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Vectors of the electric and magnetic polarization of the medium containing multipolar
and nonlinear contributions of arbitrary order are introduced into Maxwell’s equations and
the wave equations resulting from them. The operators of multipolar electric and magnetic
polarization are discussed in consecutive approximations of the first, second, third and higher
orders in a phenomenological and, further on, quantum-mechanical approach. In particular,
quantum-mechanical expressions are derived for the tensors of electric and magnetic multipole .
susceptibility of the first, second, third and quite generally arbitrary order, valid in the entire
frequency range including the region of resonance. The formalism proposed is applied to the
quantitative description of various frequency- and spatially variable nonlinear optical processes
of arbitrary order as e.g. optical mixing of frequencies between several laser beams and higher
harmonics generation, usual and DC field induced optical activity as well as other electro- and
magneto-optical effects of higher orders.

1. Introduction and formal theory

It is well-known that in the case when the electric field strength E is small the dipole
electric polarization vector of a medium P, arising from the external field is a linear function
of E (the spontaneous polarization of a medium in the absence of an applied field is not
considered here)

P,=x,E, ' (1.1)

where %, is the usual electric susceptibility tensor of the medium.
If, however, the applied electric field is of very great strength, the linear relation of
(1.1) will no longer be adequate, since the polarization vector P, is now a generally non-

linear function of the field E and has to be replaced by the following nonlinear expansion:

® 1M ®_(r)
P=N"—ynNE=N"P,, 1.2
: ;r!xe[rl Z e (12)
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in which
(2) 1®
P, = — xIE (L.3)

)]
and ¥, are the r-th order electric dipole polarization and susceptibility tensor, respectively;
r)
the symbol [r] stands for r contractions of the tensor ¥, and polyad E™ of r factors.
An entirely different picture results if an oscillating (with frequency w) electrical field
is applied to the medium, :

E(t) = E, cos wt. (1.4)

In this case, the electric susceptibility tensor of order r becomes a function of the frequency
o, in general of r-harmonic frequencies rw, and the r-th order electric polarization vector
(1.3) has now to be separated inte even- and odd-order parts given as

Bior= gy (%) oo +

@n )
+2 Z (2;) Xe(2ro—2sw)[2r] E¥ cos 2(r—s)cot}, (1.5)
s=0
@r—-1) 1 r—1 9r—1\ @r-n o1
P, (w) = 2272(2r———1)7 ; s ) Xe (C2ro—2sw— w)[2r—~1]E cos (2r—2s—1)wt.

(1.6)

We see from (1.5) that the even-order polarization vector contains the zero-frequency con-
tribution corresponding to a DC polarization effect within the medium and the frequency-
-dependent polarization responsible for the radiation of even 2(r—s)-harmonics from the
medium. The odd-order polarization vector of (1.6) consists only of frequency-dependent
contributions corresponding to generation of odd 2(r—s)—1 -harmonics. 4

In particular we obtain from (1.5) and (1.6) for the first, second-, third- and fourth-
-order electric polarization vectors

[¢)] @
P.(0) = Yo(w) - E4 cos wt,
@ 1@ @
P,(w) = Z {X:(0): EZ 4 X (20) : EE cos 2t}

® 1 ,® ®
P.(w) = e {3 Xe(w) : E3 cos wt+¥.(3w) : E} cos 3wt}

)
P,(w) = 192 {3 x,(O) :Ef+4 x(2w) :Ej cos 2wt+x,(4w) :Ej cos doot},...  (L7)
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The above expressions show that the second-order polarization which is the sum of the
DC quadratic polarization and of the polarization at frequency 2w represents a second-har-
monic generation, whereas the third-order polarization represents a fundamental frequency
contribution and third-harmonic generation. When using laser beams in experiments the
second harmonic generation has been observed in many materials e.g. in quartz and triglycine
sulfate [1], potassium dihydrogen phosphate [2,3,6] and other piezoelectric and ferro-
electric crystals lacking inversion symmetry [4—7]. Third-harmoaqic generation has also
been observed in centrosymmetric materials [8].

