earlier attempts by Mayer and Gires 1964).
His results point to an important role of the optical anisotropy of the molecules of the
dipolar and non-dipolar substances investigated, in accordance with the theoretical predic-
tions of Buckingham (1956). Moreover a similar effect, consisting in intensity-dependent
refractive index variations for the two senses of circular polarization of light, was calculated
and observed in liquids by Maker et al. (1964, 1965).
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In view of these first successful experiments, it is now of the greatest interest to study
not only the optical birefringence, but also the non-linear variations in refractive index and
particularly their dependence on the oscillation frequency of the applied electric field in
the entire range of frequencies i.e. both in the Debye and optical dispersion band. The low-
frequency problem had already been discussed by Peterlin and Stuart (1943), Frenkel
(1946) and Volkenshteyn (1951), who extended Debye’s well-known relaxation theory to
the case of a strong oscillating electric field. Although in the case of dense media this theory
yields but a qualitative description, it nevertheless in a simple manner accounts for the
essential mechanism of the phenomenon i.e. of the Kerr effect as due to a strong oscillating
electric field (see e.g. the monograph of Fabyelinskiy 1965 with the papers cited there,
Bloembergen and Lallemand 1966, and Kielich 1966).

From the theoretical viewpoint, the fundamental problem of the relaxation theory of
nonlinear variations in refractive index consists in calculating the distribution function in
the first, second and higher approximations from the kinetic equation of diffusion (Debye
1929, Peterlin and Stuart 1943) or Fokker-Planck equation (Lebowitz and Résibois 1965).
In the general case their solution is beset with very great difficulties and can be obtained
effectively only in some special cases as e.g. for statistically non-interacting and at the same
time electrically axially-symmetric but geometrically spherical molecules. In the present
paper, the problem is discussed in some detail, and the nonlinear variations of the complex
refractive index are calculated. Furthermore, calculations are given of the effect of a very
intense optical field on the refractive index of a gas consisting of molecules of arbitrary
symmetry. The theory is then extended by classical statistical methods to the case of dense
media involving molecular correlations of the radial and angular kinds.

2. Molecular relaxational theory

We consider a medium of volume ¥, macroscopically isotropic in the absence of external
fields, containing N identical molecules which we assume to be anisotropic in their electro-
magnetic properties but geometrically spherical. Let two electric fields act simultaneously
on the medium: the one, E, = E, ", oscillating with the time ¢ at a frequency w, and
playing the part of a measuring field of low strength inducing but linear polarization in the
medium, and an intense field E, = Eye™" oscillating at frequency w, of strength sufficient
for inducing non-linear polarization. If the medium is sufficiently dense, a molecule is
acted on by the local fields F; and F, and the dipole moment induced by F, in the presence
of F, is given by the following expansion (to within terms linear in F; and quadratic in Fy):

W1,0g

1
Myg = {a':é +bapy Fay+

5 Capys FoyFas + } Fig, (2.1)

wherein the tensor a2} defines the linear i.e. first-order electric polarizability of the molecule
which, in general, depends on the frequency ;. The other tensors in (2.1) define non-linear
polarizabilities of the molecule dependent simultaneously on w; and w,, with bgy* denoting
the second-order and c¢g}y the third-order electric polarizability tensor due to the strong

field F,. The explicite forms of the dependence of these tensors on the frequencies w; and
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w, can be derived either classically or by quantum methods (see, Kielich 1963a, 1965;
Butcher 1965 and the papers cited there).

Under the effect of the intense electric field F, the molecules of the medium undergo
orientation and their distribution in an elementary body angle is given by the probability
f(Q, E,)dQ. By classical Maxwell-Boltzmann statistics, for the case of a system at thermo-
dynamical equilibrium in the presence of the electric field E, at temperature 7, the statistical
distribution function is given as
By DA E)

[ exp {—pu(@, Ey)}dQ
where u(2, E,) is the potential energy gained by the molecule when acted on by the intense
electric field F,, whereas = 1/kT is a temperature parameter. With accuracy up to the
square of the field strength F,, we get the expansion

2.2)

1
u(.Q, E2) ‘: ——ll,l,,ng,z - —Q— a,nggquﬁ bl (23)
with p1, denoting the component of the permanent dipole moment of the molecule, and ag3 —
the tensor of its electric polarizability as induced by the intense field F,.

By (2.2) and (2.3), we obtain the statistical distribution functions of the first and second
approximations in the form

L
SR, Ey) = BfO {M«F e t g (az/’s—a“"ﬁaﬂ)anFzﬁ}, (24)

1
R, By) = = B OBuapts—pt*dag) FaaFap, (2.5)

where f<°) = 71 is the statistical distribution function of the zeroth approximation,
a” = ag: [3 = (a7; +ags+a3l)/3 is the mean electric polarizability of the molecule, and
045 — the unit tensor.-

The distribution function can be determined by the foregoing procedure only if the
electric field acting on the molecule is static or slowly time-varying and if well-defined
conditions of thermodynamical equilibrium exist. Now, in the case under consideration,
the molecule is acted on by an electric field that is time-variable. Consequently, molecular
orientation is related with a well-defined relaxation time and depends on the viscosity of
the medium. The distribution functions have thus to describe kinetic properties of the medium
which depend on the appropriate relaxation times, and can be determined from the following
kinetic equation of diffusion (Peterlin and Stuart 1943):

3
P BUP L) (V) S} = B2 6)
where W is a frictional torque.
We shall determine the distribution function from Eq. (2.6) for the simple and partic-
ularly interesting case of molecules possessing an axis of symmetry e.g. along the principal
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3-axis defined by a unit vector k. With such molecules, we obtain

1
g = ,ukm Agp = a6¢ﬂ+(a[]—a,_1_) (kakﬂ -3 6,,;3) , 2.7
so that the time-dependent part of the potential energy (2.3) assumes the form
w2, Ey) . = ; U cos DpFppetion — — [3a. *+(al—al) (3 cos? §,—1)] Fhetitox,
2.8)

where a; and a are, respectively, the polarizability in the directions parallel and perpendic-
ular to the molecule’s symmetry axis, which subtends the angle &, with the direction of the
electric field F,.

