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OPTICALLY INDUCED BIREFRINGENCE
By S. Kierice*
Department of Molecular Physics, A. Mickiewicz University, Poznaii
(Received April 30, 1966)

From considerations of classical electrodynamics and statistical mechanics, a general theory
of birefringence induced in nondispersive isotropic dense media by a light beam of very high
intensity is developed. By a semi-macroscopic method a general equation for the light intensity-
dependent refractive index is derived, and the optical birefringence constant B is obtained there-
from. This constant B is proved to consist of two terms, one of which results from the third-
order optical polarization due to the strong oscillating electric field, whereas the second term arises
from the optical molecular orientation effect which depends directly on the temperature. The
birefringence constant B is then discussed in detail for the case of systems consisting of mutually
interacting molecules, the latter being isotropically polarizable, or optically anisotropic with
a centre of symmetry, or possessing no centre of inversion. Both the radial and angular inter-
actions of the molecules are accounted for by means of binary and ternary correlation functions.
The immediate effect on B of the electric fields of the induced and permanent molecular dipoles
is also taken into account. Finally, the fundamentals of a statistical theory of the optical biref-

ringence of multi-component systems, with applications to compressed gas mixtures, are pro-
posed.

1. Introduction

The well-known theory of dielectric polarization in a time-dependent electric field
F = F,¢™" (L))

is due to Debye [1], who found that the average moment of a dipole molecule with permanent
electric moment g is

o MzFO eiwt
M =557 Thiam,” (12)
where
4m 3
T = _%T’? (L.3)
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is the Debye microscopic relaxation time for a molecular sphere of radius r rotating in a liquid
of inner friction constant 7. Obviously, for @ = 0 we have the orientational polarization
in a static electric field, whereas for very large values of w7, by (1.2), the dipole polarization
vanishes.

Peterlin and Stuart [2] extended Debye’s relaxation theory to the case of the optical
birefringence induced in a substance by a strong oscillating electric field (1.1). In this case
we have the following formula:

wo(n?+2)2 cos (2wt — dy) :I

= = T Wy 22 e e
L= TSk T “”ﬂ{*”’“"“[ T Vivdom
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2 1 cos (20t — d5)
LI, 4 F2
kT [l-l—wzrf V1+w?e? Y1 +4wE 0 (1.4)

for the difference between the refractive indices in the directions parallel and perpendicular
to F. In Eq. (1.4), ¢ is the number density of the substance and the quantities %, and %y
determine the anisotropies of optical and electric polarizabilities of the axially-symmetric

molecules.
In the case when w = 0, Eq. (1.4) reduces to the well-known formula

2mp(n?+-2)2 2
ny—nj = _%(S_nk—T)— ax, {305%,, + l%;}Fz (1.5)

derived previously by Langevin and Born with a view to explain theoretically the temperature-

dependence of the Kerr effect.
If wry— 00 and w7y— oo, formula (1.4) becomes simply

mo(n®+2)*

TR = e G Uik Fg, (1.6}

which is a formula analogous to the one derived by Buckingham [3] for the optical birefrin-
gence induced in isotropic media by a light beam of very high intensity (see also Refs [4—6]).

In general, the optical molecular orientational effect of (1.6) is always accompanied by
an optical nonlinear deformational effect, which does not depend directly on the temperature.
The latter effect consists in the induction of optical anisotropy within the molecule itself
and is the counterpart of the nonlinear deformation effect discussed by Voigt and Born in
the theory of the Kerr effect. The birefringence due to the effect of nonlinear optical
deformation can appear even in inert gases and substances consisting of molecules with
spherical symmetry, and is given by the following formula [3,5]:

wo(n?4-2)2
n—nrng = __9_(18,1_) (c1:11—C1uz0) 5 (1.7)

where ¢13,47 and ¢y, are the respective components of the third-order polarizability
tensor accounting for the nonlinear change in optical polarizability produced in the molecule
by the square of the strong optical field. Clearly, the experimental detection of the optically
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induced anisotropy in an isotropic medium would require the use of the oscillating electric
field associated with a very intense light beam, e.g. from lasers. Recently, optical birefringence
has been observed by Gires and Mayer [7] and by Paillette [8] in a number of liquids.

Maker and Terhune [6] calculated the intensity-dependent refractive index variations
for the two senses of circular polarization of elliptically polarized incident light and observed
this effect in several liquids [9].

In the present paper, we shall first discuss the molecular relaxation theory of optical
birefringence in liquids and subsequently derive a semi-macroscopic equation for the refrac-
tive index of light in the presence of another light wave of intensity sufficiently great for the
dense isotropic medium to undergo nonlinear polarization in its electric field. The general
equation is discussed for several special cases of systems of non-interacting or interacting
molecules that are spherically symmetrical, or tetrahedrally symmetrical, or axially symme-
trical with or without a centre of inverson.

2. Relaxation theory

We shall consider a medium of volume V, macroscopically isotropic in the absence
of external forces. Let the medium consisting of N identical molecules be acted on by a local
electrical field F. The potential energy possessed by a molecule of the medium in the electric
field is, to within the second power of F,

1
Y “uﬁFaFﬂa (21)

w(Q, F) = poFo— 5

where u,, is the a-component of the electric dipole moment of the molecule and «,; — the af
component of its electric polarizability tensor; the set of variables £ describes the orientation
of the molecule with respect to the direction of the applied electric field.

The Maxwell-Boltzman distribution function of the molecule with orientation £ in the
presence of the external electric field at thermodynamlcal equilibrium of the system and at

temperature 7" is given by
u(Q, F
exp {—— ( T ) }

p=Ln

where the integrations are over all molecular directions in a solid angle df2.
On expanding the right hand side of (2.2) in a power series in u, we obtain up to the
second-order approximation

F@,F) = AQ,0)+fD+f® 4., (2.3)

2, F) = 2.2)

where f(©,0) = £-1 is the distribution function in the absence of the external field,
whereas /@ and f® are the first- and second-order distribution functions in the presence
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of the field F,

ro@n =206 0 2.4
FO(0,F) J;f;:i;’zu b2 42— ). @5)

Here,
w= [ W@ B} fQ,0d02 (2.6)

is the unweighted average evaluated with the zero-order distribution function over all
molecular orientations 0.