In the case when additionally a DC electric field is applied to the medium, the third-
-order eleciric polarization is of the form

® 1 ® ®
P.(v) = T {2:(0): B} + X (20) : E cos 2wt} + Epc, (1.8)

where the first term represrents the zero-frequency cubic polarization, whereas the second
term represents the DC electric field induced second-harmonic generation [8, 9].

The theory of optical harmonics generation has been discussed by many authors from
different points of view [10—20}.

By (1.5) and (1.6) we obtain for the time-averaged polarization vectors

@) ¢ 2r 1 @ @r—1t

1 @ (
P.(w) = ) X (0)[2r] g = @1 Xe(0)[2] E%°, P, (w) =0, (L.9)
since we have »

. 1 [T @n!
Er' = lim 2—T Ep(t)dt — 22r(r!)2
e -7 0, for p = 2r—1,

Elr, for p = 2r,

and cos pot = 0.

If, in general, the medium under consideration is acted on simultaneously by an external
electric E and magnetic H field, the dipole electric polarization vector of order r can be
expanded as follows:

(2] 1 . r\ =59
P.=5) (3) Xom [ E—IE, (1.10)

(r—s,s)
where the r-th-order susceptibility tensor ¥, has the order r—s in electric and s in

magnetic properties.
For the case of oscillating electric and magnetic fields we have by (1.4) instead of (1 10)
the following expressions:

2 2r .
Fuo- s § (2[5 o
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r—1
2 (@r—s,s)
+2 Z (ur) Xem (2ro—2uw) [2r] E2—H cos 2(r—u) wt}, (L.11)
2r—1 r—1
@r-1 1 2r—1 2r—1
Pe (w) = 2_“2"*2(2’—W ZO ( s ) ZO ( s >><
(2r—s—1,s)
X Aem (Cro—2uw—w) [2r—1] E¥—~1H} cos (2r—2u—1)wt, (1.12)

which yield for the first-, second-, and third-order electrie polarization vectors

(n (1,0) (0,1)
P (w) = ¥, (v) « Ejcos wt+ X, () * Hy cos wt,

(2) 1 (2,0) (0,2) (2,0)
P((() - {Xee O) E +2Xem(0) EH0+ Xem(o) Hg+ Xee(zw) E Cos 2wt+

1) (0,2)
+ 2Xm (20): EgH, cos 20t + ¥, (2w): Hf cos 20t}

(3,0 2,1 (1,2)

(3)
P.(w) = -1_ {Xeol) : B cos ot + 3%, ()} EyHy cos wt -+ 3, (o) E H? cos i -+

0,3) 1 GO @1
+Xem(®) : H cos ot} + 35 {Xe (3)} E§ cos 3wt + 3¥,(3 w) i E3H, cos 3wt +

(1,2) (0,3)
+ 3 %o (3 @)} EQHE cos 3wt + X, (30) : H3 cos 3wt}, . (1.13)

Analogous expressions can be written for the magnetic dipole polarization vector P,

of the first, second, etc. orders.
We shall now consider in brief the case when the electric field is not only time-variable

but is also spatially variable; namely we have at position # and time ¢
- E(r,t) = E, cos (wt—k - 1), (1.14)

where E is the wave vector.
By (1.14), the first-order electric polarization vector is of the following form in the

presence of spatial dispersion:

e d )
Pok) =Y (—1p {(—2—1)—, () 25— K2 E, cos ot +

§=

+ (251 i ng& Y ()[25—2]k¥~1E, sin wt}, (1.15)

1
where we have denoted by xff‘) (w) = Y {w)r¥ the susceptibility tensor of rank 2s+2.
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From the above expression we obtain for the case of weak spatial dispersion
P (0, k) = {x(o) (w) — (2) (w): B2 + 14 xﬁ‘l)( )ikt — } - E,coswt +
@
+ {xgl) (w)- ke — (3) (w): k3 .. } E, sin wt. (1.16)