By Eqs (2.4) and (2.5) the solutions of Eq. (2.6) in the first and second approximations
are to be expected to be of the form

fRQ,E) = % Br@ {cos 9y AL Fpgeiont - % (3 cos? #—1) [BE + B exi2en] ng},
(2.9)
@, E,) = 511 B O(3 cos? 9, —1) [C + Cex2on] Fg,. (2.10)

From the expressions (2.8)—(2.10) it is seen that in the case considered both f and u
depend only on the angle &,, so that the kinetic equation (2.6) can now be written as follows

(Peterlin and Stuart 1943):

1 2 . of du If of
sin 0255;{8““9 (5)0 g, )} P58, 5o, = PV o .11)
and we obtain the coefficients A, B and C of Eqs (2.9) and (2.10) in the form
S £ — gf'— - _af—ael
A= B aff—al, B 1+ 90,7, °
2 2
G = Ct — i (2.12)

1+im,7;’ 2 (1 Liwyty) (1£i2m,75)

where
1 1
T = 5 W and 1,= 3 4 (2.13)

define the relaxation times during which the molecule undergoes orientation.

Knowing the distribution finction we can calculate the mean statistical value of the
moment induced in the molecule by the field F} in the presence of the field F, and thus
the refractive index presented by the medium of density g in the case under consideration:

am
—1=4mp < 9E, emelﬁ>E . (2.14)
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Here, e, is the unit vector in the direction of the field E; whereas the symbol { Yz, stands
for statistical averageing in the case of a system subjected to the effect of the field E,:

(@ys,= [ Oz, EJA(2, Ed. @.15)

2.1. Linearly polarizable molecules

Assuming, as above, that the molecules are axially symmetric and but linearly polarizable,
one can neglect the non-linear terms in the expansion of Eq. (2.1), thus obtaining from (2.14)

"2—1:—4?9(%) f (36 + (aff—a3) (3 cos? 9, —D} (2, B 4@,  (2.16)
1 .

where #, is the angle between the symmetry axis of the molecule and the direction of the

field F;.
On substituting into Eq. (2.16) the statistical distribution function

fOQ,E) = fO+fP+fP+...

with the values f and f® given by Egs (2.9) and (2.10), and on averageing over all possible
orientations of the molecules, we obtain the refractive index in the presence of an intense
" oscillating electric field as follows:

2
nﬁ:——n% = % ﬁ(aﬁ‘——a‘i‘) (aﬁ’——a“j_’+ ___.ﬁ'u__) X

. 1+iw,m
e:l:i2w,t ) 9 QFI .
where
JF:
2_ 1 — w; 1
ni—1 = 4moal ( 2 E1) (2.18)

is the refractive index of light in the absence of an intense electric field (E, = 0).
By (2.17) it is seen that the light refractive index is a complex quantity and can be
represented in standard form:

nl = Re (n%)FiIm (n? (2.19)

the real and imaginary parts being given as follows:

7o 0 oy @ o c08 2wqt +20,T, sin 2wyt
Re(n?—nf) = T Blaj'—al) {(a.“ —a’f) [1—1— 21_‘_4&%:% 2 4
+ Bu? 1 (1—2w37,7,) cos 2wyt +w,(Ty +27,) sin 2w2t]1 N
1+wirt 1+4wi73 J

x{3(e, - €)*—1} (g—g) F3s, (2.20)
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adl
Im (n%2—n?) = 45 ﬁ(a,n —a’) {1414 o (2,7, €05 2yt —sin 2w,t) +

Bu? 05(Ty +27,) cos 2wyt — (1 —2w87y7,) sin 2wyt
@pTy 14433 3 %

x{3(e, - €)?— 1}(‘9F )F (2.21)

In the special case when the oscillation frequency of the intense field F, tends to zero
(wy — 0), the imaginary part of (2.21) vanishes whereas the real part assumes the form

\ 4
2Re (n2—n)u,0 = —=- Bla —af) (o] —a% + %) x

x{3(e, - €51} (jz ) 73 (2.22)

determining the effect of a static intense electric field F, on the refractive index. Obviously,
Eq. (2.22) leads immediately to the well-known Langevin-Born formula for the Kerr constant
if I, is assumed to be of the Lorentz type: .

n{+2
3

F,= E,. (2.23)
The other extreme case results for infinitely great frequency of oscillations of the field
F, (w, — o) e.g. as in a light wave, when Eq. (2.20) reduces to

275 dF,
2Re(n2 1o cco= o flaf—a) (oF —a) (3le; - €21} ( 5 ) Fh  (220)
For an incident light wave propagating on the direction of the Y-axis of the laboratory
reference frame, in calculating the refractive indices for oscillations along the Z-axis and
X-axis from Eq. (2.18) one obtains by Eq. (2.23) the following formula:

n +2 W,y Wy [ (2 W /3”2
etort= 0 (2] - oot S fE )
{1 gtiont F2,. —F2 (2 25)
X 14+ ——0 TS0, (Fo22—Fozx), '

which defines the birefringence induced in the medium by an intense oscillating electric
field.

In the static case (wy,= 0), one obtains (2.25) the Langevin-Bora formula, whereas
in the optical case (w7 — o) — a formula describing Buckingham’s effect:

2 o
ni—n = Ts%‘ (31_;5_2_) (afr—a?) (alf—a?) (Fos—Fba). (2.26)
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From what precedes, one sees that the medium becomes optically birefringent owing
to the statistical process of orientation of the anisotropic molecules in the intense oscillating
electric field of a light wave. One sees moreover that an intense electric field of high frequency
(such that w7 — oo) does not produce direct orientation of permanent molecular dipoles.

2.2. Non-linearly polarizable molecules

If one assumes additionally that the molecules of the medium are not only anisotropic
but moreover non-linearly polarizable, the full expansion of (2.1) has to be inserted in Eq.

