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Abstract. By a semi-macroscopic method the following equation is derived:
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defining the change in optical permittivity tensor 2. due to strong light of inten-
sity . The quantity 4 describes isotropic changes in n,. related with linear and
non-linear polarization and opticostriction, whereas B accounts for the optical
anisotropy induced in the medium by an intense (e.g. laser) beam. The optical
birefringence constant B is discussed in detail statistically for the case of multi-
component systems of interacting molecules; it is evaluated numerically for
several liquids and compared with the experimental data—the third-order polariza-
bilities of their molecules are found to be of the order of 10 3% e.s.u.

1. Introduction

Recently, Maker et al. (1964) and Maker and Terhune (1965) calculated and, using
laser techniques, observed light-intensity-induced rotation in several liquids. Simul-
taneously, Mayer and Gires (1964) and, lately, Paillette (1966) made the first measure-
ment of the optical birefringence induced in various liquids by a strong laser beam. The
effect had been predicted theoretically by Buckingham (1956); it represents an extremal
case (for optical frequencies) of the Kerr effect produced in liquids by a strong alternat-
ing electric field, as considered by Peterlin and Stuart (1943) and Langevin (1910).

These first successful studies provide the basis for the further, systematic investiga-
tion not only of optical birefringence but also of various non-linear changes in the light
refractive index due to intense optical fields (see e.g. Kielich and Piekara 1959). Itis our
aim here to propose a general, semi-macroscopic theory of these non-linear effects, with
applications to multi-component systems of molecules of arbitrary symmetry interacting
with forces of the radial and angular types.

2. General fundamentals of the theory
From electrodynamics and statistical mechanics the general equation
(e—U).EM = 47P 1)

is derived, relating the electric permittivity tensor € and the vector of electric polarization
P induced in a medium by the electric field of strength EM existing therein. U is the
unit tensor of rank 2.
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In the general case, when the active electric field E is not homogeneous, the electric
polarization induced in the medium is not only of the dipolar but, moreover, of the
quadrupolar, octopolar and still higher types; the polarization vector can be written in
the form of the expansion (Kielich 1966 a)

PoS (c1pt 2 i 1B, o) @)
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in a series of tensors of 2"-pole electric moment densities at position r and time #:

poe, ) = 3 mgpse,—n) ». ®

Here, the symbol < ) stands for appropriately performed statistical averaging, [#] for
n-fold contraction of tensors of rank 7, whereas V¥ is the derivation operator and
8(r,—r) the Dirac & function.

In (3), the 2"-pole electric moment of a microsystem (atom, molecule or ion) at
position r,, is given as follows (Kielich 1965):

m;n) = z epvr"z’;ngJ? (4)
v

ey, denoting the vth electric charge of the pth microsystem with radius vector r,,
whereas Y™ is an nth-order operator having the properties of spherical harmonics.

For a further discussion of equations (1) and (2), one has to establish the explicit
relationship between the electric polarization P and the external electric or magnetic
fields inducing it in the medium. For the case of media acted on by strong, time and
spatially variable electromagnetic fields, the problem has been discussed quantum-
mechanically (Bloembergen 1965, Butcher 1965, Kielich 1965) and phenomenologically
(Pershan 1963, Kielich 1966 a). Here, we consider only a non-dissipative isotropic
medium under the effect of intense light. However, since it is our aim to derive a
theory adapted to dense media, in order to ensure high generality of the results we shall
resort to non-linear theory in a semi-macroscopic classical approach (Kielich 1958).
This will enable us to avoid specifying a microscopic model at the start, as such a model
can present specific features from one case to another.

Thus, we deal with a dense medium (isotropic in the absence of external fields)
wherein we consider a macroscopic sphere of volume V. We assume a light wave to be
incident on the medium with electric field E of oscillation frequency lying beyond the
absorption bands. The field E induces polarization P in V" and, if E is sufficiently large,
the medium becomes anisotropic and non-linear with optical permittivity tensor (elec-
trical permittivity at optical frequencies) given as

oP,
niz_so“z = 4n @EI;

)

where the indices ¢ and 7 mark the axes X, Y, Z of the laboratory reference system with
origin rigidly set at the centre of the sphere.

