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Synopsis
A semi-macroscopic method is used to show that the nonlinear change in electric
permittivity tensor esr as induced in an arbitrary dense isotropic medium by a strong
optical field of amplitude & is given by
&g ~— 821 = Qis 5015% 4+ Qanis(3€0sE0r — §¢,é’(2)),

where the constant Qss describes isotropic changes in electric permittivity related with
nonlinear polarization and opticostriction and Qanis accounts for the optically induced
electrical anisotropy. Qanis is proved to consist of four terms, one of which results
from third-order electric polarization due to the square of the optical field, whereas
the remaining three arise from optical molecular orientation, which depends directly
on the temperature. The anisotropy constant Qanis is then discussed in detail statisti-
cally for the case of multi-component systems consisting of mutually interacting,
isotropically polarizable or electro-optically anisotropic molecules with or without a
centre of symmetry. In dense systems the radial and angular interactions of the
molecules are accounted for by means of binary and ternary correlation functions. The
theory is applied to compressed gas mixtures consisting of nonpolar anisotropic unlike
molecules, or molecules with permanent dipole and quadrupole moments.

§ 1. Introduction. Even before the coming of lasers, it was known from
simple classical calculations that an optical field of very high intensity can
affect not only the opticall) but also the electric and magnetic?) 3) properties
of isotropic systems such as gases and liquids. We have in mind nonlinear
variations of the electric or magnetic permittivity due to the electric field
of a very intense light beam?)3). Since those days, the techniques of con-
structing high intensity light sources have made enormous progress and the
lasers operating at present produce light beams of an intensity that would
have seemed inachievable several years ago. At present the detection of the
electric nonlinearity induced in an isotropic medium by an intense light beam
is only a matter of evolving appropriate ingenious measuring techniques.

In this respect, it may be worth reminding that it was only quite recently
that Paillette4) used a laser beam to observe and follow quantitatively in
several organic liquids the optically induced birefingence predicted theoreti-
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cally by Buckingham1). It can be hoped that one of these days it will also
be possible to observe the electrical anisotropy which can be induced in
liquids by an intense laser beam. The investigation of electrical anisotropy,
as distinct from that of the absolute nonlinear variations in electric permitti-
vity, would seem more promising in that the former does not depend on
various other simultaneously occurring effects such as opticostriction,
thermal effects, and so forth. Optically induced electric anisotropy is indeed
the inverse of the well-known effect of DC field-induced birefringence i.e.
of Kerr’s effect. In the Kerr effect, the role of measuring field belongs to a
weak light beam, whereas the field which induces birefringence is a DC
electric field of high intensity. Inversely, in the effect of electric anisotropy
proposed here for measurement, the role of measuring field is played by a
weak DC or slowly time-variable electric field, while the field that induces
the anisotropy is the oscillating electric field of an intense light beam e.g.
from a laser.

Thus, it is now the moment to proceed to a more thorough theoretical
investigation of the electrical nonlinearity due to a very strong optical field.
The problem has already been dealt with theoretically for not too dense
one-component systems only 2) 3). Albeit, these present a degree of generality
still insufficient for their providing the possibility of taking into account
various factors of a microscopic nature, such as the electric field of molecular
multipoles and the nonlinearities induced in the molecules by these fields,
etc.

The present paper is aimed at deriving a statistical-molecular theory of
optically induced electric anisotropy in multi-component systems on the
basis of the existing semi-macroscopic theories of isotropic dielectrics®). The
theory thus generally formulated can be applied to a wide range of vastly
varying special cases beyond the one-component systems discussed pre-
viously in some approximation, comprising two-, three-component systems,
etc., consisting of atoms or molecules with induced or permanent dipoles,
quadrupoles, octopoles, and so forth.

§ 2. General semi-macroscopic theory. Let us consider an isotropic medium
whose electric permittivity is &, and at the centre of which we shall consider
a sphere of macroscopic dimensions whose electric permittivity is & and
volume V. We suppose that this medium is in a weak uniform electric field
of strength E, caused by a fixed external charge distribution at a large
distance from the medium. The mean macroscopic electric field of strength
E! existing within the sphere is related with the external field E as followsS$):

3ee

Ei=—_—"" E. 2.1)
g+ 2eg

As long as the electric field strength E is small, the medium undergoes
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linear polarization leading to the well-known result3). Albeit, we are con-
cerned here with the case when another oscillating electric field & is acting
on the medium. Assume the field E, which will now be termed the measuring
field, to be a slowly time-varying electric field, while the additional polar-
izing field & is a rapidly varying electric field e.g. the optical field associated
with a light beam. The latter will be assumed to be cosine variable & = &,
cos wt, oscillating with the light angular frequency o excluding, however,
frequencies within the range of optical absorption of the substance.