(2.14) leading to

dF. Wy, 0. 1 Wy, @ M
—1= 47‘[9 (-a———i) <{aaﬂ+b¢,‘g’y 262VF + —= Cuk’.,aﬂez,,ezaFg—{- } 81¢€1ﬁ> . (227)
E. 2 E,

Assuming as before that the molecules present the axial symmetry, we get in addition to (27)
for the second-order polarizability tensor (omitting for the time being the term with the
polarizability tensor of the third order):

1
bupy = bé,,,gk,,—}-(b“—b_l_) (k,zkﬂ — ? 5,,5) k,,,
where we have introduced the notation
1
b= 3 (by+2b1), b= bygs, by = byy3= by,

assuming byg, =0 and b5 = 0 (without this assumption, we would be dealing with the
case of the point group Cyp).
With the above assumptions, Eq. (2.27) yields

wnt =245 [ (o @eost 0,1 +iatmwe
+(bw1) wy w:,wa) (3 cos? 191_]_)] F cos ﬁz}f(g E ) Qo (228)

whenee on substituting (2.9) and averageing over all possible orientations of the molecules
we obtain the additional contribution to the variation in refractive index due to second-
-order non-linear polarization of the molecules:

F; 2 F§
2_pn?), = 1 W15 O N . 2__ Wy, Wy 7.0, Wy M2
(e = 3 /3( ){b T 15 [3(e, - e*—11 By br )} 1+im,t,
(2.29)
The additional birefringence from this formula amounts to
2,2 n1+2 Wy, W3 7 01,0 9,
(nz nx)b 15 /3 ( ) (b bJ_ ) ————-1+l (sz sz (2_30)

and vanishes for optical frequencies i.e. if wt — oo.
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We still have to calculate the contribution from the third-order polarizability tensor.
We shall perform this for the special case of isotropically polarizable molecules, when

Gos = G0gpy Mg = bgs, =0,
1 .
Capys = €10ap0ys + 5 (cl|—cL) (OayOps+0a0py), (2.31)

where ¢ = ¢3355 and ¢; = ¢yy95. In this case Eq. (2.27) yields the following change in refrac-
tive index (¢f. Kielich and Piekara 1959):

aF Wy 5 O, 0y, g @y, Wy -
v = 2mg (zm—) {1 ™+ (ey - €)? (et ™ — T} FE, (232)
1

and the optical birefringence

n§+2
3

2
ni—n3 = 2mp ( ) (e[ "= ™) (F3,—F%,). (2.33)

Hence we find that optical birefringence can also arise in a medium consisting of
isotropic atoms or molecules as a result of the non-linear anisotropy induced in them by the
square of an intense electric field. Moreover, the effect occurs both in a static field and in
one that oscillates at a high rate. In the static case (w, = 0) Eq. (2.33) defines the well-known
Voigt effect, whereas in the optical case — the effect considered by Buckingham (1956).

3. Refractive index of a gas in the presence of a very intense optical field

We shall now extend our previous considerations to the case of a gas consisting of
molecules of arbitrary symmetry subjected to the effect of a very intense oscillating electric
field. We shall assume however, for simplicity, that the oscillation frequency of the field
is very high, admitting of time-averageing of the molecular energy appearing in the definition
of the distribution function of Eq. (2.2). We shall now extend the expansion of the energy
u(2, Ey) to include the term proportional to the fourth power of F, i.e. in place of (2.3)
we now write

1 o 1o,
u(.Q, Ez = —,uuF 20— 5 “uﬂF 2ak 28— 6 buﬁyF 2k’ 2ﬂF 2y
1 ., ’
o1 Capyoloal asl oy Fos — .. CAY

'
whence on time-averageing we obtain

0 I\ ‘ 1 o, 1 g
u(.Q, Ez)t= —_ 71‘- d¢fgezuegpF§g—~ —671-— Capydezaegﬁezyezang — e (3.2)
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Inserting this expansion into (2.2) we have the distribution functions of the first and second
approximation (retaining only terms proportional to Fj) in the form

1 oy ‘
fOQ, By) = 7 ff©® {aaﬂ(e2ue2ﬂ”—<32u€2ﬁ>o) Féa+
1 . "
T 16 Cafys(€2aC2p2y€25— {€2a€25€2,025 Vo) Foz -+ ... ( (3.3

1 Wy O,
fOQ, Ey) = 39 ﬁzf(0){a'u/3‘7'76(62u62532v326_<62u62ﬂ62y926>0‘

~—{€aa28)0 €2vC28— C2aC2p{Car€26) 0T 2{C2alp)0 {Car28)0) Fi tat .. .}a (3.4)

where
0
{20852,V = f €425, o fOL40

denotes averageing over all possible orientations of the molecules with the distribution
function of the zeroth approximation f® = -1, i.e. averageing with equal proba-
bility.

In the case now under consideration, the dipole moment induced in a molecule has
also to be solved with an accuracy up to Fy; this leads to the tensor of differential polariza-

bility of the molecule in the presence of a strong optical field in the form (Kielich
1961a)

9 m . Wy 0y 1 W1y Wy
é)Ell: = {aalfl? + bajy Fay+ 5 Capys FoyFas+
1 Wiy Wy 1 Wy, Wy QF
+ 6 daffyseFoyFaslse -+ 24 Capysent oyl asFoel oy -+ } B Elﬂ . (3.5)
1%

In the above expansion two new tensors, d,s.s and e,s,s,,, appear; they define the non-
-linear polarizability of the fourth and fifth orders, respectively.

On taking the time-average of the expansion (3.5) and inserting in (2.14), we obtain

QF o 1 Wy, 0y
n:—1 = 4mp (—aEll)f{auk—F T Qab’ya egyeosl oy +
1 W15 Wy 4
Sy CafiyoenCayCosCoctanltat ...  e15e15/(82, Ey) dL2. (3.6)

On substituting herein the distribution functions (3.3) and (3.4), we can write the follow-
ing expansion of the refractive index in even powers of the amplitude E, (Kielich 1961 a):

n*—ni = Qg+ Qs+, 3.7
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where:the expansion coefficients Q, and Q, are of the form

dF, F\? . ‘
Qz = (aE ) (—EZ-.) {CGE{W? <81;elﬂ62’y62(5>0+
+ﬂa“‘éayg«elaelﬁezyézﬁo;<61¢e1ﬂ>o<ezy €20)0) >
oF,\ [ F,\*
= (QE ) ( ) {eabyaenderaeipeaytastaicanyo +

+4B[agicyten(Ce1461582,26€2:C2,) 0 L1415 0{C2, C23€2:€2,V0) +
+Caira Oon({e14€1582, €08 ezee."..n> 0~ <€1a€152,€20) 0 €220V 0)] +
+26%a5030,3( 1481562, C26C2:C2n) 0—
- <31u31ﬂ> 0<e2yezdezsezn>o - <eluelﬂe2yezd> 0<32832q>.0 -

—<e1,61 ﬁ62332n> 0<62ye2d> ot 2<elaelﬁ> o<62y623> 0<e28621]> o)}-

(3.8)

(3.9)

Since in the absence of fields all directions of the unit vectors e; and e, with regard
to the axes of the laboratory reference frame are equally probable, we have (Klehch l961b