The phenomenological expansions (1.15) and (1.16) determine the linear (or first-
-order) optics with frequency- and spatial dispersion.
Similarly, the second-order electric polarization vector can be given by the expansion

2 1< (1) . .
e(w, k) = P.(v) -l- = %o (20) i REZ sin 200t +

’ % ] (-—1)3{ 2s) ! Xe%) (2w)[25 +-2]kX E} cos 2wt +
s=1
2s [€))
+ & 2+1), X (2w) [25+ 3]k +1E2 sin 2wt}, ' (1.17)
S .

in which one has a part independent of k and a series in powers of k.
In a good approximation we obtain from (1.17)

@ @ 1 ®g .
P.(w, k) = P.,(0)+ 5 Xe (2w) : kE2 sin 20t —

@
- —é— x P (2w):: B2EE cos 2wt —. .. ‘ (1.18)

)
with P, (w) defined in the expressions of (1.7).

In (1.18) the first part of the second-order polarization independent of the wave vector
k vanishes if the material has inversion symmetry, but the second term proportional to
EE}, sin 20t is not zero and yields the second-harmonic generation in a crystal with inversion
symmetry [8, 16]. There exist in the literature several papers in which nonlinear interaction
of time- and spatially variable electromagnetic fields with matter is discussed [19—22].

"Also the frequency-dependence of the various nonlinear processes has been discussed both
on a classical and quantum-mechanical level [4, 11--18, 20—23].

In this paper we develop nonlinear optics in which the electromagnetic fields are not
only time-variable but are also spatially variable. To do this we shall start from the Lorentz
microscopic field equations [24] and by a suitable averaging procedure [25, 26] derive the
Mazxwell macroscopic field equations for nonlinear media. These equations contain in general
electric and magnetic multipole polarization operators P and P of all orders [27-—29].
In our approach of the present theory the first-order multipole electric and magnetic polar-
izations yield with the electromagnetic field equations the basis of the linear optics, whereas
the second-, third- and r-th-order multipole polarizations yield the nonlinear optics,
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or optics of higher orders. The 2"-pole polarizations P and P are in general nonlinear
functions of the electromagnetic field strengths and can be expressed in terms of multipole
susceptibility tensors of appropriate orders in two steps: first macroscopically with pheno-
menological susceptibility tensors, then microscopically using a quantal perturbation method
yielding the quantum-mechanical expressions for the multipole susceptibility tensors. This
consistent and general tensor formalism can be used for the quantitative determination of
various nonlinear optical phenomena involving interaction effects not only dipolar but
also quadrupolar, octopolar etc. between micro-systems and electromagnetic fields.

2. General foundations of the nonlinear optics

Born and Infeld [30] evolved a nonlinear, relativistically invariant electrodynamics
which in a linear approximation goes over into Maxwell’s electrodynamics for vacuum or
an isotropic medium. In the case of an arbitrary continuous medlum Maxwell’s macroscopic

electromagnetic field equations

' ]
1 9B :
VXE———?W, V-B=0, (2.1)
oD
Vx H—~1——+4nJ, V- D= 4np,, 2.2)

c dt

can be derived from the well-known Lorentz microscopic field equations [24] by applying
a suitable statistical averaging procedure [25, 26]. Geaerally, in this case, the electric and
magnetic displacement vectors at position # and time ¢ can be obtained in the form of the

following multipole expansions [29]:

D(r,i) = E(r, t)— Z (—1)y W Vi-1n—11P", 1), (2.3)
H(i, t) = B(r, t) +4x Z (— 1)n ( ) Logn- l[n PP, 1). (2.4)

These equations contain the electric P and magnetic P& multipole polarization
operators (or moment densities) of arbitrary order given by the expressions [29]

N

POr, 1) = <PZ]1M§;”6("‘?—T)>, 2.5)
N
PY(r, 1) = i_ZIM,f,'ﬁé(rp—T‘)), : (2.6)
in which
: M3 = Z N A @.7)
n 2 . ‘ ) '

M3 = e Y e ¥ x T, 2.8)

(n+1)e ~
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define respectively the 27-pole electric and magnetic moment operators of a p-th microsystem
consisting of ¥, point particles (nuclei and electrons) of electric charges e,; and positional
vectors ¥,; with origin in the centre of mass whose position is #,; Y™ is an operator of
order n having the properties of spherical harmonics [22].