If the intensity of the oscillating electric field & is very large, the medium
becomes anisotropic, characterized by the electric permittivity tensor as
measured by the weak electric field E which varies but very slowly with
respect to the rapid oscillations of the polarizing field &. In the general case

we have .

9P,
gor — Ogr = 4m FET’ (2'2)
where P is the total dipole electric polarization vector of the medium
whereas the bar —* stands for time-averaging over the period with respect
to the oscillating field &.

In the case considered here, we have by definition

Mo

P— ,
v

(2.3)
where M(z, E, &) is the total electric dipole moment of the small sphere
when its molecules are at configuration 7 in the presence of the electric fields
Eand &, and ¢ > 1, ¢ 18 its statistical mean value.

At thermodynamical equilibrium of the system at the temperature T
we have in the case of classical statistical mechanics

| M(z, E, &) exp{— #TU(r, E, éﬂ)? dr

<M>E,0@ = (2.4)

| exp{—s#U(t, E, é’)}f dr

with U(r, E, &) denoting the total potential energy of the system at con-
figuration 7 when the electric fields E and & are present, and with # =
= 1/kT.

We assume that the sample of the isotropic medium when acted on by a
strong optical field changes its total volume V only, without undergoing a
change in shape, and that this change is a quadratic function of the field
strength; namely, we have

V(&) = V() + %( z(gz )0(5’2 + .. (2.5)

2

This equation determines the isotropic change in volume of the isotropic
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sample due to opticostriction, which in analogy to electrostriction can be
expressed as follows®):

V(&) — V() = —%{{; wn} o —%{(%")T - XOﬂT} P

where %9 is the optical susceptibility of the sample,

1 /oV
== (%),

its isothermal compressibility, and p — the pressure.

On expanding the right hand side of (2.2) in a power series in & and using
the expressions (2.3) and (2.5) we obtain, to within the second power of the
field strength &,

Eor — 821 = Qli + Qf:: (2.7)

where we have introduced the electric permittivity tensor in the absence
of the strong optical field

4m 0
827 — g7 = 7{@ <MG>E}0: (2.8)
and the following tensors:
2n 0 L) -
vV __

Qa‘r == *‘_[/—2{@ <M0’>E}0< aéaz >0£2, (2.9)

o a3 ¢ _
P (M &6, 2.10
N % { OELE0E, Hoon, ‘*”}0 e (2.10

describing the effects arising from the changes in volume and polarization
of the medium respectively, due to the strong optical field.

The total dipole moment M and potential energy U may be expanded
in a power series in E and & and we obtain up to the terms linear in E and
quadratic in &:

oU oU a2U

21 sU
——— ) & A | EcEiEr .. 2.11
<a(9@ga£¢'>0 ¢ T+2<8Egaéaragy>0 oo "’+ ’ ( )

oM 4 2M
M E&SHH =M E —_— E.&
o(T, , ) 0c +< oE. >0 r T (aE,aé",, )0 16y +

62M. M
+ %< g )0 Erby %<#_"—«> EiyEp+ ..., (2.12)
0

+

[

068,08, OE 0608,
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where U(r, 0) and Mos = M,(t,0) are the potential energy and dipole
moment in the absence of electric fields.
By (2.4), (2.11) and (2.12), the expressions (2.8)—(2.10) may be rewritten

as follows:
47 oM 4 oUu oE,
0 5 N UM — DN —— 2.13
i, — e =0 {< e ot (M aEw>}(m)o, 2.19)
1 27\ =t
| —— — &2 2.14
oT 2V (80'1 61)( agz >0 2 ( )
r__ 275 83M¢; 82Mg aU
T Y |\ GE 06,06, 06,08, O,
33U oM o2U oU 02U
e g e Ve g o)
3E},aé‘}paé(7p an, 3£p3éap aE], 651;866[)
oM 4 02U oE ¢
H — _ | &6 2.15) -
+ < 8E,1><8é"’,,8é”,,>}<3E3 >0 e @19

where the symbol < > denotes statistical averaging at zero electric field
strength.