1963b).
1 1 1
{e1a€18)0 = 3 Oy {€29C609 = 3 Oys,  {e1alordo = 3 (€ * €) day,

1

€aatapay€ss)o = 15 Oapys:
1 2
e1a€18€91€28)0 = 90 {100430,5-+[3(e; * €2)>—1] yapyo},

<€10€1p2yC20€0:C0n) o = —6—51’70— {1484p0yten +[3(€y - €2)2—1] Yapyten},
where we have used the notation:
Oupys = 0450,8+ 04,055+ 04505,
Xapys = 300,055 +304805,—20450,5 = 3045,5—50440,5

Xapyoen = 36¢ygﬁenﬁ +3 61668nﬂv +36¢80nﬂ)’6 +3 60:'10'1‘3768 _4'60:5076677'

By (3.10), the coefficients (3.8) and (3.9) can be transformed as follows:

Qs :‘é‘ (ggi) (“%) {4, +[3(e, - €)°—1] By},

Q= % (jgi ) (_F_%) {4a+13(e; - €)°—1] By},

2

(3.10)

(3.11)

(3.12)

(3.13)
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where we have introduced the constants:

. 27 @y, Wy - )
Ay = 5 0Caapp’ (3.14)
ﬂ@ W15 Wy Wy Wy '
By = 15 (Cozﬂifa +ﬂadﬂa"y(5) Xapyos (3.15)
Ay= (BeabbenOyten+ BBy Aentysen) Saps (3.16)

1080

Wy, Wy

T W1y By )
B, = —1'5—1% {3eaﬁy6wxuﬂv6€ﬂ + 4Bcabys asn(3laﬂyﬁeﬁ—

——7xaﬁ'y6 657]) + 12ﬁa'(£,§c;/u;enxaﬂydsn =+
+ 2/3 2a’¢ﬁa’y6aen (3x¢ﬂy(58n - 7X¢ﬂyd 6611 - 7%0:/3511 676) }‘ (3' 17)

The constants 4, and A4, define non-linear changes in refractive index of an isotropic
nature, whereas B, and B, define the anisotropy induced in the medium by a strong optical
field. The expressions (3.14)—(3.17) hold for non-dense media of arbitrarily symmetric
molecules.

From Eqs (3.7), (3.12) and (3.13), we derive the birefringence induced in the medium
as follows:

1 .
ni—nf = = (n+2)? By+BuFba+t ...) (Fhoa—Fla). (3.18)

We now proceed to apply the constants (3.14)—(3.17) to some particular molecular
symmetries. We shall begin by a discussion of the constants 4, and B,. For convenience,
the latter will be resolved into a part defining the effect of non-linear optical deformation:

7 Wy Wy W1, By W15 Wy
Bk = T2 (3cikay' +3ubpe—2ceR) (3.19)
and a part defining the effect of optical molecular orientation:

By = 45” (3aghah +3aahass—2aquash). (3.20)

For molecules having symmetry of the point groups Cg, (thus e. g. C4Clg) and Dy,
(e. g. CgHg) we obtain

Gy = 13005+ (a3 — Ayl kg,
Capys = (01111'_01133 — g1 —4iazt+ 03333)k¢kﬂkykd +

+cll22(6¢;36y6_6aﬁk ks—kof50,5) 11530 45, Fes +

+eagnikafis0ye+ = (01111 —C1129)(0 ¢ Ops + 6,4595,) +

1
+ 5 (2c13137 1331 C1120) (O Fighis + Ogshigh, -+ Kl Ops + Efosds, ), (3.21)
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and the expressions of Egs (3.14), (3.19) and (3.20) become

2n
A= 9 0(261331 +2¢1199 -+ 261133 + 23311 -+ Ca333) (3.22)
Blet = 2% (70,5 %1153—2 12 w0
T 0(Tc1111— 561105 — 201133 2Ca311 +12¢1315 + 2C3333) 2 2, (3.23)
Bor — 4:7'6@ w. w,
S = IERT (ags—apy) (ags—ap). (3.24)

The above expressions hold moreover for a vast class of various linear molecules (e. g. H,,
CO,, C,H,, and so forth) belonging to the point group Dy

In particular, for the spherical symmetry we have also a;; = Gg3, €333 = C11115 Craoe
= €133 = Cazt1> 21313 = Ca333—Crazs and Eqs (3.22)—(3.24) reduce to

2n
Ay = 3 elcggage +20055), : (3.25)
2n
Byt =3 el — i) (826
B = 0. (3.27)

Hence, as it was to be expected, in a gas of isotropically polarizable molecules the
effect of optical molecular oriention does not appear, but only isotropic deformation.

In the case of anisotropic molecules linearly polarizable in all three directions of the
principal axes, the constant (3.20) can be written as follows:

27
By = 45kQT {(ay4—agy) (ag—agy) +(agg— ag3) (azz ags) +(agg—asy) (ags—ay; D). (3.28)

whence for axially-symmetric molecules one obtains immediately (3.24).
We shall at first apply the constants (3.16) and (3.17) to systems having the spherical
symmetry, for which in addition to (2.31) we have (Kielich 1961a)

1 1
Capyden = 3 €1133330apOysen + 36 (€333333— C113333) (Ywsyoen +40ap0ysen)- (3.29)
This yields
nQ Wy y W Wy 4 W,
Aget = o4 (e33ssm 269 135%) (3.30)
79 w
Byt = 24 (Cosasns— Citzans)- (8.3

Thus, in the present case, the only effect is that of non-linear optical deformation.
Assuming for simplicity that the molecules are linearly polarizable and axially-symmet-
ric, the constant (3.17) reduces to

_ 2mp

| B = Sgspere

(a33 a$y) (ag—aip® (3.32)
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4. General theory for a dense medium

Let us consider a dense medium, isotropic in the absence of external fields. As pre-
viously, we assume that two light waves are incident on the medium in arbitrary directions,
conveying respectively the electric fields E, = E, cos w,t and Ey= E, cos w,t. We assume
moreover that the wavelength of either light beam is strongly in excess of the intermolecular
distances, and that their oscillation frequencies w; and w, lie outside the regions of electron
absorption of the substance of which the medium consists, with w, sufficiently large to
admit of time-averageing of the effect due to the field E, but sufficiently low for the molecules
to follow the field.