With respect to the expressions (2.1) and (2.6) we have
_ 1
U= — E“aaﬂFuFﬁ,

1
P u? = g ‘Ltz(szﬂF¢Fﬁ, (27)

and the distribution functions (2.4) and (2.5} can be rewritten as follows:

10@.0) =GO F L ate) P, ©8)
02,0
FORE) =T sy 200g) ol 29)

where & = &,,/3 is the mean electric polarizability of the molecule and 6,; — the unit tensor.
If the molecules possess the axial symmetry (the axis of symmetry being the 3-axis) we
have

Mg == lukaz’ Xep = aéwﬂ_’_“}‘a(gkwkﬂ_' 60;/3)’ (2]‘0)

where £, is the ¢-component of a unit vector along the axis of symmetry of the molecule
and the quantities

P33 —%11
3a

Hg —

@.11)

define the anisotropy of electric polarizability of the molecule.
By (2.10), the distribution functions (2.8) and (2.9) assume the following simple form

fOQ, F) :f(f}o) {[uF cos O+ = ! oma(?) cos? 9—1) Fz} 2.12)
FORF) = 2, 0) (uF)3(3 cos? 9—1), (2.13)

6k2T?
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where @ is the angle between the symmetry axis of the molecule and the direction of the
electric field F.
An entirely different picture results if an oscillating, with frequency o, electrical field
is applied to the medium. In this case
F(t) = F cos wt, (2.14)

and the distribution function becomes variable with the time ¢; namely, we have now instead

of (2.12) and (2.13)

JOQ, Fy,t)= S12,0) {AyFo cos & cos (wt—0,) +

kT
1
+7 axnaF3(3 cos? 9—1) [B, +B, cos (Zwt—éz)]}, (2.15)
f0, Fy, b :jli(Z%Tg)z (uFy)? (3 cos? 3—1) [C,+ Cy cos (2wt — dy)]. (2.16)

On substitution of the above distribution functions in the following differential equa-
tion [1,2]:

L 9 (sin 199—f) + : {Q_qu_‘_ L %(Sin 09—u)f}— v o 2.17)

sin 999 89 " kT 9999 " sin 9 99/’ | kTor’
we obtain
A = _——:!-_—'_ T4 — LV_
V1 -I-(x)zrf7 Y
1 W
B = ]., B =——— y Ty —
! 2 1+de®d’ 7 GRI”
1 1

C, = (2.18)

(=
(1 4+ ? Y1+ )1 +4wel’

where 7; and 7, are relaxation times and W is a constant measuring the inner friction in
a liquid.

We now consider the case when the molecules of the medium are subjected to two
electric fields F and F. We assume the electric field strength F' = Fg cos @'t conveyed by
the incident light wave of frequency o’ to be small and assignt o it the role of a measuring
field, whereas that of the other field F = F, cos wt is of very high intensity, sufficient for
producing nonlinear polarization of the medium. The dipole moment induced in the molecule

by the field F’ is given by
My = @gFp (2.19)
and its component in the direction of the field F’ is

mp. = {a+ax,(3 cos® ¢ —1)}F” (2.20)
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if the molecule has the axial symmetry and forms the angle & with F'. Here, a4 s the optical
polarizability tensor of the molecule and

— %3370
Ha=—"g (2.21)

its optical anisotropy.
The statistical average of (2.20) at time ¢ in the presence of F is defined as

mpyp= [ mp f(Q, Fy, 1)d2, (2.22)

and using the time-dependent distribution functions (2.15) and (2.16) we obtain

, (2wt —d,)
{mpdp= aF' + _% (3 cos? ¢ —1) /3ax [1+COS:-—~ +
i ) A ks VT +do®s

2 1 cos (2wt— dg)
+ A + F'F2, 2.23)
kT [1—1'602‘5% V1+w?e? l/1+4w2‘r§:| } 0 (

where @ is the angle between the directions of the fields F’ and F.
Using the fact that the refractive index of a medium with number density ¢ = N/V*
is given as
n?—1 4
L = . 2.24
n2+2 F 3 Q<mF>F9 ( )

we obtain by (2.23)

n?—1  ni—1  2mpax, N cos (2wt— 8y)
- = —-1 o 1 DR —
n?42  n242 ASkT (3 cos® p—1) 13ax [ + Y1 +40?e2

12 1 cos (2wt— dg) 0
= F2, 2.25)
Tk [IJVQ’ZT% - V1+w2? V1+4o?d 0 {

where

2
o=l _ Az 2.26
n2+2 3 ed (2.26)

is the well-known Lorentz-Lorenz equation defining the refractive index of the medium.

Eq. (2.25) determines the effect of a strong oscillating electric field on the refractive
index of the medium. The fact that n depends on the angle ¢ means that the isotropic medium
has become optically anisotropic under the influence of a strong oscillating electric field and
is now characterized by different values of its refractive index for different directions of
the wave vector F’ with respect to F.

It is customary to define the optical anisotropy induced in a medium as the difference
n)—n; between its refractive indices for incident light with oscillations parallel and per-
pendicular to the direction of the applied electric field F. The values ) and | can be com-
puted directly from Eq. (2.25) by substituting ¢ = 0° and ¢ = 90°, respectively. This
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yields for the optical birefringence
ao(ns+2)2 I cos (2wt —d,)
e Q¥, 3“% 1 -
45 kTn, | * i /1 A2
2 1 cos (2wt —d5)
4 # + F2 2.27
kT [1 +oht | Y1t )1 +4w21§]} 0 @27)

since m and n 1 differ but little from n,.
For w = 0 we have from (2.27) the Langevin-Born formula for the usual Kerr effect

R =

_ 279 (ng+2)* 1\ pe
ny—nj = —m{)"“ 122 3“%z+ ﬁ F s (228)

while for very large values of w7, and wt, Eq. (2.27) reduces to the result derived by Bucking-
ham [3]

7o(ng+2)*
15kTn,

(axg)® F2. (2.29)

nj—nL=

3. Semi-macroscopic theory

Consider an isotropic medium as represented by a macroscopic spherical specimen of
volume V. Let two electromagnetic waves be incident on the volume ¥, the first with electric
vector E; = EY cos ;¢ of low intensity and the second with electric vector E, = E3 cos w,t
of very great intensity. At not too great intensities of the incident light, the dipole
moment M, induced within the volume ¥ can be assumed to be a linear function of the
electric field E;, namely its ¢ component can then be written as follows:

O M
My, = <:9E—N)0E1,. (3.1)

In the case considered here we have the following fundamental equation for the refractive
index in the presence of a strong electric field E,:

t

n2—1 da [ 1 d M,
nt+2 3 <7 9E,, o >Ez’ (32

in which e, is a unit vector in the direction of E; and [3,5]

—t

! Uz, E,)
_— f@(t, E,) exp {—— }dr
@y, = o

(3.3)

t

, B
fexp {—— %} dv

is the statistical average in the presence of the electric field E,, whereas the symbol —¢
denotes the time-average over an oscillation period of E,.
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The total potential energy of the system at configuration 7 in the electric field E, is
given by the expansion
1 (Q_Mza

Uz, By) = Ult, 00—M3, Ey— 5 | 53
27

) Eyy By, (3.4)
2 0

where U(z, 0) and Mj are the potential energy and electric dipole moment of the system
at zero electric field.