Similarly to (2.5) and (2.6) we can also write the multipole expansion for the total
electromagnetic force density F [31] which, in the general case considered here, is of the
form (if a suitable gauge transformation is used) at the space-time point (¥, 1)

= 2" ' n n- n n
F(r, 1) = Fy + Z e :)! (PO B + PO H™V), 2.9)
n=1 )
where
Fr = o.E+ %JXH (2.10)

is the well-known Lorentz external electromagnetic force density acting on the system,
with

N vp
Qe(r’ t) = < Z epié(rp——r)>, (211)
p=1i=1 .
N v .
J, t) = 21 Zlepirpé(rp—r», (2.12)
p=1li=

denoting the average (true) electric charge and current densities at position 7 and time ¢.

The general Equation (2.9) beyond the uniform Lorentz force density (2.10) contains
additionally all contributions arising from the interaction between the electric 2"-pole
moment density P and an electric field strength (in Coulomb gauge)

1 9A

E(”+1) e —-E- V” Aé)—t— : ‘ (213)

of order n+1, and from interaction between the magnetic 2"-pole moment density P’
and magnetic field strength (traditionally we now denote the magnetic field strength by H)

H"D — ytix 4 (2.14)

of order n-+1; A is the vector potential of the external electromagnetic field.
By using the well-known equations

D,y =€ E@,1), B, t)=p Hr1), (2.15)

we obtain by (2.3) and (2.4) the following general equations for the electric and magnetic
permittivity tensors:

(e—U)- E(r,t) = 4n z (—1)»1 (22:)', V- n—1]P"(r, 1), (2.16)
n=1 -
(u—U)-H(r,:) = 4 Z (=1t (22:3!, V- 1n—11PP(r, 1), (2.17)
. n=1 . . .

in which U is the second-rank unit tensor.
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In the well-known way we obtain from Eqs (2. 1) (2.4) the following electr omagnetic

wave equations:

1 ad(r P (7,
B, ) +470] - Pr, 1) = dad e, i)+ ~ 2T D 1 oy OPulr, 1) , (2.18)
¢ o c ot
| dan oP,
OH(r, t) + 4= Pur, 6y = — — . VX {J(r )+ (:. t)}, (2.19)
where we have introduced the total electric and magnetic polarization vectors
)= ) (— 7 !Vn Un—11PP(r, 1), (2.20)
n=1
- 2!
— n+1 L egn—1 (n)
P.(r, 1) Z (=D G v a1, ), (2.21)

which contain all multipole contributions; [ = 72—(1/c?)d?/9¢2 is the d’Alambert opera-

tor and ] = YV—(1/c®) U232 '
Generally, im the case of a nonlinear medium to be subjected to a strong electromagnetic

field the electric and magnetic multipole polarization operators can be expanded as follows:

o s o s
Po(r, 1) = Z P)(")(r 1, PP, )=, 1(’)£,’,’>(1', t), (2.22)
s=1
whence we have excluded the multipole polarization operators of zeroth order when the
external electromagnetic field is absent.
Consider first the special case when only the electric oscillating field is present in a me-
dium. We can formally write the electric multipole polarization operator of order s in the
following concise form: ~

Jm _ 2mtodnsp 1 ng!
P, - Z Z @n)l..@2n)! *

n,_l

KOyt tm L L B, 1) B, 1), (2.23)

where the electric susceptibility tensor ™y{+* -+ describes the s-th-order multipole
polarization of the medium caused by the s-th-power electric field strength of degree n.