On restricting further considerations to polarization of the dipolar kind, one can
rewrite equation (5) with regard to (2) and (3) as follows:

1 oM,
ne—8,, = 40l — > ) (6)
Vg 0EM / 4
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Here, M denotes the dipole moment induced in the sphere by the electric field, the

brackets with index ( )y standing for classical statistical averaging in the presence of
the field E

(@) = [ O(x,E)f(x,E) dv )

with the distribution function f(r, E) for microsystems at configuration T at applied
field E.

In our case, M(r, E) is a non-linear function of E and can be written as the expansion
oM 1/ 82M, 1/ &M
M(x,E) = ( ) E,+—(—") E.E, +—(—-———"—) E.EE,+.. (8
oE,/, 2\0E,0F,/ 6\0E ,0E,0E,/
which, when introduced into (6), yields
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It should be kept in mind that, in general, the volume V7 of the sphere is a function of
the field strength E. If for simplicity one assumes the volume of the medium to change
isotropically (without change in shape) and quadratically in E, the following expansion

can be written: - - )
0 on
Ve—V ==|—) E2 = — —{{—]) —(#n2-1)B,}E2. 10

E 2(6E2)o 877{(31))1- (n )’QT: (1)

Equation (10) defines the effect of electrostriction (8; = (—1/V)(8V]ép)r denoting the
coefficient of isothermal compressibility, and p the pressure).

In the case when the system is in thermal equilibrium at the temperature 7 and
field E, according to classical statistical mechanics the distribution function in (7) can
be expressed as followst:

exp{— U(v,E)/kT}

fv,E) = :
fexp{— U(~,E)/kT} dv

(11)

In the general case the total potential energy of the system in a quadratic approxima-
tion can be written as the expansion

oU 1/ U
Ulx,E) = Ulx, 0 Bt (—2 ) EE+ .. 12
(= E) = Ur 0)+ (aEa)o +2(8E06E,)0 * (12

in which U(x, 0) is the potential energy of the non-perturbed system (at E = 0).

T Clearly, the system subjected to the effect of the oscillating field E(f) is not at thermal
equilibrium, and the distribution function should be determined (e.g. from the appropriate
kinetic equation). The solution of a problem of this kind for the general case is beset with con-
siderable difficulties and can be obtained for special cases (see e.g. Debye 1929, Peterlin and
Stuart 1943, Lebowitz and Résibois 1965, Kielich 1966 b). These kinetic solutions, in the
extremal case w = 0 and w — , allow us to conclude that, in the case of a non-dissipative
medium, a state of thermal quasi-equilibrium can be assumed to set in some time after switching
on the perturbation, thus justifying the use (with sufficient accuracy) of the distribution function
in the form of (11) with a time-independent part of the potential energy, or with a time-averaged
potential energy (see Pershan 1963).
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However, in the optical case when the electric field is of the form
E(t) = H(Eoe'®' +Efe™'") (13)

in order to satisfy the conditions of applicability of the distribution function (11) to
systems at thermal equilibrium we have to take into consideration to the right of (12)
only the time-independent partf

1, U
Ur, I) = Ulx, 0) + = (6E 3E) I, (14)

Here, we have introduced the intensity tensor of incident light

I, = %EGE;I‘ (15)
By (10) and (11) with (14), equation (9) can be brought to the form]
2 2 oF oE, 6Ea) }
- =4 I+B{3 I,— |—) 1 16
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where

01~ Box < (aEM) (17)

is the refractive index independent of the light intensity I, the symbol { ) standing
for statistical averaging with the non-perturbed distribution function

exp{— U(x, 0)/kT} .
[ exp{— U(x, 0)/kT} dv

f(=,0) = (18)

The constant A in equation (16) accounts for isotropic changes in refractive index due
to intense light of intensity /:

oM a> (82 V)

o, / \oE?/,

27 { < M, >
V\ \0E,0E?
1 oM, 2U *2U
R CRORCYICY) I
kT oF, OE? oE?
which, as we see, is related with opticostriction (electrostriction at optical frequencies,

as defined by (10)).