On averaging (2.13) and (2.15) over all possible directions of the electric
fields, we obtain

4n M oU \ [ oE
0 Sure o (T My —— Y 2.16
Cor 00T B\ OE,, “GEL/\ oE! )y (2.16)
oEs 0E, —t Es; —
P4 % g1 B 2 2.1
o oE ¢ + ( ET bebs — g d > @17)
where
L2 B3M, aMo, K BU
T OV \QE 062 *OEL 06 )
oM, oU \ [ 82U 22U
— —H#M — \ 1
<9Ea aE)(@gz ) e
7 93M, ®2M, oU
PR L a— LR
45V O 4064065 06,065 0Eg

a3U oM, o2U oU 2U
M 2 SR — 2.19
T Ma BE0& 40 & s T 0Eg aéaya(D@o)Jr * 0Eg a(g’ya&> (2.19)
with the notation
Aapys = 360;76136 + Séadéﬁy —_ 2605}367}6. (2.20)

The constant A defines nonlinear changes in electric permittivity tensor
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of an isotropic nature, whereas B describes the anisotropy induced in the
medium by the strong optical field.
Considering in particular the sphere of volume V not as part of the large
sample, but in vacuo, we can write
M U 2.21
YT 8E,’ (221)
Using, moreover, the fact that in case of a weak electric field the isotropic
relation of (2.1) is satisfied (for a dielectric sphere in vacuum we have g, = 1
and ¢ = gp), i.e.

an' &0 + 2
O B2 2.
aE’L 3 [ ) ( 22)

the tensor &2, reduces to the isotropic tensor ggdy; with dielectric constant eg
given with respect to (2.16) and (2.21) by the well-known result5)
&0 — 1 . 47 aM,x
eo+2 9V \GE,

+ HMoM.). (2.23)

In the same case, by (2.6), the tensor of (2.14) may be rewritten as follows:

— 2
0r = (), - e S 28

where # is the refractive index of the medium.
By (2.22), also the tensor of (2.17) can be simplified to the form

g + 2

Q£ = — 6 {Aégtgg —|— B(3£00£01 i 60’1603)} (225)

§ 3. Anisotropy induced in the medium. It is customary to define the
electric anisotropy induced in a medium by a strong optical field as the
difference &,;, — &z, between its electric permittivities measured in the
direction of the z and x axes of the laboratory frame. From the expressions
(2.7), (2.24) and (2.25) we obtain

€2z = Egx = QZ = 916)90 = §(eo + 2)2 B((’)@(Z)z - (g)(zm): 3.1

where by (2.19) and (2.21) the induced anisotropy constant is now of the
form

" 03M 92M g 2M,
45V """”"< B 08,06, < " kel | 08,08, ﬁ) +
oM oiT,
H LM M 3.2
+ (zﬁEﬂjL “”)a@%> (-2



ELECTRICAL ANISOTROPY BY AN INTENSE LIGHT BEAM 371

with
oU
08y

i, = (3.3)
denoting the oscillating dipole moment induced in the sphere of volume V
by the optical field &.

We see from (3.1) that the anisotropy induced in the isotropic medium is
independent of the opticostriction as given by (2.24).

We shall now discuss the anisotropy constant (3.2) quite generally for the
case when the sphere of volume V contains N1, Na, ... Ny, ... molecules of
the first, second, ... and i-th species and its electric dipole moment is given
by

Ny
M =73 3 m, (3.4)
i p=1

where m(@? is the total electric dipole moment of the p-th molecule of species
i immersed in the sphere acted upon by the electric fields E and &.
Analogously, we have for the oscillating electric dipole moment

~ N
=3 X mah, (3.5)

ie=1
On substituting (3.4) and (3.5) in the general eq. (3.2), we have the follow-
ing expression for the anisotropy constant of a multi-component system:

Ni a3m(m) N: Ny 2l
B o toom(E 2 st o+ # B X Z(m;m) o

1 3E53ﬁ73éao Hp=1q=1 06 y06 s
2 @D 8m(m) ol
o (qy)+ 4
3(5’3;3(/% Eﬂ aé&d >
Ne Ny Ne o gp(rk)
+#2T T X S mmd 1N (36)
ik p=1 g=1 r=1 ¢

In general, the p-th molecule immersed in the medium is acted on by the
effective electric fields E + F®% and & 4+ f‘(m'), where F@d and F@ are the
molecular fields existing at the centre of the p-th molecule of species ¢ and
produced by the remaining molecules of the medium in the presence of the fields
E and &. On expanding the moment m @9 in powers of these effective fields, we
obtain for its a-component 7) 8)

mPD = pP 4 3ENEs + FFO)(Ey + FP) + ...
+ {28 + W&y + PP (85 + FP) + . YEs + F{"),  (37)

where u{P? denotes the a-component of the permanent electric dipole moment
of the p-th molecule of species 7 and a%? — the components of its electrical
polarizability tensor. The tensors ﬁ(m) and y& account for the nonlinear
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change in the electric dipole moment and polarizability of the p-th molecule

of species ¢ due to the strong optical field. These tensors can also be referred

to as the second- and third-order polarizability tensors, respectively.
Similarly, we can expand the oscillating dipole moment Mm@ in powers

of the optical effective field & + F@,
ﬁ(qa‘) — a(qi)(gﬁ +F(qy')) + 16("’)(6"5 - F(qi))(g + F(m’)) o (3.8)

afBy

where 4% is the optical polarizability tensor of the g-th molecule of species
7 and 5%) is the tensor of its nonlinear or second-order polarizability due to
the strong optical field.

