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The formal quantal theory of first-, second-, and higher- order radiation processes inherent
in electric and magnetic multipole transitions is developed. The calculated probabilities of two-
or more-photon processes consist not only of indirect multipole transitions from initial to final
states via one or more successive virtual states, but also of a direct multipole transition related
to the second- or higher-order time-dependent interaction Hamiltonian. The general results
are discussed in some special cases of electric or magnetic dipolar, quadrupolar, etc. transitions.
Tensors of electric and magnetic multipole polarization are derived in the r-th — order approxima-
tion of quantal perturbation theory and expressed in terms of r-th — order multipole susceptibility
tensors and electromagnetic field strengths in the r-th power. The multipole and nonlinear formalism
is given in a compact tensorial notation and can be applied for computing various multiple-photon
processes, the investigation of which is liable to provide information on the change undergone
by atoms or molecules under the influence of intense electromagnetic fields, e.g. from lasers.

1. Introduction

The theory of radiation processes as initiated by Dirac [1] has been developed by
many authors (see e.g. the monograph of Heitler [2] and the papers cited by him) basing
on both semiclassical and quantum electrodynamics methods. A theory of two-photon
electric dipole emission and absorption of light was first given by Goeppert-Mayer [3].
Nonlinear scattering processes in which three or more photons participate were considered
by Blaton [4], Giittinger [5], Neugebauer [6], Kielich [7], Li [8] and Cyvin et al [9]. Recently,
second-order nonlinear elastic scattering has been observed by Terhune et al. [10] in fused
quartz and in a number of liquids (H,0, CCl,, CH;CN) and by Maker! in methane pres-
surized to 100 atmospheres.

Two-photon electric dipole absorption in semiconductors has been considered by
Braunstein [11] and in more detail by Loudon [12]. Other two-photon absorption estima-
tions have been made for solids by Kleinman [13], Braunstein and Ockman [14] and other
authors [15]. In molecular crystals, double-photon excitation has been discussed in various
ways by Jannuzi and Polacco [16] (who suggested that double-photon absorption in anthra-
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1 The author wishes to express his indebtedness to Dr P. D. Maker for making available his results on
nonlinear light scattering in methane previous to their publication.
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cene is due to the two-photon operator 4 - 4, Singh et al [17], Peticolas et al [18] and by
Pao and Rentzepis [19] and, in alkali halides, by Hopfield and Worlock [20].

Experimental observations of various two-photon absorption processes induced by
a ruby laser have been reported for a variety of materials including crystaline CaF,: Eu2* [21],
cesium [22] atomic vapour, CdS [14], crystalline KJ and CsJ [20, 23], molecular crystals
[24, 25], as well as CS, and several other liquids [26] and gases?. The possibility of detecting
other photon-photon processes in vacuum, plasma and matter has been discusses e.g. by
Gardner [27], who also gave a review of the recent results relating to this subject. Three-
-photon absorption in naphtalene crystals by laser excitation has been reported by Singh
and Bradley [28].

The above-mentioned theoretical papers on two-photon processes dealt with electric
dipole transitions only, In the case of one-photon emission and absorption, electromagnetic
multipole transitions have been studied by many authors (see e.g. Rubinowicz and Blaton
and Humblet [29] and the monograph of Rose [30] with the papers cited there). Iannuzi
and Polacco suggested that two photon absorption in anthracene is due to higher-order
multipole interactions between the electronic system and a radiation field. Recently Guccione
and Kranendonk [31] (see also Ref. [18]) have reported estimations of the electric quadrupole
and magnetic dipole contributions to two-photon absorption processes and concluded that
the higher multipole contributions are negligible with respect to the electric-dipole contri-
bution. A general theory of nonlinear scattering processes to result from multipole inter-
actions between molecules and an electromagnetic field has been developed recently by
Kielich {32].

In this paper we shall present a formal extension of the radiation problem as stated
above to multipole transition probabilities of second- and higher-order processes in which
two-or more-photons are emitted or absorbed. We take into account not only the transition
from initial to final quantum states through coupling with one or several intermediate
states, but also direct transition by means of second- or higher-order interaction Hamilton-
ians. It is well-known that in the case of two-photon processes the first above mentioned
transition results from second-order perturbation theory with the first-order Hamiltonian
(~p - A) [2, 3], whereas the direct transition results from first-order perturbation theory
with second-order Hamiltonian (~A - A) [2, 16, 18, 32]. The three-photon processes are
composed of a direct transition by third-order interaction Hamiltonian, and indirect transi-
tions through one and two successive virtual states. Obviously, at normal conditions, the
probability transitions of second- or higher- order radiation processes to occur are very
small and such processes have become accessible to detection since the coming of lasers,
which are sources of coherent light beams of extremely high intensity. In the present paper
more stress is laid on the construction of a general multipolar and nonlinear formalism,
ratherthan on the physical aspect and details of mechanisms of the problem as already
discussed for one- and two-photon radiative processes with insight in the monograph of
Heitler [2] as well as in several papers (see e.g. references 3 and 11—20).