Similarly we have the following expansion for the differential polarizability tensor of
the medium:

oM\ (oM, 92M,, 1 ( 93M,,
(aEl,)Eﬂ_ (aEl,)o + (aEl,é)Ez,, L+ 3 \55, 58, 05, ) v Put e B9

Performing the time-averaging procedure of Eqgs (3.4) and (3.5) we obtain (€, is a unit
vector in the direction of Ey)

: 1 (9M,,
U(r, Ey) = Ul(r, 0)— %4 (?Ei)o €90 €1 E%Z, (3.6)
1
M.\ (oM, 1 93M,, i
(aEh)E, - (QEl,)o+ 4 (8E1,<9E2,, DE,) % o Ef, 3.7)

since
—

—t 1
E,—0 and E= 5 Eo = light intensity,

On substitution of (3.6) and (3.7) in Eq. (3.2) with (3.3), we obtain by expanding in
powers of Egy,

n?~1  dx [[OM, 1 (o2 1 [oM,, .
ez 5 (G e ) - () s (5 o o) 8]+

1 93M,, 1 9M,, oM, ,
T ((aEl,aEzu 9, T iT 0F,, 9B, ) O o o ou ) Loy (3.8)

where

U(z.0)
f¢('£, 0) exp {~ } dr
(@ = kT (3.9)

fexp {- US}O)} dr

is the statistical mean value of @ at zero external fields.

The quantity in (3.8)

1 (o2 L, 7 [{om) ., =
1 ()=~ () e e 10
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determines the change in volume of the isotropic sample due to the strong optical electric
field E, (this is an effect analogous to the electrostriction due to a strong DC electric field);
p is the pressure and By — the isothermal compressibility of the medium.

At zer> electric fields, all directions of the unit vectors e, and e, with respect to the
laboratory reference system (X;) = (X;, X,, X;) have the same probability, so that the
products of the components ey, and e,, appearing in expansion (3.8) can be averaged over all
possible directions of €; and e, with equal probability, and we obtain finally

n2—1 _ -1 =
212 n2is 1357

{10657 5,;9 -+ [3(91 * 62)2— 1]%0‘1:11@} X

><< I3M,, N 1 OMy, My 15
OE;,9E, dF, ' kT 9E,, 9E,y, B

2n aM]_O aMzT 3kT an% 2 —zt
— STV <<9Elg> {<9E2,> T i [(5 o (ng—1)pr |1 Ef , (3.11)

where
2
n1“1 _ % aMla
s R Y4 <9Elg> (3.12)
is the refractive index of the medium at zero external electric field E,, and
XUr:vg = 3601,6.,9—}"36096”—260,6,,9 . (313)

Let us assume the incident measuring electromagnetic wave to propagate in the direc-
tion of the Y-axis (&, ¥ and 2 are unit vectors in the directions of the axes X, Y and Z of
the laboratory reference system); computation from (3.11) of the refractive index in the
direction of the axes X and Z now leads to the expression

—t

n,—n,=n, B{(#.e)2—(x-e)?} E (3.14)

determining the optical birefringence produced in the medium by the applied strong oscill-
ating electric field E, related to the mean macroscopic field E, existing within the sphere
by the formula

3

Es2 = mEz.

(3.15)

In Eq. (3.14) we have introduced the optico-optical birefringence constant B given as

follows:
B T n2+2 2 na+2 2 «
30\ 3n, 3

93M,, 1 OM,, dM,,
o <9E1,9E2VQE29 VAT 9Ey, 0B,/ (3-16)




692

The above equation represents the general form of the optico-optical birefringence
constant for an arbitrary isotropic medium.

Eq. (3.14) shows that the value and sign of the optical birefringence depends on the
" direction of oscillations of the electric vector E,. In particular, the optical birefringence is
positive or negative according to whether the vector E;, of a plane polarized electromagnetic
wave oscillates in the direction of Z or X. In the case of E, oscillating parallel to Y, we have
n,—n, = 0 meaning that the refractive index undergoes no nonlinear variation. Also, Eq.
(3.14) can be applied in the case when E, is conveyed by a non-polarized wave; now, how-
ever, the factor g = (2 + €,)2— (@ * €,)2 has to be averaged over all possible directions of the
vector €, in the plane perpendicular to the direction of propagation of the wave. It should
be noted that, if the wave with E, is nonpolarized and propagates in the direction of Y (E, os-
cillating in the XZ-plane at an angle v to the plane Y Z), birefringence vanishes since g

= cos? p—sin? p = 0. The factor g is equal to +% according to whether the natural wave
E, propagates in the direction of Z or X.