The molecular fields appearing in the expansions (3.7) and (3.8) are defined

in the dipole approximation as follows:

. Ny )
Fry— _ vy ¥ T;’[;Q)mg”), (3.9)
i g=1
g#p
. N .
FP = — 3 3 Thom, (3.10)
i g=1
a#p
wherein the tensor
. . ,
TP = —7pg" (37 pas?pas — 730ap) (3.11)

accounts for interaction of the dipolar type between molecules 4 and g
separated by a distance 7pq.
From (3.7)-(3.10) we have in linear approximation in E and &

Ny
F(zn) F(m) 2 ZTg%q)a%nEy_l_
g=1
q#p
N; N . ’ "
+ 3 X B TELTUGVE, — ., (3.12)

7k =1 r=1
aFp r#q

. Ny . N; N )
FoO = —% Y TE%66, + 3 3 3 T80T WaiPE, — ..., (3.13)

j q=1 ik q=1 r=1

gD r#q
wherein in (3.12)

. N; Ni
ngz) = -3 Z T(pq) (qy) +y T T(m) (lIJ)T(!I") (rk) (3_14)

i a=1 ik g=1 r=1
q#p q#FP rHEg

is the electric molecular field strength at the centre of the molecule p of
species 7 in the absence of external electric fields.

In the case now under consideration, the configurational variables 7 of
the system form a set of variables V¥ = 7V ¢¥: ¢V .. describing the
configuration of all N = ¥}; N; molecules present therein. For convenience
we introduce the probability P (z%) dz* of finding a selected group of #
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molecules in the elementary configurational volume dr” centered about the
point 77, independently of the configurations of the remaining (N - %)
molecules of the system. Since the probability densities P are of the form

. j" exp{— U (tN)} deN-n

__ (N—m)
P = ... [exp{—o#U N} dr¥ (5.15)
(&)

the statistical average operation denoted by the brackets < > in eq. (3.2)
or (3.6) can now be defined thus:

D> = [ ... [ D@N) Po)(gn) drn. (3.16)
(n)

Since the probabilities of (3.15) are related with the correlation functions
g™ of the #» molecules as follows?):

NI
prg(m (Tn) = ﬁ\f — n)A P (gn), (3.17)

we have in the case of multi-component systems
prigi(tp) = NiP{P(Tp),
P22l (Tp, Tg) = Ni(Ny — dyy) PP(Tp, 7o), (3.18)
PR Rg AT p, Tg, Tr) = No(Nj — 0yg)(Nk — Suk — O18) Pt Tq T1), -,

where p = N[V is the mean number density of molecules of the medium and
= N;/N is the mole fraction of the i-th component of the system. In the
foregomg expression g{"(rp) is the ordinary correlation function for single
molecules p of species 7, ¢§(Tp, T,) is the binary correlation function for
pairs of molecules p and ¢ of species ¢ and 7, and gi3)(t5, T4, 7,) is the ternary
correlation function for triples of molecules $, ¢ and 7 of species 7, § and %,
respectively.
Neglecting in the first step the effect of molecular fields we obtain from
(3.6) by expansions (3.7) and (3.8):

N Ni Ny

7 ,
B = —— YapyrdE X 7&%% +# X % X (/‘(M)ﬁ}(ffo)
45V i p=1 i p=1 qg=1

N: N; Ni . .
+ Igé};v)[ué{l]) (7ﬁb)a(’l7)) + #2 DD ﬂgpl)ugy)a%k)>‘ (319)
ik p=1 q=1 r=1

By (3.16) and (3.18), (3.19) can be expressed formally as follows:

B = Z xiB + ¥ 2B + ¥ wxpBE, + ..., (3.20)

i ik
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wherein

Tp )
B = - 0 o f{yszz;zs o+ H (WO + B +

+ a(m)a(m)) + Ji’zlu(m)[u(m)a(m)} g(l) d’l'p, (3‘21)

7p?
B§~?) — % %thﬁvof f{lumz)ﬂ(q)) + /3 (qa) +
+ am)a(qy) + h’”(,u(m)y(m)a(q’) “|‘M(m) (qz)a(gi) +
+ M(m) (qa)a(qy) }g(z) (Tp, 14) Az, dzy, (3.22)
BE) = - % apys wPuBa e BTy, 14, 7,) ATy drg AT, (3.23)
L45V

In general, the configurational variables 7, comprise the variables r, and
wp determining the position and orientation of the p-th molecule, respective-
ly. Thus, the integral

fdry = [drp [ dw, = VQ
o2

extends over all possible configurations of the p-th molecule.
In particular, if the system presents no interaction between the molecules,
the correlation functions (3.18) reduce to