2 The author expresses his thanks to Prof. Papoular for sending him two typed copies of his and V. Chal-
meton’s papers on nonlinear absorption in gases previous to publication.
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2. Muliipole contributions to the electromagnetic equations

We consider an assembly of N identical micro-systems (atoms, molecules or their
ions) in an electromagnetic field. Let the p-th micro-system consist of n, point particles
(nuclei and electrons) with electric charges e, (s=1,2,..., n,) and positional vectors
Ty = Rps—rp relative to the center of mass of the micro-system whose position is r,. We
write here the Lorentz microscopic electromagnetic field equations in the following form

[33, 34]:

vxe=— . yb=0, (2.1)
N up

v-e= Zl 7‘1 CpsO(F, 0y —), (2.2)
p=1 s=

N np
12e 2n - <
vxb =30+ 721 Z {0 70 00 05— ) (0 W)y 750)}, (23)
p=1 s=

where € and b are the microscopic electric and magnetic field strengths and 6(1“1J —}-Tm—r)
is the three-dimensional Dirac d-function.

On applying a suitable statistical averaging procedure (classical [33, 35] or quantal
[34]) we can write the microscopic Equations (2.1)—(2.3) in the Maxwellian macroscopic
form

1B
VXE:*?@?’ v -B=0, (2.4)
1D 4xn
VXH:?@? +7Ja v ' D = 4., (2.5)
where
N np
0. (r, t) = <?_41 Z epsé(rp~r)>, (26)
=1 5s=1

N #ap
Jr, 1) = % <Z Z e,,s{i«pa(rp—r)+a(rp~r)i~p}>, (2.7)
p=1 s=1

are the average true electric charge and current densities at the space-time point (r, ¢) and
D(r, 1) = E(r, t) +4aP,(r, t), (2.8)
H(r,t) = B(r, t)—4aP,(r, t), 2.9)

are the macroscopic electric and magnetic displacement vectors for a medium at rest. The
brackets { ) symbolize appropriately defined statistical averages.
In the general case considered here, the electric and magnetic polarization vectors
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are of the form (for comparison see Refs 36, 37)

- L n
P.r, t):\;< P L PO, 1), (2.10)
P,r, 1) = Z( 1yn+1 22 i v n— 1P<”>(r t), (2.11)

n=1

and contain the electric and magnetic multipole moment densities of arbitrary order given by

POr, 1) = ¢ Z M6, —1)), (2.12)

1 N
P, )= (Z (M50, —7) +0(r,—) M;";}>- (213)

p=1

Here [32],
M) = Z epersYI(,’S’), (2.14)
n <
) ___ o Y M

M G, 3 e @19

define respectively the 2"-pole electric and magnetic moment operators of a p-th micro-
-system in which Y;'s') is an operator of order n having the properties of spherical harmonics.
The symbol [n—1] in Equations (2.10) and (2.11) denotes (n—1)-fold contraction of the
tensors y" ' and P,

In the well-known manner we obtain from Equations (2.4)—(2.9) the following electro-
magnetic wave equations:

IPy(r,
E(r,i)+4n0 - P,(rt,) —4n{V@e(’r 1) + 3‘: J;’; 0,1 ; L ox ——1-)%2} 2.16)

IP,(r, z)}

o (2.17)

OH(r, ) +4xQ - Pu(r, t) = — 4771 V X {J(r, 1)+

which, through the polarization vectors of (2.10) and (2.11), contain all multipole contribu-

2

tions. Above we have introduced the scalar Dalambertian operator 0= 2—(1/c)? %
[

and an analogous tensorial operator 00 = yy— (1/c%)U22/912 with U deaoting the second-
-rank unit tensor.
In the special case when g, == 0 and JJ = 0, the electromagnetic wave Equations (2. 16)
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and (2.17) can be simplified to symmetrical form

4 APy (r,
O E@r, t)+4x0 - P.(r, 1) = Yn Vx—a(:'—t), (2.18)
4 9
OH(r, t) +4a 0 - Pu(r, 1) = — %r VX Iya (2.19)
or to the still simpler form
OE@,t)=0, OH({rt) =0, (2.20)

if the medium is non-polarizing (P, = 0 and P, = 0).

3. Transition probability in quantal perturbation theory

Consider a miecro-system for which the unperturbated Hamiltonian operator is H,
and the time-dependent perturbation Hamiltonian is ¥(z). Let us suppose that at the initial
moment of time #, the micro-system is in the state |I), so that the probability for finding
the micro-system at the final time ¢ in the state |k) is

[KEULE o) D%,

where U(t, t,) is a unitary operator describing the time-evolution in the interval (¢, ¢o)-
The transition probability per unit time, for the transition from state |I) to state [k)
under the influence of a perturbation V(t) is thus

1
Py = — [<E| UL, t)|1]2 (3.1)
0
where the time-evolution operator U(t, t,) may be expanded in powers of F{t) as follows:
0) oo (r)
Ut tg) = U(t, tg) + 2, Ult, to) (3.2)
r=1

with the r-th order contribution
by

e, 1) = (——;{) f Pe)dey f Ptp)dts ... f Pt dt, (3.3)

[}

and the time-dependent perturbation operator in interaction representation

V(t) = exp (% Hot) V(t) exp (— %Hot) . (3.4)

In the first step we assume that the perturbation acting on the micro-system is of the
form