4. Statistical-molecular theory

The mechanism of optical birefringence can be explained within the framework of the
atomic-molecular theory of the structure of the medium. To this effect, the moments M,
and M, of the macroscopic sphere, as appearing in the general equation (3.16), have to be
expressed by means of moments relaling to the microscopic properties of the individual
atoms or molecules. Thus, let the macroscopic sphere of volume ¥ contain N molecules of

one species; we have
N N
M, = 3 m{, M,= 3, m{, (4.1)
p=1 g=1
where m{’ and m{? are the electric dipole moments of the p-th and ¢-th molecule immersed
in the medium subjected to the external electric fields E,; and E,.
By (4.1), Eq. (3.16) yields B as expressed by means of molecular parameters, in the

form
2 2 N (»)
B kA <nf+ 2) (n§+ 2) %omg( &3mid N
»

307 \ 3, 3 £ Dy O Eyy 9 By
N N ® 4. (@
L Z dmiq _9m2”>. (4.2)
KT o &y OBy, Oy,
g s

Neglecting in a first approximation the effect of molecular fields on the optical pro-
perties of the molecules, we can express the dipole moment components m$ and mg as

follows [10]:

orw oTive

1
m{p) = {a,fj;)er‘P) Byt < 8,0 Eo,Egy+ } Ei., (4.3)

1
m$) = pP+ P Ey,+ 5 BOEs Egt s (4-4)
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where the tensors %), and ¢}, account for the nonlinear change in the optical polariz-
ability of the p-th molecule due to the strong oscillating electric field E,.
On substituting (4.3) and (4.4) in Eq. (4.2) we have

2 2 N N

T ni+2\? [ ny +2)2 < ed) (2) ()
= ; E E . 4.5
30 V ( 3 L ) ( 3 Zar.vg o't vg = Ay “vg ( )

b=

For further discussion it is convenient to refer the tensors a,g’,) and ¢, (and, similarly,
a'?) to the molecular system (X®),_1, 2,5 attached to the centre of the p-th (or, respect-
ively, g-th) molecule of the medium. We shall now carry out the transformation of the
tensors o), cff?w and oz(‘l) from the laboratory coordinate system (X,) to the meolecular

systems (X®) and (X(‘I)) by way of the relations

W = 0@ 0B a®), 1@ = oD Pa®, B, = BoBDP B D), (46)
where, in the case when the coordinate systems are Cartesian, the transformation coefficients
o®, ..., w(” have the meaning of the cosines of the angles subtended by the axes X, ... X,

of the laboratory systemn. and the axes X(P) ... and X(q) ... of the respective molecular
systems. The directional cosines fulfil the orthonormahty conditions

o, for p=g
) ’
0@ 0@ = { a&»;q) for pot q. 4.7)
wherein wfx’;f) is the cosine of the angle between the axes X and X of the molecular

systems attached to the p-th and ¢-th molecules, respectively.
By Eqs (4.6) and (4.7), the following equation is obtained from (4.5) for the constant

of optical birefringence:

‘g 2 N
w (ni+2\2 [ng+2\? .
B = —— ( L ) ( 23 ) < E (36553)“/3 +3C;%)ﬁa~20$)55)+
p=1

307\ 3n,

1 N N
72 Z (p)a(q)(3w(pq)w(pq)_|_3w(ﬁq)w(?q) 25 (5y6)> (4_8)

"By classical statistical mechanics methods, Eq. (4.8) can be put in the following form

of an expansion in powers of the number density:

B= BY4oB® .., (4.9)

wherein we have for optically inactive substances

mo  [n2+2\? [ng+2)\?
BY = 35y ( ™ ) B 3ehiarCxam +
1

(3a<1’)oc(f’) <1;>“%))} g(l)('rp) d,, (4.10)
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mo  [n?+2\? (nZ4+2\2
B® — ( 1 ) ( (p)oc(q)(gw(pq)w(Pq)+
30VET\ 3n,

+3w§l%‘1)w§£,q)——26aﬂéw) g 2)(1’}’ Tq) dtpdrq' (4.11)

In the preceding expressions gt (7,) is the correlation function for a single molecule with
configuration 7, and g® (7,5 7,) — that for pairs of molecules having the configuration 7,
and 7. _

If all the molecules present within the volume ¥ are of one kind, ai’l’g) = a(‘f,) = @4,
etc. and if the tensors a4, a,zand ¢ 4, sare independent of the configurational variables and
describe only the properties of isolated molecules, Eqs (4.10) and (4.11) may be rewritten as
follows:

mo (n2+2 n2+ 2\2 1
BN = ( :13”1 ) ( 23 ) {3cdl3=aﬁ_‘ca¢:ﬁﬁ+ T (3a’aﬂ“aﬁ_am“ﬂﬁ)}a (4.12)

24 2\? 2
B® = 307;/&; - <n§: ) (nz; ) gy f (BolP0E +
1

+ 30500 EP —26,50,5)8® (Tp:7g) 7, dy. (4-13)

The expressions (4.12) and (4.13) hold for molecules of arbitrary symmetry; we
shall now discuss them for certain types of symmetry of the molecules.

Let us begin by considering molecules possessing the symmetry of the point group
Dyfe.g. Cy Hy), for which the nonvanishing elements of the tensors Xypr Gpp @nd cpp 5 are
given as follows [11]:

Xog = 11 Opp+ (g3 —0ny) kohips @5 = a1 0,5+(a33—ayy) b Ky,
Copiys — (011:11_011:22“’2012:12) (iziﬁiyiﬁ +ja;jﬁjyj6) +
+(€11:22— C11:85— Ca3:11 T 210,19 —4C13.13 + C35:55) ko kogk, ks +
+Cir0 (050,56 5k, s —F,Fip0,6) +
+ €19:12(05, 055 + 006 05,) +C11.350 5k, s + C33.11k,F50,6 +

+ (613:13 - C12:12) (6aykﬂk6 + 6act5kﬂky + k:zky 6[?6 + kaké 5/1‘;;)’ (4' 14)

where &, j, ke are unit vectors along the axes X,, X,, X, of the molecular reference
system.

With respect to (4.14), Eqs (4.12) and (4.13) now assume the form

2 2/ 9 2
B — 2_7“) ny+ 2 nyt 2 2¢11:11 —C11:33 —C33:12 — C11:22 +
15 \ 3n, 3

1
+ 31912 + 6013113+ Cagigg + T (ags—ayy) (0‘33-“11)}= (4.15)
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2 2/ 2 2
270] ny+2 ny+ 2
2) — — —
B 15VET ( 3n1 ) ( 3 (a'33 a’ll) (“33 “11) X

X [ [(3cos? O,,—1) 89 (1, T)dTpd7,, (4.16)

where 0,, denotes the angle between the axis of symmetry of molecule p and that of moleculeq.
For molecules of the point groups Cg, (e.g. C4Clg) and Dy, (e.g. Cglly), one has to put
in (4.15) 219,10 = C13:1C11:00, Whence

2,9 2/ 2 9 2
B<1):7{§9<n§: ) (nzg— ) {7011:11—5611:22~2011:33—2033:11+
1

"2
+12¢13.13+2¢33:33 + ﬁ (a.33-an) (0633——“11)}. (417)

This expression is moreover applicable to a great variety of linear molecules belonging
to the point group D, (e.g. H,, COy, Cy Hy, and so forth).