Qei(rp) = Q%P (1), Tg) = QLN Tp, Tg, 1) = ... = 1. (3.24)

It is readily verified that this condition always implies the vanishing of
the constants Bj’ and B{}) as given by eqs. (3.22) and (3.23), so that (3.20)
reduces to

B=x x%BY, (3.25)

where (3.21) can now be expressed as follows:

an

B = 7 308y — 10y 20 OuOB, — B +

+ :7/(30(“%% (z)am)) + %2(3/1(1) (e)a(z) M<1>M<1>am)} (3.26)

Here we have assumed for simplicity that the tensors ass and a,s are
symmetric in the suffixes « and g, the tensor Bapy is symmetric in the
suffixes § and y and the tensor pg,s — in the separate pairs of «, # and y, 6
(this assumption is satisfied strictly in the case of optically inactive sub-
stances and throughout spectral ranges widely remote from those in which
absorption appears).

Since B! as given by (3.26) does not depend on the concentration of the
system, eq. (3.25) expresses the additivity of B. Hence B is seen to be a
strictly additive quantity only in the case of a mixture of ideal components,
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i.e. only if molecular interaction is absent. On dropping the index ¢, eq.
(3.26) becomes analogous to the one derived previously3) for systems of
molecules of one species.

Dense multi-component systems such as mixtures of real gases, or liquid
mixtures, exhibit a deviation from additivity determined in the expansion
of (3.20) by terms in the second or third power of the molar fractions. The
coefficients B{Y’ and B} of these terms depend respectively on the two-
molecule and three molecule correlation functions and in the absence of
molecular fields in the system are given by the expressions (3.22) and (3.23).

§ 4. Application of the theory to special cases. The expressions (3.19)—(3.26)
hold for systems of molecules of arbitrary symmetry and we shall discuss
them for certain types of molecular symmetry.

Let us begin by considering systems of molecules possessing a centre of
inversion, for which all elements of the tensors py and fagy vanish and the
expressions (3.21)—(3.26) yield:

2mp ’ .
B = = {3yhs — viin + H BJa) — oaf)}, (4.1)
B = 90V ﬁx“ﬁyof ‘[{oc(’”)a(q” + o BaN g1y, 1) dTp dry.  (4.2)

The first term in (4.1), 3y, — y{,, accounts for the temperature-
independent effect of optical nonlinear deformation of the molecules due
to the strong optical field, whereas the second temperature-dependent term
H(3a)al) — aDal)) — for the effect of optical molecular orientation in
substances presenting no molecular interactions. The constant (4.2) de-
termines the influence of molecular correlations on the effect of optical
molecular orientation. ‘

For molecules possessing the symmetry of the point groups Cgyand Dep,
as well as D, the expressions (4.1) and (4.2) yield the result:

an i i
Bt = {77(1'1)11 - 5?’(11f22 - 27?1)33 fi’3)11 + 12y

+ 29§84y + 18 wiknittikai}, (4.3)
2n

2
B = g P (araitpraj + Aicaicyiag) 5 (4.4)
where the quantities
() (£) ’7) i)
P agg — oy r — af) — afy (4.5)
A = T T, j = 4—,. .
o) + 2«07 T af) 4 24§}

determine the anisotropies of the electrical and optical polarizabilities of the
isolated molecule of species <.
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In (4.4), the following integral parameter is introduced:

P
@ = WJ f (3cos2 0pg — 1) gP(1p, 74) d1p dry (4.6)

accounting for the angular correlations between molecules 4 and ¢, whose
axes of symmetry form the angle 6,,.
In the case of spherical symmetry, we have to put x4 = x4 = 0 and

Y1111 = Y3333, 2y1313 = 73333 — Y1133, Y1122 = Y1183 = Y3311 In equations
(4.3) and (4.4), which now reduce to3)

BO = 2L ooy — 9, BP =0 (4.7)

Hence we find that electric anisotropy can also arise in a medium con-
sisting of atoms or spherical molecules as a result of the non-linear anisotropy
induced in them by the square of a strong optical field. Moreover, as it was
to be expected, in substances of isotropically polarizable molecules the effect
of optical molecular orientation does not appear.