() - @
V(t) — V(t) — E {V:_emat—l-Va_e_mat} (35)
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and obtain by (3.3), if the perturbation be switched on adiabatically at £y = — oo

<k|([r/2(t, — oo)|l>(1) = > {(k](l,rf)(—l-wal, oo —l—war)]l>(1)+

(r)
T B U, ey —, )IDDY, ‘ (3.6)

where

Q)
CEJU(+ways -, +wg,)|1YD

1
1 <kIVa Ilrf >€lt(wkl+wm+ -+ wa,)
-y S LS ) r -
r! ( ) ,Zl Z @ @) (Or1+ 0, +Wa, +. . W4y +war)
1) ¢} [¢))
<ir—1| Vd_:—l |ir‘2> <i2fV;:Ii1><i1| Vat|l>

@at 0t et 3) " (34 +00 T 001 00 4
S(ay, ..., a,) is a symmetrizing operator consisting in summation over all permutations
of ay,...,q, and wy = (Ey—E})/h is the frequency of the transition keI when the per-
turbation is absent and the various 7, run over all possible intermediate states of the micro-
-system.

In the case when the perturbation is switched on at time ¢y = 0 and is switched off
at the end of an interval ¢, the expressions (3.3) and (3.5) becomes in the first-, second-
and third-order approximation

(1) 1 @ e
KU O DD = — = Y (VL I fwuto) + HVa Dfou—od),  (3.9)

2
CHITG 0D = — o2 2, ), seb) {aaPasy ATEID ‘Vb D fnan -

— Vi %ﬂwm ot o) +c-c-}» (39)
® A <i|1(’/})3fjj><j[1(/1¢)+[l>
CHUE 0] 1D = — Z,: ZJ S(a, b, c) {[<le 1 ot oo
W, GG
——<k!Valz>(w.l+wb+wc (w]_l+w¢)]f(wkf+wa)+ cc. —

A <L|Vb IJ><J|V 1>
<k‘V |> (35 -+wp) (0 + 0,
@
<i|Vb+li><f|Vc+[l>
(wi+wp+ o) (wi+o,

] Soy+w,+wp) +cc.+

w
+<k|Va [t

)f(wk1+w,,+wb +oY) +c.c.}, (3.10)
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where for brevity we have introduced the function
exp {i(wp+wa+wp + 0. +.. )t} — 1
(wr+wat+wp+wr+...)

In the first-order approximation given by (3.8) we have the direct transition k<1,
whereas in the second- and third-order approximations of (3.9) and (3.10) the microsystem

flow+os+wptw.+...) =

(3.11)

proceeds from the state |I) to |k) by one or two virtual transitions, respectively, the sum-
mations being over all the virtual states, labeled i and j, for which the matrix elements of
perturbation do not vanish.

In order to obtain a more exact result we must also take into account small contribu-
tions to (3.4) arising from the second- and higher-order perturbation Hamiltonian namely

@ 2) 3)
V(t) = V() + V() - V() +..., (3.12)

where the first-order perturbation is given by (3.5) and the second-order perturbation is
of the form

(2)
V(t) — 2 {V++ 1(wa+wb)t+ +V—— —1(wa+wb)t} (313)

By using the perturbation operator of (3.12) we obtain additional contributions to the
expressions (3.8) and (3.9) resulting from the second-order perturbation Hamiltonian of

(3.13),

U 0@ = — = Z KHP311> o+ 0ur o) +ecd, (3.14)

@
e o o— - ks Y sta. b, { @il HELL fog o) +

abe 1 zl+wb+w¢:)
72 1 <R
oot VRN (IS Somtorto) toe | P D rtant o)
+<k|V*+I > <’|V;' l?] f(wkz'+wa+wb+wc)+c.c.} . (3.15)

4. Multipole expansion of the perturbation hamiltonian

The non-relativistic perturbation Hamiltonian of a micro-system in the presence of
an electromagnetic field with vectors

E— — ~ % —y®, B=vyxA, 4.1)

is of the form!?

H’=Z{eﬂ>— P At A p) + 5 2(A A)} (4.2)

s
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where @, and A, are the scalar and vector potentials at the point of the sth charged particle
of the micro-system and p, is the operator of its momentum.
The Hamiltonian (4.2) yields for the first- and second-order perturbations

é}()t) = Z {e:(ﬁ T S P At A ps)}, (4.3)
2 e2

Assuming that the potentials @, and A, vary but slowly in the region of the microsystem
we can expand it in a multipole series which permits the first-order perturbation (4.3) to
be written in the following form:

M) = Z & ),{M<">[ n] E™ + M®[n] B}, (4.5)

if appropriate canonical gauge transformations are used [38] and if
e, =0.