In particular, in the case of the point groups T, and O, (e.g. for SFg), we have to put
Qyy = Qgy, Oty = Ogg and cyy.31 = C33.93 Cr122 = C11:33 = Caganrs Cizae = Cagars 0 Eq. (4.15),
which reduces to

2mg (n2+2\* (n2+2\"
B® = —«?Q (__n;):— ) (nzgj— ) (ci:ni—c1n22+3c12:12). (4.18)
1

In the case of spherical symmetry 2c;9,13 = €17.11— €11.20 @and the above formula becomes
simply (for comparison see Refs [3] and [5])

2 2 2 2
B — 7o (nlo—-{—z) <n2+2) ((:11:11—011;22). (4«19)

3n, 3

Eq. (4.19) is the optical counterpart of Voigt’s deformational theory of the Kerr effect;
namely, a medium consisting of spherical molecules becomes optically birefringent owing
to the anisotropy induced in its molecules by the deformational effect of the strong optical
field. In gases consisting of atoms or of isotropically polarizable molecules, the optical non-
linear deformational effect is the only factor producing optical birefringence. Thus, Eq. (4.19)
provides direct information on the nonlinear changes undergone by an atom or spherical
molecule under the influence of an intense light beam.

In the general case the first term in Eq. (4.12), 3¢,p.,5—Cpq:p6» accounts for the temper-
ature-independent effect of optical nonlinear molecular deformation, whereas the second
temperature-dependent term, (3,50,5—a,,%z5) (7)1, for the effect of optical molecular
orientation analogous to that discussed by Langevin for explaining the temperature-depend-
ence for the Kerr effect. The birefringence constant (4.12) contains the respective molecular
parameters determining the linear and nonlinear optical properties of the isolated molecules
of an ideal medium presenting no molecular interactions. The constant (4.13) determines
the influence of the angular intermolecular correlations on the effect of optical molecular
orientation. In the case of strongly anisotropic molecules the effect of nonlinear deforma-
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tion can be neglected with respect to that of molecular orientation. If moreover the axes
of the molecular reference systems coincide with the principal axes of the respective molec-
ules, Eqs (4.12) and (4.13) may be rewritten in the form

7 n2+2\* (n212\2
B(l): ].SIST ( x ) ( 23 (a1_a2) (“1‘“2)_{_

3n,
+(as—ag) (a—a3) +(a3—ay) (“3“0‘1)}7 (4.20)
3 2 9 5 3 .
(2) o n1+2 n2+2 2 0D @
B 15VkT< o . Zlasoc, (3 cos? 099 —1)g®(x,,7,) dupdr, (4.21)
St= :

wherein 69 is the angle between the principal axes s and ¢ of molecules p and ¢ with polariz-
abilities ¢ and e, along these axes.

For molecules presenting the axial symmetry, Eqs (4.20) and (4.21) reduce to (see also
Refs [3, 4, 5])

2 2
B — g;:_% (”3:12) (”’5; 2) o (4.22)
5= o7 Ba’f f 3 cost Upg— 1) g®(ry, 7ty — g3 B, (a23)
where [10]
P = ;’—V f f (3 cos? 0,,— 1) g1y, T)dT,d7, (4.24)

is an integral parameter accounting for the angular correlations of the axially symmetric
molecules.

5. The effect of the molecular electric fields on B

We shall now compute the additional contributions to the optical birefringence constant
resulting from the existence of molecular electric fields in a dense medium.

In general, a molecule immersed in the dense medium is acted on by the local electric
fields I, +F, and E,+F,, in which F; and F, are the additional molecular fields due to all
other N-1 molecules in the presence of applied fields E; andE,. For simplicity we assume the
incident light wavelength to be considerably larger than the linear dimensions of the molecules
and intermolecular distances. In this case the Eqs (4.3) and (4.4) should be replaced by the
following ones [12]:

1
m(lo'p) = {ag€)+bg€%v(E27 +Fé€ ) + E Cffl"rgvg(Eb ‘I‘ng)) (E2Q +F2(Ig>)) +. } (El‘r +F{€))7 (5']‘)

1
mil = i+ DBy +Fo0) + 3 B Loy +FED) (Eay +FP) + .., (5:2)
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where the molecular electric fields are defined to within dipole interaction as follows:

N
(p) _— Z T(Pq)mlqr), F(P)__ Z Ttgi:q)mgqr), (5.3)
=1
qq&p q9FD
where the tensor
T(M) = —r, (SrMG g Pqéa,) (5.4)

accounts for the interactions of the dipolar type between molecules p and g separated by

a distance r,,.

From Egs (5.1)—(5.3), we have approximately

F#® = Z T@NGEDE, + Z 2 TEPaOT PP Ey, + .. (5.5)
g=1lr=1
qaép 9Fp r#q
N N )
P = R~ 3, T40eT, 3 2 10T e by .. (5.6)
g=1 g=1lr=
aFp aFp g
wherein
N
F(p)_ _ Z T(pq) Iu(q) 4 Z Z T(pq) a(']) T(qr) (r) . (5-7)
g=1r=1
q#? qF#p r#4q

is the molecular electric field strength at the centre of the p-th molecule in the absence of
external electric fields.

In a first step we shall restrict the problem to the case of isotropically polarizable molec-
ules. On substituting the expansions (5.1) and (5.2) in the general Equation (4.2), and
using the fact that by (4.14)

Uup = X0y G = @0,

Capiys = Cr1.22 Ogp0y0 % (Cri1i—Cr1:0) (05058 + 0,505,) (5.8)
we have
2 2 2 (P) aF(ﬁ) .
— 157'5V (n;:- ) (n ) { <Z (Cn 11—-(31122) ( QEl 2@2— + ... -+
1 ] a
N N F® op® (0 ()
oFsY . OF{ dFl
P (9)
TR <1,Z Z e ( E. 75~ 9h. D ))} (59)
q=

In the case of isotropically polarizable molecules, Eqs (5.5) and (5.6) yield

IFy ) om)
r 7 ) (s) Oy p(rs)
<9E1x E T2 + E E a®a® Tor ' Try (5.10)

r=1 r=1 s=1
rED r#Ep sFET
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N

N N

QF((I) —
TR Z a® T3+ Z L A TETEI ., (5.11)