For generality of the results, we shall now proceed by a semi-macroscopic approach of
the theory. We consider a spherical, macroscopic sample of volume V within the medium
in which the field E, induces polarization given by the vector Py. Under the effect of the
strong optical field E,, the medium becomes anisotropic, its optical properties being given
by the permittivity tensor

— _
nZ— 0o = 4m Q—PIA% , 4.1
dEqy ,
where EM is the mean macroscopic field strength existing in the medium, and the indices
o and 7 relate to the axes X, Y and Z of the laboratory reference frame attached to the
centre of the sphere.

Since the polarization vector P, is defined by the ratio of the dipole moment M, and

the volume V of the sphere, we have :

9P, 1 oM,
—_ 4.2
dEM ¥V < OEM >EE’ 42

once we assume that the volume ¥ does not depend on the weak optical field E; and the
relation between M, and E, is linear.

At present, in Eq. (4.2) the mean statistical value { > in the presence of the intense
field E, is defined as follows:

M5 J——
<<9M1,,> B f ot P {—BU(z, By} dv -
9E1: [k, [ exv (4T, By e ,

where U(t, E,) is the total potential energy of the whole system at configuration 7 under the
effect of the field E,.

We assume that the sphere when acted on by the strong field E, changes its volume
V only, without undergoing a change in shape, and that this change is an even function

of E,,
1{o2r\ , 1 [o*V
V(Ey) = V(0)+ ('—'_)OEz + 37 (Q—Eé

5 \7m )0E3+ (4.4)
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We have thus taken into account the effect of optico-striction, which in quadratic approxi-
mation, by analogy with electrostriction, can be expressed as follows:

1 (o2 1(9 v [{en 2
L

with p denoting the pressure and S5 the isothermal compressibility of the medium.
On expanding (4.2) in a power series in E, we obtain from (4.1) by (4.4) (for the sake
of simplicity, we shall restrict our calculations henceforth to terms quadratic in the field E,)

n nlar ch + OP'::’ (4‘~6)
where
dr [ OM.
2 8 _ 10
1ior — oz 74 < QE]I_‘.:I > . | (4‘7)
is the tensor of optical permittivity of the medium in the absence of an intense optical
field (E, = 0). :
In (4.6) the tensors
B J2 dM,, ot
Qe = {aEzvaEzg.(aEl,) } Farbae “9
v 2 [IM\ [V —
Qo = 75 < Y7 > (a—E;, 0 E3 (4.9)

describe the effects arising from the changes in polarizability and volume of the sphere,
respectively, due to the strong optical field E,.
By the definition of (4.3) the tensor (4.8) can be expressed as follows

QP _ 2m | _ﬂl_"_. —B Mo __‘9_2_[[__ +
TV \\OEMIE,IE,, DEN EydEy
9 My, 92U .
+ Eq By, 4.10
(o ) emms) , b

On averageing (4.9) and (4.10) over all directions of the vectors e, and e, with respect
to the laboratory frame, we obtain from (4.6)

F 9E, ——=— OJE
nt—nier = Ay —= E} 4B, (3 =Y F FE, — 1 Fg) 4.11
1 11 2( QE{‘f 20142 c/’)E]{‘.f ( )
2z O3M,, 2% [OM\ |9 |, .
4= <9E1¢9E2ﬁaE2ﬂ> R < Yo > {% g V)}T”
92 2
_ 2 <9M1,,, U_> B <9M1,, ( U\l 4.12)
oy OF, 9B, Eyg OE,y | \OE,39Ey

I3M,, oM, o >

B, = 45V"“"“’<9E 9y, 9 Ey —PSE, 7555, (4.13)
18Y 122y 2 18 2y 2
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Eqgs (4.11)—(4.13) define the non-linear variation of the optical permeability tensor
as produced by a strong optical field in an arbitrary dense isotropic medium. The constant
(4.12) defining isotropic changes in refractive index is seen to consist of a term defining
the non-linear variation of the moment M, a temperature-dependent term related with
fluctuations of the linear polarization of the medium, and a term related with the change
in volume due to the strong optical field (optico-striction).

Assuming now for convenience that the spherical sample is not within the medium
but in vacuum, the expression

U

My = = 55 (4.14)

represents the dipole moment induced in the sphere by the strong field E,.
If we assume moreover that the relationship between E; and EM is isotropic i. e. that

OB _ mi+2
aEff '——3 (1)

we can write Eq. (4.11) as follows:

nf+2
3

Ay85.E8" +By(3EyEgy — 05 E3") (4.15)
2 2

ngr—n%aar = (

whence on calculating the components n%, and nZ, we obtain the optical birefringence:
! 1 —_—

ni,—ni = 5 (n3+2)2 B,(E3. — E3,), 4.16)

where the optical birefringence constant is defined as

(4.17)

B_ T ( d3Myq N OMy, 9M27>
27 45V X\ O E 50 Frgy D s 9, OFy |-

Denoting by @, y, # unit vectors in the directions of X, Y, Z, we can write
E, = @ Ey,+Y E, +2 E,, = {o& sin 9 cos p+Y sin I sin p+2 cos ¥} E,,  (4.18)
and the quantity appearing in Eq. (4.16) is
LB = 6B = aTh 19)

where

g == cos® §—sin? & cos? ¢ (4.20)

is a quantity defining the value and sign of the optical birefringence.
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If in particular the wave propagates in the direction of the Y-axis i. e. if the vector E,
oscillates in the XZ-plane (¢ = 0), we have according to the direction of polarization of
the wave

1 for ¥ =0°,
g=cos?9—sin? ¢ = 0 for & = 45°,
" —1 for & = 90°.

If the wave is not polarized and propagates along the Y-axis, birefringence vanishes
since the functions cos? ¢ and sin* & when averaged over all values of the angle @ in the

plane perpendicular to the direction of propagation of the wave yield 1/2 and g = cos2#—

sin?® = 0; similarly, g = +1/2 according to whether the non-polarized wave propagates
in the direction of the Z- or X-axis.

5. Application of the theory to special cases

We shall now discuss the semi-macroscopic theory proposed in the preceding Section
with relation to the microscopic structure of the medi uminvolving molecular interactions of

the radial and angular kinds.