In expansion (4.5) we have introduced the electric and magnetic field strengths of degree n
defined by (4.1) as

E® = g'E@r,1), B™=y"'Ba,s). (4.6)

Similarly the multipole expansion of the second-order perturbation of (4.4) is [32]

@ N e Ot
V)= — % Z Z (2;) ,’(lZn”),BW[ ™ A5 ' B™, (4.7)

n=1pn'=1

where we have the multipole (dia) magnetic polarizability operator

’ 2
gy nn s n+n (n)g7(n") (n) | g7 (n)
Ay _—__(n—f—l) s —m {(Y,"Y"'-UyY" . ¥; 1. (4.8)

The vector potential of a classical field of electromagnetic waves may be expressed as

A@r, ) = 3 (Ao AT, AF — AQcFikar (49)

whence, by (4.6),
E® = 3 {(— ik~ B 6 4 (i)'~ By oo, (4.10)

B™ — Z {( ik )n lB+ wunzt (ika)n—lBo—e—iwat}, (4'11)
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In the quantized theory of the electromagnetic field, the vector potential (4.9) should
be replaced by the photon operator (the Coulomb gauge is used)

2nc?h) (o —ky#) |+ op dog—ky vy
= —t{wyt— . (st — .
A, 1) = Z Vo] @lar®eT T o () r Ty, (4.12)
KA

where €, is a unit vector in the polarization direction of a photon with propagation vector
k, and energy how, = hclk,|.

The annihilation and creation operators af (k) and a; (k), which anihilate or create one
photon with wave vector E; and polarization 2 satisfy the Bose-Einstein commutation rela-

tions

lay (E), af (k)] = 6,0,
l[ar (k), a; (K)] = laf (), a) (k)] =0, (4.13)

and on quantizing the electromagnetic field its nonzero matrix elements can be written in
terms of the number of photons N, as follows [2]:

(N 21 af (B) [N = (N, [af (B) [N, F 1y = ]/Nrf‘ (é) ) (4.14)

where in the brackets ((1)) 1 stands for emission whereas 0 for absorption of a photon.

If & and [ as previously relate to the quantization of the micro-system only, whereas
« and 8 — to the quantization of electrémagnetic field, we obtain from (4.3) and (4.4) by
(4.12)—(4.14)

Chal V2 1By = — %{Nl—k (é)}(k]ea-P(:sz)lb, (4.15)
B e
X (€ ) (klA(Lk, £ER,)| 1D, (4.16)

where the abbreviations have been introduced,

P(Fh) = ), e (4.17)
2 N
ATk, +k,) = Z ‘:T P2 (4.18)

5. One-photon multipole transition probability

With respect to (3.1) and (3.8) we have for the first order transition probability per
unit time
2

S P D flom+ o)+ e 5.1)

) 1
=gy
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which in the well-known manner can be expressed as follows:

1)
Py = Z {Ikl +a)d(ey +a, H‘]kl(— ) 8(cwy—,)} (5:2)
with
@
Ly(+a) = ZﬂkkIVi D2 (5-3)
On substituting here the first order perturbation (4.5) we obtain
T a) = 2m Z Tl <k\M("> 1O+ MO [n]BY) z> (5.4)

with rn-th order electric and magnetic field amplitudes (see 4.10 and 4.11)

+ +
EP = (Fik)''Ef, B® = (Tik) B (5-5)

The total intensity radiated per unit time in the direction of propagation E is given
by integrating (5.4) over all angles,

Su= [ Lud2, (5.6)
and we obtain finally
@ o (1) @
Su(+a) = Z (S (£0) +,57 (£a)}, (5.7)
where
., 7292n+3 . . -
St (ka) = m@w 1y [n] kM| Ly* | B2 K22, (5.8)
(@) 292n+3
S ka) = 22 TODE g 1y R ME 1% B RE TS (5.9)

2n)! (2n +1)'
are the contributions to the total intensity resulting from the 2"-pole electric and magnetic
k<1 transition processes.

If, in particular, the micro-system possesses the axial symmetry, the expressions (5.8)
and (5.9) assume the simpler form

(¢)) 2on+3

S (a) = 5 =y KEMEP D[R B, (5.10)
(
Si(+a) = (;” il), |CEIMS| Ly |2 | BE2 RS, (5.11)

In the case when the electromagnetic field is quantized we should replace expression
(5.2) by the following:
@

Py = Z {Ikl(‘i—z)a(wkl'l'wl) +Ikz( 2) 0wy —w,)}, (5-12)

with
¢V}

Tu(4) = 2alChalE 1B (5.13)
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The explicite form of (5.13) is

2
’

@2n) 1

Ty = 2] 3 2 (M| 1y [ B B -+ M| 1> ] lBE3)

(5.14)
where by (4.11)—(4.13) and (5.5) we have

@IBIB) = (il @] > = (Fiy e~ ]/%;fwl {Nz + ((1) )} ’

@ BP B> = GFiy (s x ) 1~ ]/ For i (5] (5.15)

By (5.15) we may rewrite (5.14) as follows:
&) 4n? 1
Iu(+24) = jV— how; {Nz + ( 0 )}

+CRIME[ 1y [n] (exxK) K3~}

2mn !

g1 M D ) ek ™+

Z:l (,_i)n—l

2

, (5.16)

where K is the unit propagation vector E)k;| = F;,.
By (5.6) and (5.16) we obtain for the electric 2”-pole total radiation intensity

7'6322”+4(7L |)2

[€))
(n) -
SH(ED) = T T @1

{N‘ " ((1) )} CRIME| 1y [] LM 1y ek~
(5.17)

Analogical expressions can be written for the magnetic multipole part of the total radiation ‘
intensity.