In the general case of an electromagnetic field we can write for the first, second, third,
etc. -order multipole electric polarization operators

lnl
(2n

W ad
Pﬁ")(r, t) — {(”) ("1) "'1 E(nx)(,r t) +("3X£::1)[n1] H(”l)(r, ”}’
m=

(2) 1 kit > 2n1+nz ! " " " "
PP, 1) — Z Z ! {c I [, g B, ) E™ (i, 1) +
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Oy, ng] B, 1) HOD (1, 8) -+ Gat ™ [ny +no) H™ (1, 2) E™(r, 0) +
gy ) HOO(r, 1) HO(r, 1),

® omtmimp I n,tn
(n) s 3
Pe (,rv t) - 2 Z Z (2711 ' (2n2 Y (2n3)‘ .

nl—l ny=1

X Oyt g ng] B, £y E(r, \E®(r, 1)+
Oyl ratm iy L, tng] E®r, £) E™2(r, t) H™(r, 1)+ ...} (2.24)
We have the. here Fourier transform
E@r, ¢ = f f E(w, k)e® ™ dwdk, (2.25)

and similar Equations for H(r, t), P,(r, t) etc. in which o is the angular frequency and k
is the wave vector.

The Maxwell Equaﬁons of (2.1) and (2.2) with the electric and magnetic strength vectors
(2.3) and (2.4), as well as the wave Equations (2.18) and (2.19) with the electric and magnetic
polarization vectors (2.20) and (2.21), together with the expansions (2.23) or (2.24) jointly
determine the general fundamentals of nonlinear optics with time- and spatially variable
electromagnetic fields.

In preceding papers [29, 32] the general Equations (2.16) and (2.17) for the electric
and magnetic permittivity tensors were discussed for the case of DC electric or magnetic
fields applied to a medium. In the present paper these equations will be discussed for the
general case of time- and spatially variable electric and magnetic fields as e.g. conveyed
by a light wave from a laser.

3. Linear optics with spatial dispersion

In the first approximation we have the case of linear optics (or first-order optics) for
which the electric multipole polarization operator is

(L) 1 @ 1)
PO 1) = o (PO, R)+ PO(—0, —B)} 3.1)

where, by the general expansion of (2.19), we have

@ on ) (n s
P o, ) = @%fhﬁ<wmmwmm, (3-2)

with ™y () denoting the electric multipole susceptibility tensor of first order at the

ny=1

fundamental frequency w.
Since

10

— 2 A(r, t) = % {E(w, k) +E*(—o, —k)}

E(o, k) = E %", (3.3)

E(r,t)= —
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we have by (2.13)

EMm) — (—ik)m_lE(w, k) (34)
and the expansion (3.2) can be rewritten as
® > Mgy 1
(n) — _ Am—1 1° (n),,(n) 7y~ 1
P (0, k) ZN 0" 3T ) [l B, B). (3.5)

With respect to the expansion (3.4) we obtain from (2.16) for the tensor of electric
permittivity

SR i om 2mnlng )., () .
e(w,k)—U = 4n Z Z i (_’)‘WJ_!"’ n—1]"exe™ (@) [n,—11km=1,  (3.6)

n=1 n,—_—l
or, with the accuracy up to the term with k2,

i

el )~ — i [0~ |

[CxP() - e~k - O D (w)]—

— 115_ BUYXP(w): ke—5k- Oy (w) - T+ 3kke: By ()] -+ } (3.7)
Mechanisms of various optical phenomena can be explained within the framework
of the atomic-molecular theory of the structure of the medium. Obviously, the microscopic
picture of a material system can only be described fully by quantum theory and the optical
processes by the method of quantum electrodynamics. However, when the number of
photons in the radiation field is large, we can use the method of semiclassical theory [33]
in which the photon fields are described by electromagnetic waves and a micro-system
(atoms, molecules or their ions) is treated quantum-mechanically. This semiclassical method
will be adhered to in the present paper.
Using the Hamiltonian H = H®+H®, in which H® is the nonperturbated part of
H and [22]
2l