In the case of molecules without a centre of inversion, not all elements of
the tensors uy and B, vanish and the full expressions of (3.19)-(3.23) must
be taken into account. For simplicity, we apply these expressions to the
particularly interesting case of axially-symmetric dipolar molecules for
which we obtain

4 ;
B,&l) = —4~5P {Syi —+- 6%//151"(6@'/1@' -+ 3%@1KM(3005KM - J[’,uf)}, (48)

2m,
B = Tsp‘ HL2UBirpips -+ pibicss + A papi(@icar + ajeas)] I +
+ [Baikas + Hul) ajrag + aicaiBograg + Hui)] £5%,  (4.9)
. 47 .
Biji = <o pH piparcar 7 G, (4.10)

where besides the parameter #% given by (4.6) we have the two additional
parameters

p )
= 7J fcos 0pgg (T p, Tg) ATy dry, (4.11)
. p? .
o = —?J J j (3 cos Oy €08 Ogr — €08 Opg) g Ty, Ty, Tr) dTp dTy ATy,
v (4.12)

which describe the angular correlations between axially-symmetric dipolar
molecules.
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Let us now consider the situation when the molecular electric fields
existing in the medium are so strong that the dipole moments of molecules
undergo a change and become dependent on the intermolecular distances. At
tirst we shall restrict the problem to the case of isotropically and linearly
polarizable molecules, for which we have from the general equation (3.6)
with regard to the linear terms of expansion (3.7) and (3.8)

27!% N: N; 3F§Cpi) 3177;417') 3F;”i) oFtan
= < 2 X apiag| 3 o T 4 >
45V kg 065 ok, 085

i p=1g=1

Ny N; k

al'f(rk) 8F(rlc)
2O zamq,m<3ﬁggwﬁgg> LA >>} (4.13)

ik p=1 q=1 r=1 B

where ogp; and ay; are the electric and optical isotropic polarizabilities of
molecule p of species . In this case we have by (3.12) and (3.13)

3}7&2%’) Nj N
= by z wgiTE? + 3 ¥ % agjork TEOTIY — .., (4.14)

B8 i q=1 i g=1lr=1

qa#p q#p r#q

aﬁ;ﬂh) N; Ng
Y Pkt 3 z T+ 3 % % agarkTEOTE — .. (4.15)

B i g=1 i g=1r=1

qQ#*D q#+P r#q

Using the fact that for atoms in the absence of London dispersional forces
F{Y = 0 and (4.13) yields by (4.14) and (4.15) with the accuracy of «2a2:

2 ‘}f Ny N; N N,

B = Y E X Y I apagrrasTEOTE. (4.16)
15V Wkl p=1q9=1r=1s=1
T#D 87F¢

Our subsequent calculations will be restricted to terms which, ultimately,
can be expressed by means of di-molecular correlation functions, and (4.16)
leads to the simple result

B = Z xi%sB), (4.17)
where
@ _ 27 2 RO
Biy' = Tp%(ociaj + aj4) Rﬁ (4.18)

with the integral parameter for n = 6
n P bt (3
R = - f J 7o (ry, 1g) dry dry (4.19)

describing the radial correlations of atoms (or spherical molecules).
The result of eqs. (4.13) or its special case of (4.16) or (4.18) signifies that,
even in fluids consisting of linearly and isotropically polarizable molecules,
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owing to interaction between induced dipolar moments, anisotropy of the
molecular orientational kind can appear in the medium.

We will now discuss the second term in (4.13) depending on #72, which
is nonzero when the system consists of isotropically polarizable molecules
having permanent dipole, quadrupole, octopole, etc. moments. Namely,
by (4.15) we obtain from (4.13) in the approximation of pairwise correlations
again (4.17) with a new contribution to (4.18)

272 N:i N e
wBY = — T (S apagod PR PO ) +
p=1q=1
q#p . ) . )

+ o P (p) PPy T, (4.20)
where F{?(gj) is the electric field at the centre of the p-th molecule of
species 4 due to the permanent electric moments of the ¢g-th molecule of
species 4 and in general is given by 10)

N . ; 1 .
FEgi) = ~T40u® + §TH00 — o THR0W + .. (421)
Here, the tensors of the dipole, quadrupole, octopole etc. moments of a
molecule are defined, respectively, as

/'tlx = Z 61}1’1'061 (4'22)
Oup = % > ev(syvocyvﬂ - 71%“6)» (4'23)
Qugy = 5 X e{Srvatvgtvy — 72(rvadpy + 7960sa + 1m0as)}, (4.24)

where ¢, is the »-th electric charge of a molecule and r, its radius vector. The
tensor of dipole-dipole interaction is given by (3.11), whereas the tensors
of dipole-quadrupole and dipole-octopole interactions as

Té’éﬁ) = 3”£q7{5"pqoc”pqﬂ”pqv - 7’,2,4(qu0¢53;; + 7pgsdya + Tpgrdup)}, (4.25)

Tgfg% = —3”;q9{35”mm7pqﬁ”pqv”pq6 - 5”;q("ﬁqa7’pqﬁ5vo +
+ 7pgs? pavOse + 7 pao? pasdys + ¥ pes¥ pavOas - 7 pas? peoday
+ 7 pav? peodag) + 7;q(60‘5670 + Oaydps + Ouspy)}. (4.26)