In the microscopic picture, the dipole moments M, and M, of the volume ¥ containing
N identical molecules can be expressed as follows:

N N
My, = X m®), My, = > m, (5-1)
p=1 g=1
where m$) and m{? are, respectively, dipole moment components of the p-th and g-th
molecules of the medium acted on by the fields E, and E,.
On substituting (5.1) into Eq. (4.17), we get the optical birefringence constant in molec-
ular form:

N
. 3mif)
.BZ = ZS—V Xaﬂvf?(; m *

g ngﬂ) ng;)
DI 9E, 9E20>' 6.2)
Generally, in a condensed system such as a compressed gas or a liquid, even in the
absence of external fields, a molecular field F, exists owing to the presence of permanent
or induced molecular moments (dipoles, quadrupoles, etc.). In the presence of external
fields E,, E,, the molecular field F undergoes a change as a result of polarization of the
medium, and has to be replaced by molecular fields F, and F, which, in general, are func-

tions of E; and E,. Hence, in a condensed medium, each (e. g. the p-th) molecule is acted on,
in addition to the external fields E, and E,, by the molecular fields F{ and F$’; conse-
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quently, the moments m{ and m§’ are now functions of the effective fields E,+F®
and E,+F{, so that we have the expansions (Kielich 1960, 1963c)

1
m{f) = {ai’ﬁ +bB (E,, '|‘F2($)) + 5 S;%)VG(E27 +F£’;)) (Egs+F) +...} (Ep +F£§))a (5.3)

afy
1
m® = o (Eys+ F{F) + 5 B (B +F30) (Ege +FSD) +... (5.4}

The molecular fields appearing in these expansions can be expressed as follows with
an accuracy to within interaction of the dipole type (Kielich 1960):

N
F® = — Zl TS (P +m@), k=1 or 2. (5.5)
0
Here, the tensor
Ta(zgq) = _riJ_qE)(srpqarpqﬂ‘rpzqéaﬁ) (5.6)

characterizes dipole type interaction between molecules p and ¢ distant by r,,.
In certain cases, in a first approximation, we can neglect the molecular fields in (5.3)
and (5.4), and the birefringence constant (5.2) becomes

N N N

T

By= — sapysl 2 s+ 2 2, aady, (5.7)
4*5V p=1 p=1 g=1

or, by methods of classical statistical mechanics,
B, = B¥ 1By, 5.8y

where the deformational term B§ef is given by Eq. (3.19) whereas the orientational term
by the formula

T
By = 4—§ B Xapys {%ﬂ“?é + ’gf ff agz%)“%)g(z)(fp’ Tg) dTPqu} > (5.9)

g(z)(‘rp, 7,) is a binary correlation function of the molecules p and g having the configura-

tions 7, and 7,.
In the special case of axially symmetric molecules, Eq. (5.9) reduces to the form

(¢f. Buckingham 1956)
4
By = ‘4‘5‘% (agg—ay) (a33—aq;) (L+Ja), (5.10)

where (Kielich 1962)

Ja= 2_6‘;/: ff (3 cos? Opg—1) gB(7p, T4) dTpd7g (5.11)

is an integral parameter determining pairwise molecular correlations of the angular kind.
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We shall now take into account the effect of the molecular fields on the orientational
birefringence constant (their effect on the deformational term is relatively insignificant)
which, with regard to the general expression (5.2) and the expansions (5.3) and (5.4), is
of the form

: N N
nf ) ) o
Bgt = 45[/ XaﬂrrS(Z Z (p bgnF p)+ } X

F(P) - QF@)
<l R+ o S o STRNY 6512

In particular, on applying this expression to isotropically polarizable molecules, one
obtains the optical birefringence constant

N N
27 OFP 9FQ  oF® oFfy
or __—
B =Ty (Z Z “’P““{ 9E,; OEy  OE, 9L/’ (5.13)
p=1 g=1

which in general is non-zero if molecular fields of induced dipoles are present in the medium.
By .(5.3) and (5.5), we have for isotropically polarizable molecules

9F1(£) 1) S 5 - (1) pe(rs)
i 2} aTE + 20 > ara TETH — ., (5.14)
18 r=1 r=1s=1
r£p rp sEr

and similarly for the field F, on replacing the polarizability a by a.
On restricting further calculations to pairwise correlations only, the constant (5.13)
reduces with regard to (5.14) to the form

By = :Zf, a*a?]g, (5.15)
where
— 2 % f j rSg®(ry, 13 dride (5.16)

is an integral parameter defining radial correlations of isotropically polarizable molecules
(Kielich 1962).

The result of Eq. (5.13) or its special case (5.15) signifies that, even in fluids consisting
of linearly and isotropically polarizable molecules, owing to interaction between induced
dipolar moments, birefringence of the orientational kind can appear in the medium. Clearly,
we have in mind the effect of orientation of assemblages consisting of atoms or spherical
molecules, coupled by means of radial forces. We have seen (Eqs (2.25)—(3.27)) that in
a medium of noninteracting atoms or spherical molecules only birefringence due to non-
-linear deformation can arise, since the isolated atoms and molecules do not undergo orienta-
tion in an electric field. However, as seen from Eqs (5.15) and (5.16), it suffices that the
medium be sufficiently dense to give rise to pairwise radially coupled assemblages, and the
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latter will behave at a given instant like anisotropic elements which become oriented by
the electric field. This leads to weak birefringence of the medium dependent rather strongly
on the temperature. ‘

Similarly, Eq. (5.12) can be used for calculating the effect of molecular fields on the
birefringence of liquids of molecules that are dipolar, quadrupolar and so forth. In partic-
ular, if the molecules are dipolar and present the axial symmetry, Eq. (5.12) with the molec-
ular field of Eq. (5.5) leads to

— or b333‘b113 5333_13113 ’ } |
Bz = gasB2 {1 +Ja+u ( Po—— -+ prR—— Ja+ ..., (517)
where
4t
gasBy" = ABET kQT (“33—‘1@1) (“'33”‘“11)’ (5.18)

Ja= % f f (3 cos? B, +1) (3 cos O, cos O;—cos Opg) 1738 (Tp, Tg) dTpdTy,  (5.19)

and the parameter J4 is given by (5.11).

Thus, although the permanent electric dipoles play no part with regard to direct orien-
tation in an electric field, their presence nevertheless affects the optical birefringence of the
liquid indirectly. This effect is of a double nature: In the first place, it comes to play by way
of the correlation functions implicite in the parameters (5.11) and (5.19), and secondly
through nonlinear polarizability of the molecules due to the molecular field of permanent
dipoles. In other words, participation of the permanent electric dipoles in optical bire-
fringence is only possible owing to the existence of intermolecular interactions.