HO = — 3 o (MO B0+ M [ H) @8)
n=1 ) N

is the first-order perturbation Hamiltonian ‘resulting from interaction between a micro-
-system and the electromagnetic field, we obtain with the help of first-order quantal per-
turbation method (the magnetic part is omitted)

Mo () — £ Z o0 { S| MEP|ry<r| M1y N CE|MED|ry (| M®|1)
ehe h wp+w+ily, Wep— +11

} . (3.9

kir

where ¢ is the number density of the medium, and g,, the statistical matrix for the transition
k—1 with Bohr frequency wy; and relaxation time I';%
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In the general case the first-order perturbation (3.8) contains both an electric and mag-
netic part and we obtain the addltlonal contribution to the electric multlpole polarization
of first order ’

2mny !

(2 BT Wy @ (o) [y JH® (@, k), (3.10)

. (1)1!

P (0, k) =
determining the effect of induction in the medium of the electric polarization due to the
magnetic vector of the electromagnetic wave.

In the quantum-mechanical description the mixed electro-magnetic multipole sus-
ceptibility pseudo-tensor is, of the form

() = £ Y gy [T IV | KM ML
- h o onto+ily Wrp—0 + 1

}. (3.11)

klr

By (3.2) and (3.10) the total electric multipole polarization of first order is

> 2mn,
(n) _ _ Tym—1 1° f(m (nl) n,—1
PP (0, k) = n;( Pt )'{ Y () [k 2E 0, ) +
+ % (w)[n ke~ H(w, k)}, (3.12)
or, in the case of small spatial dispersion, |
TP (o, k) = {‘") Du) — L () -k — g (w):kk+...}~E(w, k) +

+ {“‘,fo,}) (@) — - %P () -k — 1 ‘”3x53>( );kk+...}-H(@,k). (3.13)

3

In the dipole approximation (n = 1) the terms independent of k determine the linear
dipole optical polarization (refraction). The terms linear in k describe the linear and dipolar
optical activity appearing in crystals without inversion symmetry, whereas the terms quad-
ratic in k — that in material systems with inversion symmetry. In contradistinction to
dipolar-quadrupolar optical activity, the linear quadrupolar polarization (n = 2) involves
terms

() B0, )+ O (0, ) Hw, )} -

linear in K accounting for the linear quadrupolar-quadrupolar optical activity which can
in general exist in all material systems, irrespective of their symmetry.

Similarly, for magnetic multipole polarization of first order, one obtains by (2. 24)
and (3.8)

@
PP(w, k) = ?z ni P (@) [ HE (@, k) + ™ (@) ] E*(w, K}, (3.14)
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where the first part is the magnetic polarization induced in the medium by the magnetic
field, whereas the second is that induced by the electric field conveyed by an electromagnetic
wave. The quantum-mechanical expression of the pure magnetic multipole susceptibility
tensor Wy is given by (3.9) if the electric multipole moments are replaced by magnetic
multipole moments and the mixed magneto-electric multipole susceptibility pseudo-tensor
%™ has the form of (3.11) by replacing therein M by M® and M by M,

By (2.13), (2.14) and (3.3) we can rewrite the expansion of (3.14) as

. - ) 200l .
PR 0 = 3 (i Gy (s ol R, B)
1)+

ny=1

+ S @)k B, ). (3.15)
4. Second-order optical processes

If, in general, the radiation field consists of several monochromatic components i.e.

F(,,/., Z) — é_ Z {Faei(wat—ku"r)_I_F;e—i(wat—ku'r)}

a

=3 Y Pk - F* (0, k), (1)

the second-order multipole electric polarization can be written as
@, 1 @, @,
PP, 1) = Z{Pg as 08y Kas k) + ... + PP (—0g, —ap, —k,, —k)}. (4.2
ab

where for the pure electric part we have by (2.23)

@) 1 °° oo2n+nb n.!
a e UZRR
P00, wp, o ip) = 5 3 ) e T
ng=1np=1

(2n4) ! (2r) !