Taking the square of the field (4.21) and performing unweighted averaging
over all orientations of the molecules, we obtain

) 2 . .
FBT)F%“ — %ﬂqugq)T;gq) + nggaq)ng)@gga)@g?) +

+ 4_712__T(zoq)]‘(79q)9((17')‘Q(¢17') + ... (4.28)

5 ayde™ Byde = niu < niu

and finally:

DOF@EDTW) — __9,2,~% __ splaD@lad,—11 _ s ola)olad,~15 __
FRPFGTRY = —2u,700 — 30.8°0.07,, S EN .. (4.29)
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By (4.29), we obtain immediately from (4.20)} for dipolar molecules

(/B

4np
uB = 15 HPaay(efpi + piof) R (4.30)
for quadrupolar molecules with axial symmetry
@ _ Bmp 2 22y p(il
oB; = e H2ai0;(0307 + Ofa) RGY, (4.31)
and finally, for octopolar molecules possessing the tetrahedral symmetry

32
oB® = 1”” Ha,0y(o202F + Q%a2) RYD, (4.32)

where the radial correlations parameters R{’, R and R{}* are given by

(4.19) for w = 9, n = 11, and n = 13, respectlvely

§ 5. Correlation parameters for compressed gas mixtures. The pair angular
correlation parameters given by (4.6) and (4.11) will now be applied to not
excessively compressed gas mixtures i.e. to ones admitting of a binary
correlation function g{¥’ in the form9)

Q2%D(x,, 15) = exp{—Huy(ty, 1)}l + O(p)}, (5-1)

where u(Typ, Ty) is the total potential energy of interactions between
molecules p and ¢ of species 7 and 7.

Obviously, in the special case of noninteracting molecules, when (3.24)
holds, all angular correlation parameters vanish,

In many cases it is convenient to resolve the total potential energy
ui5(Tp, Tg), Which in general is a function of the position rp, r, and orien-
tation @y, wq of the molecules, into a term u;;(rpg) due to interaction of the
central type and dependent only on the distance r,4 between two molecules
$ and g, and one vy(ryq, Wy, @) due to interactions of noncentral type and
depending both on r,, and the orientational variables wy and w,. Strictly,
the latter, vy, is the potential energy of interaction between permanent or
induced electric multipoles of molecules that cannot be dealt with as rigid
spheres. Obviously, such interaction will in general be of a tensorial nature,
leading to a mathematically highly involved form of the energy. E.g. the
potential energy due to electrostatic interaction between permanent moments
of two molecules is to within the dipole-octopole interaction9):

'Uij(qu Wy wq)el — ‘u(pi)T(pq) (@) __ _1_( (m’)@(m) @(m)lu(qa)) T(z;q) +
) ) opy
+ 45(3M(pz)g(q7) 5@(701)@((17) + 39(101) (qy)) Téf,?% — . (5'2)

Still more highly complicated expressions result for the case of the
potential energy due to molecular interaction of the inductional type; to
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within the induced dipolar approximation, the latter amounts to
Vij(Tpg, ©p, Og)ma = —Holf'FEOFGY + ol FEPFE, (5:3)

wherein the electric molecular field is given by (4.21).

Naturally, in these circumstances there can be no question of calculating
the parameters (4.6) and (4.11) with (5.1) strictly, and we have to recur to
approximations. Satisfactory success is achieved by treating the noncentral
part of vy as a small perturbation to the central energy u;;(rpg), as this
allows to replace the exact expression (5.1) by the following approximation:
(—)"

%P (19, Tg) = g7 (rp, 1) T T {vis(rpg, @p, 0g)}" (5.4)

n="0

3

a) Anisotropic nonpolar molecules. We shall take into account axially-
symmetric nonpolar molecules interacting with anisotropic-dispersive forces
leading to the potential energy in the form19)

3 ik
V45(f pg» P p, Og) gisp = R L oog{cai + Kaj — Srai(l — Kag) c0s20, —
4 i - by

— Breaj(l — rens) C08%05 — Skaircas(3 Cos Op cos Oy — cos Opg)2} 7,0, (5.5)

where Zwv; and Av; are characteristic energies of two interacting molecules
of species ¢ and j.

In this case, by (5.4) and (5.5) the parameter (4.11) vanishes, whereas
(4.6) is given by .