Similarly, one can calculate the contribution to optical birefringence from electric
moments, both permanent and induced, of higher orders. Albeit, if one wants to obtain
results that are well-adapted for numerical evaluations, it is useful to recur to Onsager’s
model in calculating the molecular fields (see, Kielich 1962, 1966).

In concluding the present section, we will still give the birefringence constant for
multi-component systems which, by Eqs (5.1)—(5.4), can be resolved into a deforma-
tional and an orientational.part, thus:

TT " 0 1 i
Bgef — Zg‘ (B as +3¢sa—2cEp), (5.20)

i

4
By — ,e{}: gafelprsoeft 2 ¢

+ Z X%y f f Xaﬂvt’a%)“%])gz(}?)(fp, Tq) dTpqu}a (5.21)

where the tensors a{}), azgg and cg},ya have their previous physical meaning but now refer
to a molecule of the i-th species, and x; = N,/N is the mole fraction of the i-th
component of the mixture.
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6. Relation between optical birefringence and anisotropic light scattering

We will now show that the orientational part of the birefringence constant is related
strictly with anisotropic molecular light sctattering.

Let us assume here for simplicity that the volume V" of the sphere under consideration
is small as compared with the wavelength of the light wave whose electric field sirength
E = E cos wt is weak, producing only linear polarization in the medium. We thus have

M, = (QM") E,. 6.1)

by assumption:

9L,

Let us consider the intensity tensor of scattered light I ., which we define here as follows
(4 stands for a fluctuation):

1 — =t
Iar = ?4-17 < AMO-AMT >E, (6.2)
or by (6.1) for linear scattering as follows:
1 (w\"[/oM, oM, IM, \ [OM \| -
- (2 {58 58 - (GG )

For the case of an isotropic medium, we have to perform averageing, obtaining finally (for
comparison, see Kielich 1964)

Ia‘r: RisEaErt+Ranis(3aatﬁt+EdErt)’ (6'4‘)
where
4
oM, o oM, o
Ro= (2 <M Mﬂ>—<M><Mf’ 6.5)
W \c ok, 9k, 9k, | \9E,

is a constant defining fluctuational scattering of light of an isotropic nature, whereas

Ranis = (6.6)

4

1 (o 4( OM, M, M, dM,
%0V 9E, 9E;  9E, 9k,

is a constant determining anisotropic light scatiering in the medium.

Returning now to the optical birefringence constant in the form of Eq. (4.17) and con-
sidering only its temperature-dependent part, and assuming that E, = E, = E (i.e. that
a single intense light beam propagates in the medium), we can write

2B [ OM, OM, M, IM;
By =5y (3 9E; dE; 9E, dE;[° ©.7)
On comparing Eqgs (6.6) and (6.7), we obtain the relation
or . A [ ¢ ¢
Bg - "ﬁ (;) -Ranis (6'8)

between the orientational birefringence constant and anisotropic light scattering constant.
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If the effect of the molecular fields in the medium can be neglected, the isotropic and
anisotropic scattering constants (6.5) and (6.6) can be expressed thus (Kielich 1960):

Ry = (3) a’o {1 + f f [89(rp: re)— ()8 P(r,)] drpdrq}, (6.9)

1 (o)
Ronis = 9_0 (T) 0 {3 Ao Xap— Lz X5 1

+ f f (B oef — e afy) 8@, 7o) dTpqu} : (6.10)

From the general expression of Eq. (6.4), one can calculate various experimentally
measurable quantities, thus the Rayleigh ratio R, depolarization rate D, and others. If
experiment involves a non-polarized beam propagating along the Y-axis and observation
is along the X-axis, then by (6.4) the tensor components of the intensity of scattered light
with oscillations along the Y- and Z-axis are

I, = 3R, (E¥ +E%), (6.11)

anis

Izz = Ris—E_zzt + Ranis(?’Egt + 45?) . (6 12)

Since in this case ET%‘ = Eﬁt = 1/2@1), we obtain

Ly+1.
R= h—“iE? — % (Ris+13Ranis), (6.13)
D= Ly - _ ORanis (6.14)

Izz Ris + 7Ranis )

Similarly, one could calculate from equation (6.4) R and D for other conditions of observ-
ation of scattered light (see, Kielich 1960, 1964).

7. Discussion and conclusions

L]

We have proposed a semi-macroscopic theory of non-linear changes in light refractive
index induced in an arbitrary isotropic medium by an optical field of high intensity. These
changes are shown to be described in a quadratic approximation by two constants 4, and B,
which express the molecular structure and thermodynamical state of the medium, as well
as its changes, in the presence of the optical field. The constant A4, defines changes of an
isotropic nature which are related, firstly, with non-linear polarization of the medium,
secondly, with fluctuations of its linear polarization and, thirdly, with its opticostriction.
The anisotropic optical properties of the medium are characterized by the constant B,,
which defines the amount of optical birefringence induced in it by the intense optical field.

The birefringence constant B, as defined by the general equation (4.17) is discussed
for several molecular models. In the special case of rarefied atomic gases or of ones consisting
of spherical molecules, the optical birefringence is induced solely by non-linear polarization
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of the third order. This effect does not depend directly on the temperature (Eq. (3.26)). In the
dense state, it is shown to be accompanied by an effect which depends directly on the tem-
perature and arises by orientation of momentary assemblages of radially coupled atoms or
spherical molecules (Eq. (5.15)). The respective correlations are described by a parameter
(5.16) which appeared i.a. in an earlier expression for the depolarization ratio (Kielich 1960):

. 6a%/r
- SQkTﬁT+7 a?Jr ?

where (7 is the isothermal compressibility coefficient of the medium.

In gases of optically anisotropic molecules, optical birefringence is induced simultane-
ously by the effect of non-linear optical deformation (3.19) and that of optical molecular
orientation (3.20). The problem of whether these two effects are numerically of the same order,
or whether one of them predominates, will have to solved in each particular case with regard
to the internal structure of the molecules. Indeed, this will depend on whether a molecule
is more susceptible to non-linear deformation in an intense optical field, or whether it is
more easily oriented by the latter. The answer is readily supplied by measurements of the

D (7.1)

optical birefringence as a function of the temperature.

Investigation along these lines will provide us with valuable information concerning the
anisotropy of both the linear and non-linear optical polarizability of isolated molecules.