X O 006, 03) g+ g B0 (0o, Tog) B (cop, k). (4.3)
With regard to (3.3), the expression (4.3) can be put in the form

fe o]

, et 1n, |
— {)ra+np—2 e
Z:l( 2 Gna) i @ng)! *

1

(2)(n)
Pe (wa,- Wp, ka, kb) - E

gtk

1np

1l

XX " g 03) [+ g )R B o, Be,) By, By, (4-4)
which, in the case of small spatial dispersion, yields in a good approximation
L

) 1
Pgn)(wa’ Wy, ka’ kb) = E {("3X51+1)(wa’ wb)_ g [(M)X¢(el+2)(wa’ wb) : kb ‘f‘(n)ngH)(waa wb) .ka]_

€ 4

1 : .
5 “’3)(22 b 2)(60,,, wy): ke, +.. } : Ew,, k) E(w,, k). 4.5)
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In the dipole approximation (n == 1) the expansion (4«.5) yields

1
PO, wp Ty By) = — {<1>x<1“><w o)+ (R0, 0) Ty +

, 1 .
+(13X§2‘"1)(wa, wy) * k]— 5 (13X§2+2)(wa’ wy): kakb +.. } : E(wa» ka)E(wb’ k). (4.6)

The first term in the foregoing expansion (the electric dipole-dipole contribution)
determines sum-frequency generdation in crystals lacking inversion symmetry, whereas the
second term linear in K (electric dipole-quadrupole contributions) that in material media
having a centre of symmetry. The subsequent terms characterize the higher-order processes
related with spatial variations of the electric fields.

If in (4.6) @, is replaced by —~w, we have the case of difference-frequency generation.

The second-order polarization of (4.5) bécomes in the quadrupole approximation

(n=2)
(2()2) 1 (2),,(1+1) (2)4,(1+2)
Pe (wa’ Wps ka’ kb) = E eXe (0) W ) Y [ eXe (wa’ wb) ' k’b+

) A CORTINEY A } : E(w,, k) E(0,k,) @

where the first term is responsible for second-harmonic radiation from material systems
irrespective of their symmetry.

If a DC electric field is applied to the medium we obtain for the second-order multipole
polarization

(2)
P(ne)(wm Ob’ ka’ Ob) - (ne)xgl+1)(wa7 Ob) :E(wa’ k’a)E(Ob’ Ob) +

D 0y, 0,): B (0, BV, 0y)

5 A0, 00 B0y R)EQ, 0) @9)
Here, the first term descrlbes the linear electro-optic effect without spatial dispersion, the
second term — the optical anisotropy induced in a medium by a DC electric field gradient,
whereas the third term — the optizal activity induced in a medium by a DC homogeneous
electric field.
The quantum-mechanical expression of the second-order multipole electric susceptibility
is given by

00y _e CHIME? | 7y <r| M5y < | ML
eXe (0a, wp) = A S(nq, 1) 2 Okl {(wrl-f-wa—!-wb—I—if,.l)(wsl-|-wb+i T

klrs

L CHMEP D M) GIMEP]D | M| > [ M| sy s | MEP| 1
(wrk_wa+LTrk) (wsl+wb+LFsl) (wrk—wa+irrk) (wsk_wa_wb+irsk)

}, (4.9)

where S(n,, n,, ...) is a symmetrizing operator consisting in summation over all permuta-
tions of n,w,, nywy, ...
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On replacing in the above expressions the electric fields E" (w,, k,), ... by magnetic
fields H" (w,, k,), ... and the electric multipole moment operators M{™, ..., by the magnetic
multipole moments M®, ..., we obtain automatically expressions for the second-order
magnetic multipole polarization P and multipole susceptibility Myt m)) Since the
electric and magnetic vectors are associated with the radiation field simultaneously, one
has to take into consideration in Equation (3.8) both the electric and magnetic parts of the
first-order perturbation Hamiltonian as well as the additional se:ond-order perturbation
Hamiltonian given as [22]

1 © . oo ntn'ptnl " %) A, n
-3 Z Z Ty B0 )AL E e, ), (110)

n=1n’

where the tensor of rank n+n’

y nn’ zz 0 "
o IO DE AR (P Y(")U) (4.11)
i=1

determines the multipole (dia) magneiic polarizability operator of a micro-system.