When the quantum-mechanical Hamiltonian of (4.15) is used we obtain from (5.13)
the result

(};z(il) = 4;;? {Nwr (é)} |<kles - P(FRy)| 12, (5.18)

which can be proved to be identical with (5.16).

6. Two-photon transition probability

On substitution of (3.9) and (3.14) in the definition (3.1), the following expression is
obtained for the two-photon transition probability per unit iime

e
M= 4h2y

@ 1 @
Z S(a, b) {<k|V;b+| D+ o Z k|5 |0y %
ab i
LD, .
y Gyl
W4+ wp

, 6.1)

} Slow+wa+op)+ c.c.
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which can be rewritten as

2) @)
P, = Z {Ikl +a, +b)(wy+w, +wp) +Iy(+a, —b) 8wy +w,—wy) +

@)

+Ly(—a, ‘|‘b)5(wk1_wa+wb)+—7kl(_“v ~b) 0y —w,— )}, (6.2)
if only the terms having the properties of a d-function are retained. In (6.2) we have?

@)
L(+a, Tb) = <1>( +a, Fb) —I—I(z)(ﬂ:a, Fb), (6.3)

where
1) _ i <L|V ’l>

TD(La, Fb) = 2 15(a, b) Z <k[V |0 S| (6.4)

is the contribution to the two-photon process resulting from the transition k<! via inter-
mediate states ¢ which differ from the initial and final states, and

19(sa, 7 6) = wjS(a, HAHTETDP (65)
—— that by a direct transition.

In the case when the interaction Hamiltonian of (4.5) is used we can represent (6.4)
in the form

P T N 2y Iy ) [y, 1 B
P(da, Fb) = 53 }; 2, ST S b)Z<k|M JEM +

F 2
M) BE| i3 (0 on)t GIMEng] B+ MGP(ng] BY| z>\ . (6.6)

which contains all electric and magnetic multipole transitions.
Analogously we have by (4.7), (5.5) and (6.5) for the direct two-photon multipole
transition

(2)
Li(%a, ¥b) =

+ ¥ 2
X Ck[BS[ny] " AG [ng] BS™| 1y . 6.7)

If integration over all directions of E,, B, and E,, B, can be carried out independently,
expression (6 6) becomes by (5.6)

®© 0o (2 @
(1)(ia, Fb) = Z Z {251271, ns)(:l:a', Tb) +emsl§7" m)(:ta, Fb)+

nl—l n,=1

oS L, F ) S (L, D) ©.8)

3 In general (6.3) contains the mixed term which we refrain from considering here.



405

where the pure electric 211 ™.pole contribution is of the form
p P

R 1673220 tm)(n, 1, 1)?2 Lo F
SH™ (4, Fb) = s o B (B

h22n,) 1 20+ 1)1 (2n9) ! @ng+1)!

M b [
w1+ wp (6.9)

S(an,, bny) 2 CHIME) iy

+ + F
with notation |[E{™|2= (E®[n ES), etc.

The pure magnetic contribution to (6.8) is given by (6.9) if the electric multipole moments
and fields are replaced by magnetic multipole moments and fields, respectively, whereas
the ‘“interference’” electromagnetic contribution has also the form of (6.9) by replacing
therein M by M and E{ by B{™.

According to (5.5) the expression (6.9) may be rewritten as

(@) 7, —1 7, —1
» 16325ty Uy )2l 2[R
(n15ms) _ 1792
Su (0 FO) = s S Ton, 1) |(@ny) !(2n2—|—1) -
. M( 2
x | S(any, bny) Z CHME)iy <;‘) o | B PR P (6.10)

By the general expression of (6.10), we obtain for the consecutive electric dipole-electric

dipole contribution

1673

S](gl 1)(:}: :Fb) — 9h2

S(a, b)Z<k|M1><”‘M”>‘ EEPIETE, (61D)

electric dipole-electric quadrupole contribution

@ 167 k,,

S8 xa, 7b) — 200 b)Z<k;M| ><“Q|l>'gEf12{E;F|2, (6.12)

electric quadrupole-eleciric quadrupole contribution

167312k3
T 225h2

(o, 8) Y Ol > i, (63

(2)2 2
S (La, Fb) =

electric dipole-magnetic dipole contribution

1673
9h2

<Z|M

F 5, (6.14)

()
oS ( g, Th) = b>L<klMl P>

where with respect to the definitions of (2.14) and (2.15) we have for the electric dipole and
quadrupole moment operators

M=M= cr, Q=M= % Y era—rt0), (6.15)

s
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and for the magnetic dipole operator

1 .
M, =MP — 5 Z e X T . (6.16)

From (6.11)-—(6.14) we can obtain the result estimated recently by Guccione and
Kranendonk [31].