3:%” hvi}Wj
P = g B -+
3% hvihvj

55 Ty 49 st o eg) + B R } (5.6)

b) Anisotropic dipolar molecules. The noncentral potential energy of
mutual interaction of two dipolar molecules is 10)

0i3(F pg, Wy, Og) = — wips(3 €OS Bp cos O — cos bpg) 7,° —
— Mou(l — was) w2 (3 cos20g + 1) + ay(1 — rag) pi(3 cos?0p + 1) +
+ (oot} + plograg)(3 cos Op cos Oy — cos Opg)% 7,0 — ..., (5.7)

and we obtain from (4.6), (4.11) and (5.4) on integration over all possible
orientations of the molecules

203 82 54
7= e ity { W g Mk RGY + — i piRED + }+
a2 12%
+ mw(ocw,“w?w){ § -+ piuiRGY + .. } (5.8)
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. H? 12542 3%4
f’(:f):_75 1“’7,1”‘7{ gi)+ pIuZRAY 4 = RIS 4 }+

H Y &
s (o] -+ pioarng) R + — o0 i 2uiloa(7 -+ Vlas) i +

+ ulaj(7 + 1lkag)] RGP + } (5.9)

c) Anisotropic quadrupolar molecules. In the case of anisotropic molecules
which, though not dipolar, possess a permanent quadrupole moment, we
have 10)
5P pg> Op, W) = 30:04{1 — 5(cos?0p + 3 coslp cos?ly -+ cos?y) +
-+ 2(5cos 0 cos g — cosOpg)2} 75y — Hou(l—Kai) O} (1—2c0s204 + 5 cost) +
+ a1 — rag) OF(1 — 20820 + 5 c0s20) + xikcai® (5 cos Oy cos?0y —

— 20088 pg c0s0g — €08 0)2 + 3ok agOF (5 cos20 cosfg — 208 bpgCOSOp —

—cos0g) 272 (5.10)

pa T ey

and the parameter (4.11) vanishes, whereas (4.6) can be expressed as

H
7= 3 {3(aikaz~@? + Ofoyeag) R + 4 OLOFRG® —

i

6%

7 4 2un) OF + O%y(7 + 2ca) ] RYP b (5.11)
i( i

In order to be able to test numerically the foregoing expressions for ¢ ¢
and #, we have to know the values of the radial parameters (4.19). To
compute the latter, one has to assume some form of the central force
potential appearing in the Boltzmann factor of the radial correlation

gijz)("p» rg) = exp{—Hui(rpqg)}{1 + O(p)}- (5.12)

* With (5.12) and the Lennard-Jones method, we can express the radial para-
meters (4.19) in terms of the well-known central forces parameters and ap-
propriate functions1l).

§ 6. Conclusions. Aswe have just seen, a theory of the nonlinear variations
in electric permittivity due to a strong optical field can be derived in general
by classical semimacroscopic methods. This nonlinear variation is composed
of two parts, the one characterizing the isotropic properties of the medium,
whereas the second, described by the constant B, accounts for the electrical
anisotropy induced in the medium by the electric field of the intense light
beam. We have derived a general equation for the anisotropy constant
(eq. 3.2) which is discussed for multi-component systems consisting of atoms
and molecules without or with permanent moments. From the statistical-
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molecular discussion of the constant B it is clear that the electrical anisotropy
induced in the isotropic medium can depend quite generally on a consider-
able number of factors of a microscopic nature. The part played by each of
these can be said to be different, and is dependent in principle on the species
and structure of the atoms or molecules and on the interaction between them,

The anisotropy constant B behaves additively in the case of a mixture of
perfect gases only. Thus, investigations of the electro-optical anisotropy in
the gaseous state is a source of valuable information concerning linear and
nonlinear electric and optical properties of the isolated, like or unlike
molecules. In particular, in the case of an atomic gas or of one consisting
of isotropically polarizable molecules, electrical anisotropy is due to the
temperature-independent nonlinear optical effect alone. If the molecules are
anisotropic, besides the nonlinear deformation effect, an optical orientational
effect exists, which depends directly on the temperature.

In dense multi-component systems (e.g. real mixtures or solutions of
liquids) owing to intermolecular correlations, the anisotropy constant B
fails to fulfil the condition of additivity. In the special case of axially
symmetric dipolar molecules, the temperature-dependent terms of the
constant B include the angular correlation parameters (4.6), (4.11) and
(4.12). Identical correlation parameters appear in certain related phenomena,
e.g. the parameter (4.6) in molecular light scattering?) and magnetic
birefringence?), the parameter (4.11) in electric polarization3)8) and the
parameter (4.12) in electric birefringence8). Consequently, investigation
on the deviations of B from additivity can provide direct information on
the nature of the intermolecular forces acting between the molecules of
different components, and on the structure of the multi-component system
considered. Obviously, a theory thus generally formulated is, in its explicite
form, apt to present obstacles of a mathematical nature; this, however, is
compensated by its wide range of applicability to various special cases, of
which only some — and we might well say the simplest — have been discussed
in some detail in this paper.
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