2x r=1 r=1 s=1

r#q rebg sFEr

whence Eq. (5.9) goes over into

N
Z a® g(@ ) gl TED Té‘f>+...>}. (5.12)

By statistical methods Eq. (5.12) is rewritten as follows:

B=BY4pB® o2 B®y ., (5.13)
wherein BY is again given by (4.19), whereas
n2+2\? [n2+ 2\? 6a2a?
B® = 7'5( 515”1 ) ( 23 (cr1:11—C11:22) O(@®) + SET (l)} (5.14)
ni+2\% [n242\® 12 a®a?
B® = 7'5( ;,)nl ) 23 (cr1:1—Cr1:22) O(@®) + 5ET 1(22) . (5.15)

In the foregoing expressions we have introduced the following radial correlations integral
parameters:

JH = 2-f[ g? (z,, 7)) dr,dr, = 20 [r;Q 8(rpg) d¥pq (5.16)
Jjo=2 Ve f f f T®) TW ¢® (v 7., 7,) dr, dv, dr, (5.17)

describing the pairs and triples molecular correlations, respectively.
For linearly polarized molecules, ¢jy.q;—¢y3.00 = 0, and Egs. (5.14) and (5.15) reduce to

6rnalal [n? 2 [/ 2 2
o S () () 6
1
J(2)
B® = 2B® " ](1) (5.19)

The foregoing result is equivalent to the statement that, in a dense medium of atoms or
spherical molecules, radial correlations of the molecules can lead to optical birefringence
even in the absence of a nonlinear molecular deformation effect.

Since the optical birefringence does not involve direct orientation of the permanent
electric dipoles in the high frequency oscillating field as in the case of a DC electric field
(Kerr effect), Eq. (4.12) extends to dipolar gases also. In certain cases Eq. (4.13) also can be
applied to dipolar liquids. However, in dipolar fluids whose molecules possess large dipolar
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moments, a strong molecular electric field (5.7) generally exists, which caa affect the shape
of the optical birefringence noticeably. In this case by (4.2) (5.1) and (5.2) the following

2 2 2 2 N
w [ni+2 (n2—|— 2) <
_ — E (¢2)]
B 30V < 3n1 ) 3 XO'r:ug = (CGIZVQ+"') +

N N
1
F NS o B+ KD FD ). 5.20)

equation holds:

We shall now proceed to a discussion of the foregoing for the case of dipolar molecules
having the axial symmetry and for which we have by the transformational formulas (4.6):

Ay = aéor_a‘%a(gkakt_aar)’
by = b0k, + b, (3k,k,—0,,) k,, ect., (5.21)
wherein the quantities
bag:g — by 1
Hp — ——3'333—1)11—3 N b= ? (b33;3 +2b11;3) (5-22)
provide a measure of the anisotropy of first-order nonlinear polarizability and its mean
polarizability.
By (5.7) and (5.21) we obtain from (5.20) for B®, instead of (4.23),
B® = g-1 B® {L(;l) +u (% + éﬁé) Jf)}, (5.23)
g @

wherein B is given by (4.22), JP by (4.24) and J$ by the following formula:

JP = 2% f[(?) cos? O, +1) (3 cos B, cos O,— cos Opy) Ty &2 (1pyTy) dTp drs  (5.24)

Eq. (5.23) as given above is not adapted to numerical evaluations, as not all molecular
and correlation parameters appearing therein are known. This obstacle is circumvented by
means e.g. of the Onsager model replacing the molecular eleciric fields (5.5) and (5.6) by
a mean local field [12].

On neglecting short range angular correlations we obtain from Eq. (4.2) (the temper-
ature-independent term is now omitted)

2 2 — —
_ mp (n}+2 (n2—|—2 Omye\ [Imy,
B=s51r ( 3n, 37 ) X \9EL )0 \OEy /o’ (5.25)
where by the expressions (5.1) and (5.2) we have
dms) = dF,,
(aElx)O == {aor+baz:v F()v'l‘- } {61x+ aElx}Oj (526)

dmy) = 9Fy
(&sz)o = { o+ Pron Fo,wr...}»{ég,C +5f-‘§ ) | (5.27)
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Here, with respect to the Onsager-Scholte model [13], the anisotropies of the molecular elec-
tric fields are given by

OF
- 601 (1,011 )9 aEz = 601 ('/f'zr_]-), (528)

with (h = 1,2)

( 3n} )
B nf+ 2
Yhe — {n}21+(1_ni) A,} (1—fhr ahr) .

The reaction field parameter f},, for an ellipsoidal cavity of semi-axes r, o Ty oo sltuated in

a medium of refractive index n, is given by

(5.29)

= TxTyTs {n% +(1 —n?,)A,} ’ (5.30)

where the structural factors are (t = x,y, 2)

ds

rxryrz ( 213) {(rx+5) 255 (rz—f—S)} (5.31)

Analogously the mean molecular electric field in the absence of external fields (reaction
field) is
I3 Joo o
F, o— T T, s .

0 1‘“foc %y (5 32)
with

fpe 34; (1—A4.) (e—1)
0 reryre {e+(1—e) Ao}’

(5.33)

where ¢ is the electric permittivity of the medium.
On substituting in Eq. (5.25) the expansions (5.26) and (5.27) we obtain

_ome (mdE2\E[mEa2\ o,
—15kT( 3n1) 5 ) ((e1—as) (di—ag) +

+(a3—ag) (ag—ag) +(az—ay) (az—ai)}, (5.34)

where we have denoted

* bd:'r T T
a; = wlu{au+ % +} (5.35)

* Iga Tf()‘[ Ur }
Ug = Yoo | Ao +.g. 5.36
Ve { —’for“r ( )
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6. Optical birefringence of multi-component systems

Since the general Eq. (3.16) is valid for an arbitrary isotropic medium, it can also be

applied to a multi-component system. Assuming N = DN; molecules of different species
H

(NV; is the number of molecules of species i) to be present within the sphere of volume 7,

Eq. (4.1) has to be replaced by

N, .
M,=3Y>m¢, M,=73 Z mg, (6.1)
T =1 7 q=1
where m{? and m{® are the dipole moments, respectively, of the p-th molecule belonging
to species i and of the g-th molecule of species j.
On substituting (6.1) in the general Eq. (3.16), we have the following expression for the
optical birefringence constant of a multi-component system:

3 (nt+2\? (n2+2)°
p= o (422) (52) 5. 62)

where for further convenience we have introduced the molecular constant of optical bire-

o3my)
B,, = SXU‘ZVQ(Z ZQEI,QEguaEze *

J (pt) in(w) >
Ey: 9Ey

fringence [12]

2
4

(6.3)

p=1 q=
In the present case, the expressions (4.3) and (4.4) remain valid provided the index i
or j is added everywhere beside p or g, so that we now obtain from (6.3)

11

N;
By =22 oo <Z Y e+ 7z Z Y Z af,”aig’)>. (6.4)
T el

p=1 gq=

By analogy to the expansion (4.9), we now have

B, = 2 %, BV 40 Z 62 BD s (6.5)
wherein [12]
2nN . 1 o
= Bl 30 —a2a) ©9

w = gopr e T
—20,50,5} 8P (x,, T,) dr,dT,, 6.7)

B® = e ( (¥) (1) (/)“(l)) ff{gw(pq,u)w(pq,1;)_|_3w(pq,u)w<pq,u)

with x; denoting the molar fraction of the i-th component of the system; obviously, > %=1
i
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In particular, if the system presents no interaction between the molecules, the latter
assume all possible configurations in volume J” with equal probability, i. e. the pairs correla-
tion gl] ( » T,) = 1 and the expansion (6.5) reduces to

B = Z x, B,

m 5 wnTl
since in this case ,, flz) = 0.

Hence B, is seen to be a strictly additive quantity only for the case of a mixture of per-
fect gases. In dense multi-component systems, as a result of correlations between the molec-
ules of a given component or between those of different components of the system, the cons-
tant me]) is non-zero, and B,, does not fulfil the additivity rule.

The expression (6.7) will now be applied to not excessively condensed gaseous systems

i.e. to ones admitting of the binary correlation function g<2) in the form

(2 - Uij(Tpg> (p) Wg)

&ij (Tp, Tg) = 2% exp {— T , (6.8)
in accordance with classical statistical mechanics, with u, (r, o @ps ©g) denoting the total poten-
tial energy of interactions between molecules p and g of spe01es i and j, distant from one
another by r,, and having the orientations w, and o,, respectively.

)
With regard to (6.8), the molecular constant (6.7) can be expressed as

mBl(.jz)z 90kT.Q? fffx“ﬁ » (ﬁt)“(w)_,_a(qj)a(m))x

Uij(Tpgs ©py Wg)

T }drpq dw, do, . 6.9

X exp {—
Anisotropic molecules. The expression (6.9) will be discussed first for the case of

non-polar molecules for which the total potential interaction energy has the following

form [14, 15]:
1 hyi hy:
Uij{Tpgs ©pr ) = Uy (rpg)— 4 ( J

hvi+hy; ) {08 o —0,0; 8,5 6,5} TSOTHD,  (6.10)
i i

where u;(r,,) is the potential energy of central interaction of two molecules and the second
term determines the potential energy resulting from London’s anisotropic dispersion forces
with characteristic energies hy; and hy; of the two interacting molecules of species i and j.

If we consider the anisotropic dispersive energy in Eq. (6.10) as a perturbation to
u;i(r,g), we obtain from (6.9) on integration over all possible orientations of the axially-
symmetric molecules

3aN ( hv,‘h’le

B(2)
v 125k272 hy; +- }L'Vj

6
) (@i%0i 0 X+ i K O 2gf) i % K %aj{<fij >R+

306,‘06,' ( hvi hvj

—12
08 kT m) [49—-14'(’%;1"' qu) =+ 38 /vai%“j] (r,~,- >R+ }, (6] 1)



where we have introduced the radial mean values

—n —n ui(r,
rij DR= [ Tpg €XP {— %‘1)} dry,. (6.12)

Dipole molecules. The total potential energy of mutual interaction between two dipolar
molecules is given by [14]
1
Uy = uij( )+M(pt)T(pq) (ﬁtu) (oc(P’)/,L(q“M(q’)—}—a(q])u(P’)M(pl)) T(pq)T(pq) .. (6.13)

Besides u;; (r,,), herein are included terms representing dipole-dipole and dipole-induced
dipole interactions. Thus we obtain by inserting (6.13) into (6.9)

2} iy N

375 k3T3 (ai Hai %f Hgj + 0t Mg a; %aj) {(ri;S)R +

2
mB5 =

-

12#?#, _12 13ui 4 , —18
oy i R gy G0 ORT [ F

2aN _
19512 T% (@3 #ai 0 % + O i O Haj) {(“i %ai,u;? + ,u? o; 2a) rif YR+

dui s )
+ Jopas T+ W)y + (T4 1)) g e+ } (6.14)

melz\ for the case of an imperfect gas

mixture with molecules having a permanent quadrupole moment defined by the tensor

Quadrupole molecules. Let us now calculate

1
@(Pt) = e} Z ei(";)(?)rpm rpnﬁ_"fnaaﬁ)’ (6.15)

n

where ¢{® denotes the n-th electric charge of the p-th molecule of species 7 and 7,, — its
radius vector.

The potential energy of mutual interaction of two anisotropically polarizable quadrupole
molecules is given by [14]

= Uy (rpg) — @@;) T3 08— 1; (a2DODOD + PO TEOTED,  (6.16)
where the tensors
To(c/g;) = 315, 7{5r paa rpqﬁrpqv“rgqquaéﬂv+rpqﬁava+rpqv6aﬁ)}’
ro(z%% = —37;‘19 {35rpqarpqﬁ Toqy Tpgo ™ ( paa"pgp 00+
+rpqz Tpay 6ﬁd+ paapas 6ﬂv+rpqﬁ pav 6056 Tpap 00 aow_l"
pay Tpas Oap) T7pq (9 Oys + O, Ops + 0us O} (6.17)

describe the dipole-quadrupole and quadrupole-quadrupole interactions, respectively.
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By inserting (6.16) into (6.9) and assuming that the quadrupole molecules are axially-
‘symmetric, we have

6aN
Bz(,z) Ve (@i %ai® 2af -+ 0 Hai G #45) {(cx, Hai 9 + @ aai) {rij >R+

4«@ @J —10 -13
t =T {ri Dr— 7kT I (a7 +2%47) OF + 6O 0T+ 2%a)1ri DR+ (> (6.18)
where 0, = 0 = —2 0§} = —26§] is the quadrupole moment of the axially symmetric

molecule of species i.