+ Obviously, the result of equation (14) can be derived by taking the time average of (12)
over an oscillation period such that the polarizability ellipsoids of microsystems shall be
able to follow the field. The time-averaging procedure makes the terms with periodic factors
exp( +iwt), exp( £i2wf),... vanish. Such statistical averaging with time-averaged potential energy
has been applied by Buckingham (1956) in his theory of optical birefringence (see also Kielich
and Piekara 1959, Pershan 1963).

1 Since, as already stated, we are interested in the variations of the refractive index for a loss-
free medium, using (13) we can separate the time-independent (relevant here) part in the right-
hand term of the expansions (9) and (10) and reject the remaining part dependent on the time
by way of the periodic factors exp( +iwt), exp( +i2wf), etc. We then carry out statistical averaging
with the distribution function (11) with time-averaged potential energy (14); in the case of an
isotropic medium it is convenient first to perform averaging over all possible directions of the
electric field with regard to the axes of the laboratory reference system.
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The second constant B in equation (16) accounts for anisotropic changes in the
tensor nZ, and is given as follows:
B = (38,855 438 4505y — 28 450 )< FM. 1 M, &°U > (20)
Togsy Y erEo T TRadthy SReBTOIN OF,0E ,6E, kT 0E, 8E,0E,/

With sufficient accuracy, the relationship between the field EM and E can be assumed
to be linear and vectorial; for a sphere in vacuum, it is of the form

3

EM = E 21

n?+2 @)
so that equations (16) and (17) can be written in the simpler form
g+2
"3, —n38,, = (”°+ ){A18”+B(3I”—18”)} 22)
-1
(o @)
na+ 2- oE,

The generalized Lorentz-Lorenz equation (23) has been discussed in an earlier
paper (Kielich 1962 a) for multi-component systems, and will not be given further
consideration here. But we shall discuss equation (22), and particularly the birefringence
constant (20) appearing therein, in more detail. This constant can now be expressed
in the form

B = —— (35,555 + 384585y — 28055 )< oM. | 1M, aM’> 24
45y Ao T ety TRl 0E,0E,0E, ' kT 0E, OE, @)

since the dipole moment induced in a sphere in vacuum is defined as
ouU
*  eE,

In the case when the incident light beam propagates along the Y axis, equation (22)
yields for the optical permittivity tensor components

(25)

2) {(A—B)I+3BI,)

)(A—B)I (26)

+
2
2
n, = 3(n0+ )BIM )
3
2
2 (27
nl, = 3(”°;r )Blm @7)

By the diagonal components (26), the optical birefringence induced in the medium
by the intense beam of intensity I = I,,+ 1, is

2
1y + 2\ 2
na,—na, =3 ( °3 ) B(I,,—1,,). (28)
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In particular from equation (28) a non-polarized light beam propagating along the

Y axis is seen to induce no birefringence, since I, = I,, = }I and thus n2,—n2, = 0.

For the case of incident elliptically polarized light, the non-diagonal components
(27) yield

2

2 2 . {Po
np— Ny, = 31

) Bt -1) (29)

for the difference in refractive indices between the circularly polarized light waves of
opposite rotation, of intensities Iy and Iy, respectively. Equation (29) defines in general
form the rotation of the plane of polarization as induced by intense light, as first studied
theoretically and experimentally by Maker and Terhune (1965) and Maker ez al. (1964).

It is thus seen from equation (26) that the absolute changes in refractive index
measured in the X, Y or Z direction are related not only with the induced optical
anisotropy B but moreover, in general, with the changes in volume of the medium due
to the effect of the strong optical field, i.e. with the opticostriction implicit in the con-
stant 4. On the other hand, from equations (28) and (29) we see that the differential
changes in refractive index are related only with the anisotropy induced in the medium,
as defined by the constant B. Hence, measuring the absolute non-linear changes in
refractive index in a given substance and, independently, its optical anisotropy, we
can use equations (26)-(29) to determine numerically the constant 4, thus determining
its opticostriction.