In dense substances, such as liquids, both these effects are affected by intermolecular
interaction. The effect of molecular orientation depends particulary strongly on molecular
correlations; in the case of axially symmetric molecules and in a first approximation of the
theory, it depends on the supplementary parameter of angular correlations (5.11). In the
same approximation of the theory, an identical parameter appears in the formula

_ 6(xz3—14)% (1 +J4)
- 450 2k TBr +T(ag3—01y)% (14-Ja)

In the case when the dependence of the polarizability on the light wavelength is negligible,
Eqgs (5.10) and (7.2) lead to the relationship

(1.2)

Bg* = dmp2afr (7.3)

D
=7k
which permits to calculate the optical birefringence constant if the depolarization ratio ¥
of the substance is known experimentally.

Higher approximations of the theory show that in very dense media the coeffcient Bgrient
is affected (in addition to the angular correlations of Eq. (5.11)) by the existing strong molec-
ular fields, particularly in substances of dipolar or quadrupolar molecules. These molecular
fields not only affect the linear polarizability of the molecules but, primarily, are able to
give rise to non-linear polarizability of the latter in the absence of external electric fields.
Consequently, although the permanent molecular dipoles or quadrupoles do not undergo
orientation in the optical field directly, they nevertheless are subject to orientation indirectly
owing to the presence of mutual molecular correlations of various kinds.
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The theory proposed is easily extended to the case of multi-component systems, for which
the birefringence constant can be written formally in the form of the following expansion
in a power series in the molar fractions:

By = X xBP+ 3 5 BP+ .., (7.4)

i i)

where, by (5.20) and (5.21), we have

Bgr=%{3c@>,ﬂ+3¢g§m 26055 +BBa8ad) + 3082 —2a0al)), (7.5)

(211) — 4_5_1; ﬂ f f { Ba("')a(w + 30,(1”)05(4’) 20(1’1)“(41)}& 2)(.[?’ )d‘rpd‘r . (7.6)

Hence, B, is seen to be an additive constant only in the case of a perfect mixture in
which no molecular correlations occur. In condensed multi-component systems (mixtures
of compressed gases, liquid solutions, efc.) where in addition to correlations between
the molecules of one component a role has to be atributed to correlations between mole-
cules of the various components of the system, the constant B, is no longer an additive
quantity. Thus, investigation of deviations of B, from additivity can yield direct information
on the molecular structure of a system and on the nature and magnitude of the inter-
molecular forces active between the molecules of the various components. This is all the
more easier as similar parameters of molecular correlations occur also in the theory of
molecular light scattering (Kielich 1960) and of the Cotton-Mouton (Kielich 1962) and Kerr
(Kielich 1963¢) effects. Especially interesting information can be gained in the case of
compressed gas mixtures for which the bimolecular correlations function of Eq. (7.6) can
be expressed as follows:

Q%{(v,, 7)) = exp {—Puy(r,, T, }{1+0(0)}. (7.7)

Introducing herein the .potential energy of mutual interaction ot two molecules u(7,, 7,)
in the form defined for the molecular model under consideration, one can compute the
constant (7.6) numerically (see, Kielich 1966).

The relaxational theory of orientation of anisotropic or dipolar molecules in an oscillating,
strong electric field, as presented at the outset in an elementary approach, will have to be
generalized, on the one hand, to the case of statistical intermolecular correlations, and on the
other to that of electronic dispersion, to an extent permitting i.a. to investigate birefringence
within appropriate resonance bands where the effects can be expected to attain their maximal
values.

Finally, one would like to stress once more that for various reasons it would appear most
useful to study experimentally not only the induced optical birefringence, but also the non-
-linear changes in refractive index induced by an intense laser beam. In the general case,
they are given by the equation

ngr_n(z)aar = A(SarEg +B(3E00E0r— 60"{‘E§)’ (78)
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which results from Eqs (3.7) and (4.15) with n; = ny denoting the refractive index in the
absence of the light beam and

! 2
A= (n°6+2> (Ay+ A, E3+ ..),

B— <"’°+2) (BB, T ) (7.9)

— constants which are even functions of the amplitude Ey= Ey, of the strong optical
field.

If in particular we assumne the strong beam to be polarized with electric oscillations
along the Z-axis, (7.8) yields for the optical permittivity tensor components

nzx = n2 = no +(4- B)Egz,

x
n, = na+(A+2B)E},, (7.10)
and the optical birefringence
n2,—nk = nZ, —n = 3BE}.. (7.11)
In the case when the strong beam is not polarized and propagates along the Y-axis,
Eq. (7.8) leads to the absolute values of variations

nf,y—ng = (A—B)Eg,

n? —ni=nl,—nf= (2A +B)E}, (7.12)
and to the birefringence
3
n2,—n? =0, n,—n? =—BEL. (7.13)

Rz vy 2

It is thus seen from Eq. (7.10) or (7.12) that the absolute changes in refractive index
measured in a given direction are related not only with the induced optical anisotropy but
moreover, in general, with the changes in volume of the medium due to the effect of the
strong optical field i.e. with the opticostriction implicite in the constant 4. On the other
hand, from Eqs (17.11) and (7.13) we see that the differential changes in refractive index
are related on ly with the anisotropy induced in the medium, as defined by the constant B.
Hence by measuring the absolute non-linear changes in refractive index in a given substance
and, separately, its optical birefringence, we can use Eqs (7.10)—(7.13) to determine numer-
ically the constant A, thus determining its opticostriction.

By Egs (7.10) and (7.12), we obtain for the relative changes in refractive index in the
case of a polarized light beam

nf,—n§ _ ni;—n§ _ A-+2B

= = : (7.14)

nZ,—ng nZ,—ng A—B
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and in that of a non-polarized beam

2 9 2 2 B
Nzz—TN0 Nax—N0 24 + (7.15)

ni—ny  ni,—n§ 2A—B)

In particular, restricting theoretical considerations to the effect of molecular orientation,
i.e. if B= B and 4 = 0, the relation (7.14) yields — 2 (in agreement with Langevin’s
well-known theory of the Kerr effect), whereas (7.15) yields a value of —1/2. In the other
extreme case assuming that only non-linear deformation is present, we have 2A49%f — 5pdef
and (7.14) yields a value of 3 (in conformity with Voigt’s theory), whereas Eq. (7.15)
yields 2. It would be of the greatest interest to verify these relationships experimentally.

The author is indebted to K. Flatau, M. Sci., for the English translation of this paper.
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