In order to be able to test numerically the foregoing expression for B( ), we have to
know the values of the radial averages (6.12). To compute the latter, one has to assume the
following form of the ceritral energy:

sz (2]

and we obtain from (6.12) by the Lennard-Jones method [15]

—n Ao ™
$rif > = sy; " (y4)s (6.20)

Y

wherein g; and g;; are the central force parameters having the dimensions of an energy and
length, and

o

Hrf—t(}’ij) . yl?j(2s+3—n)/s Z iyyim(s ‘)/‘F(@) , (6.21)
m=0 , . ‘

with y; = 2 (¢;,/kT)". For s = 12 and ¢ = 6 the functions (6.21) reduce to those introduced

by Pople [16].

In cases when the values of the molecular parameters ¢; and o;; are known, we can
use Eq. (6.20) for evaluating mej) numerically; obviously, according to the system dealt
with, one will have to assume such values of the molecular dipole or quadrupole moment
as to achieve satisfactory agreement with the experimental values available for the second
optical birefringence constant virial coefficient. In this way we can obtain information con-

cerning the values of the multipole electric moments of molecules.

7. Discussion and conclusions

In the case of an atomic gas or of one consisting of isotropically polarizable non-inter-
acting molecules, optical birefringence is due only to the third-order polarization and is
determined by Eqs (3.14) and (4.19). In the condensed state, however, this effect appears
" with a temperature-dependent effect resulting from interaction between induced dipoles
of atoms or spherical molecules. This latter effect is determined in a first approximation by
the parameter of pairwise radial correlations J$ given by Eq. (5.16). The constant of optical
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birefringence, by Eqs (4.9), (4. 19) and (5.14), has-the form (on neglecting three-fold and

higher correlations)

2.9 2/ 2 2 2 6a2q2
b= (M ) <n2+ ) {(cn=11—611:22> [1+0(a®)] + 5 '(?1)}' (7.1)

3n 3 SET

An identical parameter J{” appears in the molecular theory of light scattering (see e.g.
Ref. [12]), namely, in the formulas for the degree of depolarization of scattered light

9 7(1)
_ 6a2/g o (7.2)
SQkTﬂT(l +) +7CL2JR
and the Rayleigh ratio
O Gl (50kTBr(1+...) +13a2JS). (7.3)

104%

The optical birefringence of a substance whose molecules are optically anisotropic
depends almost entirely on the effect of optical molecular orientation intimately related with
angular correlations of the molecules. In the special case of axially symmetric molecules
and in the first approximation of the theory, the angular correlations are described by the
single integral parameter J{ given by Eq. (4.24). For liquids whose molecules are strongly
anisotropic and linearly polarizing, the effect with third-order polarizability can be neglected
and we have by Eqs (4.9), (4.22) and (4.23)

6 2. 9\% [p212\®
) (A

The angular parameter J$ appears also e.g. in the following formulas for the depolariza-
tion and Rayleigh ratios [12]:

e +I)
50k TAr+T:2(L+J5")

(1.5)

b? (50kTBr+13x2(1+J5")}. (7.6)

From Eqs (7.4) and (7.5) we have the relation (assuming ax, = @x,, n; = ny, = n)

n2—1\? (n24+2\®6aprD
B = 7.7
(4n)(3n)’6—7D (7.7
permitting to compute the optical birefringence constant B of a liquid if the \depolarization
ratio D for it is known experimentally.

In very condensed media, the optical birefringence constant B depends not only on the
optical properties of the isolated molecules but is moreover dependent on their electric proper-

ties, e.g. on their permanent electric dipole or quadrupole moments. The electric properties
of the molecules affect the optical birefringence of the liquid indirectly, both through the
correlation functions involving the potential energy of molecular interaction, and through



706

the internal electric fields of the permanent molecular dipoles or quadrupoles and the
nonlinear polarizations induced in the molecules by these fields in the absence of external
fields.

The theory of the optical birefringence of multi-component systems presents in general
a high degree of complication, as involving not only correlations between molecules belonging
to the same species bul also correlations between molecules of the different components of
the system. The molecular constant B,, of optical birefringence behaves additively in the
case of a mixture of perfect gases only. In dense systems such as e.g. compressed gas -
mixtures or liquid mixtures, owing to intermolecular correlations, the constant B, fails
to fulfil the condition of additivity. Molecular light scattering and the Kerr eflect in multi-
component systems is similarly dependent on the intermolecular correlations (see e.g.
Refs [10] and [12]).

From the foregoing statistical molecular theory of »ptical birefringence and its dis-
cussion, it is clear that the constant B of dense isotropic media can depend quite generally
on a considerable number of factors of a microscopic nature. The part played by each of
these factors can generally be said to be different, and depends in principle on the species
and structure of the molecules and on the interaction between them. Investigation of the
optical birefringence in the gaseous state is a source of data on the optical properties of
the isolated molecules (the linear and nonlinear optical polarizabilities and their anisotropy).
In dense systems, the data thus obtained concerning the molecular correlation functions may
well be of decisive importance in the statistical theory of liquids with spherical or aniso-
tropic molecules. '

In concluding, it should be stressed that the molecular optical birefringence constant
of a multi-component system can be expanded in a power series in the mole fraction,

B, =, xBD+o E xi;\?B,(;j)—l—gz > xixjkaﬁ,’,jk)—k..., (7.8)
i 57 Tk
where the first term represents the additivity rule, while the subsequent terms account for
deviations therefrom. The constants B and BY* are non-zero only for systems in which
interactions occur both between molecules of the same species and between those of various
components in dense systems. The expressions obtained here for B allow to state that
investigation of deviations of B,, from additivity can be a source i.a. of information concern-
ing the permanent and induced electric multiples of molecules of various species as well
as on the nature and magnitude of the forces with which they interact in dense mixtures.

In this investigation, we have not as yet considered explicitly the dependence of optical
birefringence on the frequency of oscillation of light beams. The problem has already been
discussed in part elsewhere {17] and will be dealt with in detail in a subsequent paper on
the basis of the previously evolved quantum-mechanical formalism of mutual interaction
of molecular systems and intense electromagnetic fields [18].
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