3. Optical birefringence in multi-component systems

We shall now discuss the semi-macroscopic theory proposed in the preceding section
with relation to the microscopic structure of the medium involving molecular interactions
of the radial and angular kinds.

In the microscopic picture, the dipole moment M of the volume ¥ containing
N = Z,N, microsystems of various species is

N!
=5 > mo (30)
i p=1

where m®? is the dipole moment of the pth microsystem of species i.
On substituting (30) into equation (24), we get the optical birefringence constant of
the multi-component systems in molecular form

(171)
B- (33,,,,5,35+33a63,sy—23aﬂ5w){ 2 < \ 9E,0F,,0F >
B [4

NN om@ om
. 31
Z > 3% 3E>} (31)

p=1 g=1

In a condensed medium, the polarizability of a microsystem is generally modified by
the molecular field F of its neighbours, and the dipole moment m®? induced in the
pth microsystem by the total field E+F®? is given by the expansion (Kielich 1960,
1963)

mPY = {a&) +1bEYE, + FPY)

GC&%;‘;(E +F(pi))(E +F(pl))+ }(Eﬂ_*_ngi)) (32)
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wherein the tensor a®? defines the linear, i.e. first-order, electric polarizability of the
pth microsystem of species 7, whereas the tensors %) and ¢{5); define its non-linear
polarizabilities of the second and third order, respectively, as being due to the strong

optical field E.
In certain cases, in a first approximation, we can neglect the molecular fields in the

expansion (32) and the birefringence constant (31) becomes
45,,{ s{ 3 z’;zﬁ+3c;zzz-zc;v;;ﬂ>>
2 z Z (3agh ,%f)+Sa“")agm—2a<1’i>a<‘U>)>} (33)

p=1 g=1

By methods of classical mechanics, the birefringence constant (33) can be written
formally as the following expansion in a power series in the molar fractions x; = N,/N:

B = z x‘Bi"" Z xiij”'{' ese (34)
where we have ! Y
) 1

B, = 5 {301(:13)% + 30;13)/30: - 202:3:[1/3 + =5 BT (3431)3 fxiz; +3 g;“g; - Zag‘,),a;g } (35)

wp?
By = 22 [[ [sagpaty + 3apagp - 2a0aspletp(ey ) deyde, (30

p = N[V being the number density, and g{?(v,,T,) a binary correlation function for
pairs of microsystems p and ¢ of species 7 and j having the configurations 7, and =,.

The first term in (35) accounts for the temperature-independent effect of optical
non-linear deformation of the microsystems due to the strong optical field, whereas the
second, temperature-dependent term accounts for the effect of optical molecular orienta-
tion in substances presenting no molecular interaction. The constant (36) determines
the influence of molecular correlations on the effect of optical molecular orientation.

In the case of multi-component systems consisting of non-interacting microsystems

B,; = 0 and (34) becomes
B= > xB, (37)
i

expressing additivity of the optical birefringence constant.

The second and higher terms of (34) responsible for the deviations from additivity
of B result from interaction between unlike molecules in a dense medium.

For microsystems possessing the symmetry of the point group D, expressions (35)
and (36) yield

4mp 1
B, = {Cgrgsa +261011 —¢11aa— 1183 — 3311+ 361212+ 6C151a + —= (a3 — “))2] (38)
45 RT
47rp
v = e a®— (@ — aP)IA (39)
where (Kielich 1963)
T = = [ [ (3 cos? 00— gl o) v, e (40)

is an integral parameter determining pairwise molecular correlations of the angular
kind.
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On putting in (38) 2¢{}};, = ¢{8,, — ), We have an expression that holds for micro-
systems of the point groups Cgy, and Dy, as well as Dy,
Inlparticular, in the case of the point groups Ty, and Oy, we have af}) = a{) = g,
— i i —_ -
and ¢f;; = c§dga, €00 = {35 = {811, €315 = ¢{315, Whence equations (38) and (39)
reduce to

47 i
B, = EP(301(:?13+C§39?33 0(111)33 ) B;;=0 (41)

which for the special case of spherical symmetry becomes simply
2m 47
B, = 3 P(‘g:;aa - 0(111)33) Pcigls (42)

since in this case 2¢{);, = c{y5—c${as- Hence, as was expected, in a medium of
microsystems with high symmetry the effect of optical molecular orientation does not
appear, but only non-linear optical deformation.