In a similar manner expression (6.7) hecomes for the direct magnetic transition

2%mtm)(n, In,1)?
S’”(i"' F6) = 16a° ?:‘1 Y 2n) 1(Zny 5 1) 2ng) [@rp + 1)1
:F
W [ AG 15 [2 | BEJ2 | BEIp, (6.17)
which yields in the first approximation
@
16

WS (0, ) = T (A1 | B 2| BT, (6.18)

where by (4.8) we have for the dipole (dia-) magnetic polarizability operator

A, = D40 — 43 }: S( W-rpy). (6.19)

In the case when the radiation field is quantized we obtain from (6.4) and (6.5) by (4.15)

and (4.16):
I,§ (4, Fp) =7 i 3w {Nz + (é)}{NM—F (2)} X

Zs W<k e P (TR iy Sl 1}?"*‘) (6.20)
I,E?)(ﬂ, Fu) = % {NmL (é)}{Nﬁ(?)} %
X les - €2k A(F ks, +hy)| 1> (6.21)

The expressions (6.20) and (6.21) yield in the electric dipole approximation the result
derived previously by Goeppert-Mayer [3]

Ta(£4, F p) — 47636()1(0” N+ (S v (20 «
P (o)1 (1)}

<L’eu l
W+ Wy

(6.22)

Zszmkm M, iy %

which has been discussed in detail for appropriate materials by several other authors [11—
20].
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In a good approximation, (6.21) may be expanded as

@ 3h? 1 1
acn
I(+2, +u) :m{NA-I— (0)}{N"+ (0>}|ez~e,,12><

<k’ Z ;f—s{lq:i(kl+ku) cPs— ‘;:" [(Fer+1,) "rs]ng"'} \l>

2

X (6.23)

Here the term linear in the wave vector has recently been discussed by lannuzi and Polacce
[16] (see also Refs 15, 18) for the explanation of two-photon absorption in anthracene.

7. Three- and more-photon transition probabilities

In the third-order approximation the three-photon transition probability per unit
time is, according to (3.1), (3.10), (3.14) and (3.15), given by

© 1
M= 36h2

3
Y S b,0) {<k| D+
abe

@) &)
) A ; +
T ). [(k} prjiy LD Gy SELZED |l>] +

h & Wi+ op+ o, wi+oe
LNy, By GIRIDGITD :
Yy ; Kk|Va|iy n o) (5t 00 }f(wkz+wa+wb+w5)+c.c. , 7.1y
and may be further rewritten as
@ 3)
Py = § {La(+a, +b, +0)dwy+0, +oy+0) +...}, (7.2)

where in the special case when only the first-order Hamiltonian is considered we have

&) @)
@) en RS AR 5 2
@ 7 o STEIDGIVED ,
Iy (+a, b, Fe) = 3 S{a, b, c) Eij KkWVED (atont o) @aTed | (7.3)

This expression describes the three-photon transition k« ! through two intermediate states
i and j.
For the electric-dipole transition we obtain from (7.3) in the semi-classical case

RS 7
eIkl (ia'» :i:b, :FC) = 671:1

Sa, b, ) Y, k| M. - Efi) x
i
w <i|M. - Bg|jy<i | M. - Bzjly

(waEopF o) (wpFwc) (7.4)
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If solely the first-order interaction Hamiltonian is taken into account, we obtain for
the 7-th order transition probability per unit time

y ® .
Pl(el) (r]hr)z Z Z V S(azla Aoy ven ar) <kl Vaﬂlr—-1> X

. (Y . e 2
|V, Jir—2) | Vally

@ T o o) (it wg)? T et Gatea)boc | (1.9)

wherein

exp{i(wp+ wa, +Wa, +. .. +wg,)t}—1

(1.6)
Wpl+Wga, F g, +... + g,

f(wkl+a)al+wa2+. . ‘|—0Ja,) =

We see that in the general case of r-photon processes the transition %« can occur
through r—1 virtual states 7, 7y, ... i, 1.

If the micro-system is subjected to a single electromagnetic wave the expression (7.6)
reduces to the result derived by Gold and Bebb [39] for multiphoton photoionization of
“‘transparanet” gases.

On substituting the quantized Hamiltonian of (4.15) in the general expression (7.5),
we obtain

r
P, = Z {(1>(-|-Al,. v FA) 00yt oy ey ) Y (7.7)

wherein the brackets { } contain 2" terms of the form:

o a2 (e (o)) f ()

(1)
la(xhs o Fh) (TN =2 ey aor.. on,

X ‘Z Z S(hes Ags ... 2 CEl€s, - P(FRes) | ip—1> X

<iT—1| e}»r—l ) P(:Fk}-r-l)l iT—2> <Ll I ell ) P(iklx)
(7.8)
(wir—xl FTwy £... :‘:(,01,_1) (whl:F COAI)
In particular for the three-photon processes Expression (7.8) becomes
1 1 0
o e o e o) v 1)
IP(£2, Lp, Fv) = 0 0 1)
! = 3h V3 mwum,
\Cilew P(F Ry)|jy<il e
\ - P(Fk 7.9
Z S(h 1 9)<CHles - P(FRen) iy P (7.9)
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It is thus seen that, whereas in first-order transition processes by Eq. (5.2) we deal
with the emission or absorption of one photon, in second-order transition processes we
have by Eq. (6.2) four possibilities: simultaneous emission or absorption of two photons
and the disappezrance and appearance of one photon, or vice versa. From Eq. (7.2), third-
-order transitions are seen to comprise in general eight possible processes, two of which
consist in the simultaneous emission or absorption of three photons, the remaining ones
being processes wherein one photon vanishes and two photons appear or, vice versa, two
photons vanish and one photon appears. Similarly, by considering in accordance with Eq.
(7.7) transitions of the r-th order, we obtain in general 2" theoretically possible radiation
processes involving r photons simultaneously.