We shall now take into account the effect of the molecular field on the orientational
part of the birefringence constant given in a general form in (31). The field in the
expansion (32) can be expressed as follows, with interactions of the dipole type:

F(pi) - — z Z T(M)(M(w)_'_m(qj) (43)
j 1
e

p§ denoting the B component of the permanent electric dipole moment of the gth
microsystem of species j;

Té’g‘” = - 752(3 Ypqalpes = rg qaaﬂ) (44)

is the tensor characterizing dipole-dipole interaction between microsystems p and ¢
distant by 7.

For simplicity, we restrict further calculations to linearly and isotropically polarizable
microsystems for which we obtain from (31) and (32)

N, oFPh GFSD  QF@H JF@H
45VkTZ 2 Z ””‘“‘”( 9E, 0E, _ 9E. OE )> (*#3)
p=1 g=1 B B « B

which by (43) can be expressed as
B = > xxBi;+ > %2, B+ ... (46)
i ijk
with the pairwise correlation constant

47TP
v =T aia}Ji. (47)

Here, we have introduced the integral parameter (Kielich 1960, 1962 b)

ij =2— v ff ;qg(z)(rp’ rq) drp drq (48)

defining radial correlations of isotropically polarizable microsystems of linear mean
polarizability a;.

The result of equation (45) or its special case (47) signifies that, even in fluids con-
sisting of linearly and isotropically polarizable microsystems, owing to interaction
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between induced dipolar moments, birefringence of the orientational kind can appear
in the medium. Clearly, we have in mind an effect of orientation of assemblages con-
sisting of atoms or spherical molecules coupled by way of radial forces. We have seen
(equations (41) and (42)) that in a medium of non-interacting atoms or spherical mole-
cules only birefringence due to non-linear deformation can arise, since the isolated atoms
and spherical molecules do not undergo orientation in an electric field. However, as
seen from equations (47) and (48), it suffices that the medium be sufficiently dense to
give rise to pairwise radially coupled assemblages, and the latter will behave at a given
instant like anisotropic elements which become oriented by the electric field. This leads
to weak birefringence of the medium dependent rather strongly on the temperature.

Similarly, equation (31) can be used for calculating the effect of molecular fields on
the birefringence of liquids consisting of molecules that are dipolar, quadrupolar, and
so forth.

4. Comparison of the theory and experimental data

We shall now attempt a numerical confrontation of the theory with the experimental
results of Paillette (1966). To this aim, we resort to the definition of the experimental
optical birefringence

Moz Mgy = ABy(Ins—I3y) (49)

where A is the light wavelength and I™ = {3/(n2+ 2)}2—the light intensity within the
medium.
Considering that #,, and #n,, differ only slightly from 74, we can write

niz - niz = 2”0(”zz - nz:c)
and a comparison of equations (28) and (49) yields the relation
3 (mo+2\*
Bﬂ = (no ) B
2nA\ 3

Let us first consider liquids of isotropically polarizable molecules for which, by
(42) and (47), the part describing the effect of non-linear deformation is

(50)

2m
Bt = *3“ p(€33ss — €1133) (51)
and that of the effect of radial molecular orientation
Bor — — 447, 52
SRT T (52)

wherein the radial correlation parameter Jp given by (48) without indices 7 and j can
be determined experimentally from the following formula for the degree of depolariza-
tion of scattered light (Kielich 1962 b):

6a2Jy
" SpkTBr+7a%y
For liquid CCl, we have the following data at ¢ = 20 °c (Kielich 1962 b):
a = 10-5x10"2%cm?3, p=623x1022cm-3
r = 90-5x10"2c.g.s., D = 0-056.

(53)
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Consequently, expressions (52) and (53) yield B = 49x 1071% e.s.u. With A = 4880 4,
we obtain 7 = 1-457 and equation (50) yields BS* = 3-7x10-?e.s.u. so that the
conclusion is that the contribution from non-linear deformation not taken into account
in our calculations amounts to B = 1-4x10~°e.s.u., i.e. approximately 28% of
the experimental value 5-1x 10~° e.s.u. Thus by applying expressions (50) and (51) we
obtain for the optical anisotropy induced in the CCl, molecule by intense light a value
of C3a53—C1133 = 143 x 1073 e.s.u., whose order of magnitude is in accordance with
the anisotropy determined from Kerr’s effect amounting to (Kielich 1962 b)

4-34x 1073 e.s.u.
For one-component systems consisting of axially symmetric molecules, one has by
(38) and (39)

47p
Baet — 5 (Cssas + 261111 — C1122 — €1133 — €311+ 3C1212 +6C1313) (54)

or 47TP
Bor = éﬁ‘—azk2(1+]‘°‘) (55)

where « = (@g3—ay1)/3a is the optical anisotropy parameter of the molecule. The
unknown parameter of angular correlations Jy, given by equation (40) without indices
i and j, can be eliminated from (55) by resorting to the formula for the depolarization
ratio (Kielich 1960):

6:2(1+J,)

= SokTBot TRA(1+ Ja) (36)

and one obtains the relation
Ber = 47p2a? B:D 57
6—7D" (57)

This relation is readily shown to hold for linearly polarizable molecules of arbitrary
symmetry.

Since the values of @, Br and D are known for quite a number of substances (cf. the
Landolt-Bornstein tables) we can easily compare the values of B calculated from
expressions (50) and (57) with the experimental values of Paillette (1966). The results
are assembled in the table. It is seen that, save for acetone and benzene where the
values of BYF, calculated on the assumption of a molecular orientational effect only, are
in excess of the experimental data, the theoretical values are smaller by 209, on the
average. This difference ought probably to be ascribed to the contributions from the

effect of non-linear deformation, which can be calculated from equation (54) or a
formula simplified as follows:

4o
Biet = —pe (58)

which holds on the assumption that the tensor Cuge is entirely symmetric, when
¢ = (3Capus—Caans)10 = Caoppl5 denotes the mean third-order polarizability.

In the case of CSg, if one considers that the difference between the experimental
value of 418 x10~°e.s.u. and the theoretical value 344 x10~%e.s.u., calculated on
taking into account only the effect of molecular orientation, is due to the effect of
non-linear deformation, i.e. B = 74x107° e.s.u., expressions (50) and (48) yield
¢ = 50-1x10-% e.su. This latter value is in good agreement with that of
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54-4 x 10~3¢ e.s.u., determined by Buckingham and Raab (1957) from Kerr’s effect and
56-5 x 10738 e.s.u. determined from molecular light scattering (Kielich 1960).

Similarly, one can calculate the mean third-order non-linear polarizabilities for the
other molecules, obtaining ¢ = 4:8x 10~ 3% es;u. for CHCl;, ¢ = 1-2x 10" % e.s.u.
for CgHi,, ¢ =272x10"%esu. for CgHsCH; and ¢ = 85:0x 1076 e.s.u. for
CeHs;NO,. These would seem to be quite reasonable values.

From this comparison of the theoretically assessed values of B and the experimental
data it can be concluded that, although the essential role in the effect of optical bire-
fringence belongs to molecular orientation, the contributions related with the effect of
non-linear deformation are not to be neglected, as they amount on average to about
209, of the experimental value. It would be of great interest to carry out measurements
of the dependence of optical birefringence on temperature, as this would permit us to
resolve the two effects with more precision.

Along similar lines, one can make a comparison of equation (29) and the experi-
mental results of Maker et al. (1964). It would seem useful to continue experimental
work on the effects considered above, particularly on their dispersion and absorptiont
—processes not considered theoretically in this paper—and to link them with self-trapping
of optical beams due to non-linear increases in refractive index as well as with the
stimulated Raman effect in liquids (see Chiao et al. 1964, Garmire et al. 1966, Lallemand
and Bloembergen 1965, Bloembergen and Lallemand 1966, Kelley 1965, Shen 1966 and
the papers cited therein).
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