8. Nonlinear electric and magnetic multipole polarization tensors

In the case when the incident light beam is coherent, multi-photon absorption processes
are related to the imaginary part of the nonlinear susceptibility of the medium.
The tensor of the dynamical electric permittivity tensor is given by the equation

(e—U) - E(r,t) = 4aP,(r, 1), 8.1)

in which the electric polarization vector P, having in general the form of (2.10) containing
the electric 2"-pole moment density is now defined as

PO, 1) = oU*(t, tg) MU, t)), (8.2)

where g is the density number operator.
If the expression of (3.2) is used, the expression of (8.2) can be expanded as follows:

o () ©) (1) @) (3)
PO(r, 1) = X, P® = PP+ PP +PP+ PP +... 8.3)
r=0
where the r-th-order electric multipole density is given by

r r () r—s)
PP(r, ) = ) U*(t, to) M U (2, to)). (8.4)
s=0

By the expressions (3.6) and (3.7) and a symmetrizing operation we obtain from (8.4)
in explicite form

@ 52 ;
PE")(’)"’ t) _ Z {P(”)(—l‘wala o war)ez(wal-’r..ﬁwar)f ‘l"}7 (85)
ay...q,
where
) Ong1+...+ng ! !
) Z Z oo Tar”
P (Lwg, ... £0q) = (2na) - (2na,) !
na1—1 "a,

X Oyt t1) (L g, ooo £ 0g,) [g, . +11a;] E("‘“).. Ef,’i"r> (8.6)
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if in (3.7) only the purely electric part of the first-order interaction Hamiltonian of (4.5)
is used.
The qunatum-mechanical form of the r-th-order electric multipole susceptibility tensor
is (see Refs 32, 40, 41)
(e +rast...tna)) (g, Wy vy Fg,) = oh~T Z Z ouS(ay, Gy, .. Qp) X

t=0 kiy,..ipl

<klMg"“1)li1><i1|Mé"’”)‘i2> .- <iz—1IM§"“t)liz><i:|Mﬁ”’[iz+1>(i,+1JM§”%+1]i,+2> ... <i,|Mg"“r)]l>
4 r

I (i T oo Faa,F... 5w, +ile) 11 (wii+wa, +Oaysy ke kg +il,)
u=1

us=t+1
8.7)
where g, is the statistical matrix for the transition keI with relaxation time ;Y.
From (8.7) we obtain e.g. for the second-order electric multipole susceptibility tensor

CRLMP ) [ MEa| 5 GIMg»| 1y
(Wit £ 0g -5+ 1) (w; +wy +ilY)

g Gratn)( Ly, Lewp) = 0h=25(ng, np) Z ka{

P
n CE| M@ i) <i| M ><j | M| 1> + <klM£"”)fi><ifMg”")If><flM§”)fl> } (8.8)
(win T wa+i L) (wj+ws-+iT}) (©F 0a+iln)(wpF o, Fos+ily) | '

In the special case when the spatial variation of the electric field can be ignored, expres-
sions (8.5) and (8.6) reduce to the following simpler form:

B, ) = 1 S 00 b s 40 1B By slomtoctoni ioc)  (89)
a...ar
which corresponds to generation of the r-th mixed waves.
Consider, for instance, the case when a DC uniform electric field is applied to the me-
dium; we obtain, instead of (8.9)

® 1
PO, 1) = —n1 Z {4 0ay ..., F0g,,) X
a3...8r—1
[rES,... Ef,_ Epcei@at...toa._,) +c.c.} (8.10)

for the linear DC electric field induced generation of the (r—1)th mixed waves.

If the frequencies of all interacting waves are the same, Expressions (8.9) and (8.10)
describe, respectively, r-th-harmonic generation and DC electric field induced (r—1)th-
-harmonic generation.

In the case of small spatial dispersion, the general Expressions (8.5) and (8.6) yield
in a good approximation for the second-order electric multipole polarization

@ 1 i
PO, ) — - Z{<">x9+1>(+wa, +08) = 5 [OXE D+, +0) - gt
ab

1 .
+ ORI (Fwa, +o) Bl — 5 POYLFD(+0, +op): ety + } s EgEpeiwatonr,  (81])
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In the dipole approximation (n = 1) the first term in the foregoing expansion deter-
mines sum-frequency generation in crystals lacking inversion symmetry [42, 43], whereas
the two terms linear in k (electric dipole-quadrupole effect) — that in material media having
a centre of symmetry [42—44]. Similarly in the quadrupole approximation {rn = 2) the
first term of (8.11) is responsible for sum-frequency radiation from material systems, ir-
respective of their symmetry.

On replacing in the Expressions of (8.6) and (8.7) the electric fields E‘(Z“‘), ... by magnetic

fields HZ“‘), ..., and the electric multipole moments operators Mg"), ... by the magnetic
multipole moments Mf;‘), ..., we oblain automatically expressions for the rth-order magnetic

. . (r)(n) T @) (g +...4+n
multipole polarization P}y and susceptibility tensor ~y,,* ap),

Since the electric
and magnetic vectors are associated with the radiation field simultaneously, one has to take
into consideration in Equation (4.5) both the electric and magnetic multipole parts of the
Hamiltonian. In this general case, as a result, in addition to pure electric and magnetic
multipole polarizations P® and P&, one obtains in the second and higher order approx-

imations of perturbation theory the additional mixed multipole polarizations P& and
P dependent on the electric and magnetic field strengths simultancously. In the absence

of spatial dispersion the second- and third-order electric multipole polarizations are given by
PO (r, 1) = Z (G D00 03): By B + %G Do, 0r): BSH +

+ NG 0, » wg): H B+ @y (w0, ) : HEHG} e @at v, (8.12)

PO, ) == 3 O 0, 04, 0) BB B+

1 .
O P g 0y )} B BFHT + OG0 ey, 03, 0,) F B HHY +

eheem emm

o O LD () oy, ) FHTHG H) e @atostodt, (8.13)

eommm

When w,, ;, and w, are nonzero, the expansion (8.13) is responsible for triple sum-
-frequency generation [42—45], whereas if @, = 0 — for the DC electric or magnetic field
induced double sum-frequency radiation. In the case when w, 0 and all wy = 0, =0
the first term in the expansion of (8.13) describes the well-known Kerr effect whereas the
third accounts for the Cotton-Mouton effect in an isotropic medium [46].

The Maxwell Equations (2.4) and (2.5) with the electric and magnetic field strength
vectors (2.8) and (2.9), as well as the wave equations (2.16) and (2.17) with the multipole
expansions of the electric and magnetic polarization vectors (2.10) and (2.11), together with
the quantal-perturbation expansions (8.6) and (8.7) jointly, determine the general fundamen- .
tals of nonlinear optics with time- and spatially variable electromagnetic fields, as e.g.
conveyed by a light wave from a laser.
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9. Conclusions and final remarks

As we have just seen, a theory of multi-photon processes can be derived by a formal
procedure, and taking into account not only electric dipolar but, quite generally, electric
and magnetic multipolar transitions. In general, the probabilities of electric 2" -polar
transitions are of the same order as for magnetic 2"-polar transitions. Whereas in first-order
processes (one-photon transition) no interference occurs between the electric 2"+ -polar
and the magnetic 2"-polar transition probability, such interference does exist in processes
of the second- and higher-orders. Notwithstanding the fact that in these processes the pro-
babilities for multipsle transitions are insignificant in comparison with the electric dipolar
transition probability, they (in particular the electric quadrupolar transition probability)
nevertheless can play an essential role in all cases when transitions of the dipolar type are
forbidden.

We have also been able to show that the transition probability of an r-photon process
consists generally of r terms, the ficst determining exclusively the direct transition from
the initial to the final state as defined by the non-zero Hamiltonian ¥® of order r (obviously,
orders higher than the second will yield relativistic corrections [37]), while the further
r—1 terms determine indirect transitions involving virtual states — the first of these occurs
by way of one virtual state connecting the product of matrix elements of the Hamiltonian
V&b of order r—1 and VD of order 1, whereas the last of these terms occurs by way of
r—1 virtual states connecting products of matrix elements of the Hamiltonian ¥® of order 1.
Just which of these transitions, direct or indirect, of srder higher than 2 will have priority
depends on the specifically existing conditions (e.g. the type of substance and multipolar
transition). Generally, the probability for a direct transition contributes but insignificantly to
the value of that for indirect transitions, although the inverse is not to be ruled out. Various
substances can ceveal various ratios of the probabilities for the respective transitions. The
roles of the various mechanisms underlying the higher-order (multi-photon) processes can
be assessed with clarity in each case only after detailed numerical evaluations of matrix
elements for transitions of various types have been made. Regrettably, in most cases such
evaluations involve serious computational difficulties, even if far-reaching simplifications
are introduced. Some insight into these rather intricate problems of higher-order transitions
is to be hoped for from research on generation of optical harmonics and on other related
nonlinear processes (see Refs 19, 27, 32, 37, 40—46).

The formalism developed in Sections 2—4 and 8 can be successfully applied for
the quantitative description of various nonlinear electro- and magneto-optical processes
[46], for calculating variations of the electric nad magnetic permittivity [41] due to intense
electromagnetic fields, as well as of nonlinear induced optical activity, Faraday’s effect, etc.
Clearly, it would be most indicated to complete the present formalism by including the
statistical and coherence properties of electromagnetic fields [47, 48].

There is still something to be said concerning the direct and indirect transitions related
with interaction Hamiltonians of order higher than the second which, as a matter of fact,
are already relativistic corrections. This is at once obvious on expanding formally the clas-
sical relativistic Hamiltonian H = @ +{m2*+(cp—eA)B” in a series in powers of the
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vector potential A. Thus, strictly speaking, the theory of morethan two-photon processes
should be a not only quantal but moreover relativistic theory basing on the wave- equation
ihyy = Hpyp with the Dirac Hamiltonian Hp, = fmc?+a - (cp—ed)+e®. By applying
consecutively the canonical transformations of Foldy-Wouthuysen [49] and Eriksen [50]
we can then obtain interaction Hamiltonians of order higher than the second containing
only even operators. One can thus derive a consistent theory of multi-photon transitions
for relativistic particles.
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