In this general case, as a result, in addition to pure electric and magnetic multipole
polarizations P and P, one obtains respectively the additional mixed multipole polar-
izations P and P%). The electro- -magnetic part of the second-order multipole polarization
P consists of three terms given as follows:

em

@
ePS::B(wa, @, Kay Bs) = o PG (s 03, Koo, Kep)

ks > Ona+npp 1 .
_ 1 Z Z na nb (n)x(na-l-nb) (wa, wb) [na+ﬂb]E("“)(CDa, ka)H<"")(wb, kb) (412)

= Y eANEM
2 ng=1 nb=1 271,1,)
@ 1 O = 2natnop | p
@ —— 2retring L !
e P (@00, 06, i, ) = 5 Z Z @ng)! @)1
("2Xr(::1+nb>(wa: wp)[ng +np| H' (”a)(waa k,)H (nb)(wb? kb)’ (4‘13)

where the multipole susceptibility pseudo-tensor ("e)xi:";ﬁ”b) is given by (4.9) if the electric

multipole moment M is replaced by the magnetic multipole moment M,(: ”), whereas

) Gratm) € Z le{(k]M,fn)IO(r]<na)A5;'b>}l> . CH[T ALy ¢ r]Me(")ll>} .
efmm h (wrl+wa +wb+iprl) (wrk_wa_wb“]‘iprk)

kir

¢ CLMEry | My ]sy ¢s| M
s S as 3 2
+ Y (na, ) Zﬂ Orl {(wr1+@a +ap i) (wg+wp+i %)

ML)y M Lsy CsIMRP |0y G M |y <ri M) <o | ME|0y
(wrk_wa + irrk) (wsl+wb + ZRI) ) (wrk—wa + irrk) (w.\‘k"wa_wb + Zlw.vk)

}. (4.14)
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Here the first diamagnetic part (term in 1) results from first-order perturbation theory
with the second-order perturbation Hamiltonian of (4.10), whereas the second (paramagnetic)
part (term in #~2) results from second-order perturbation theory when only the first-order

perturbation Hamiltonian of (3.8) is used.

By replacing in (4.14) the electric multipole moment M by the magnetic multipole
moment M we obtain immediately the explicite quantal form of the pure second-order
magnetic multipole susceptibility (’2)(2’:(1) (g, wp).

For the special case of small spatial dispersion we have from (4.12)

@ 1
1+1
ePE'rln)(wa » Wy » ka » kb) = E {(ne?xgm—l_ )(wa ° wb)—

i
- —3“ [(ne)xg}n+2)(wa ’ wb) ' kb +<ne)xg?n+l)(wa k4 wb) . ka] +. ’ .}:E(wa b k’a) H(wb 4 kb)' (415)

In the presence of a DC homogeneous magnetic field the second-order multipole polar-
ization is of the form '

1
k,, 0) = = yE(w,, 0,): E(w,, k) H(,,0,)+

2
P® (o )
2

e™ em a’Ob’

. ,
ty o @, 0,) ¢ E(w,, k,) VH(0,, 0,)—

— 5 G (@01 0+ BB B HO, ) .. (4.16)
where the first term represents the well-known Faraday effect, the second term — the DC
magnetic field gradient induced optical anisotropy, and the third term — the optical activity
induced in the medium by a DC homogeneous magnetic field.

Similarly, we could discuss the magnetic multipole polarization of the second-order
as well as the various processes resulting from it.

5. Third-order optical processes

By (2.23) and (4.1) third-order multipole electric polarization is given by

@) 1 @
P(r,)=g }: (P (04, 03, 0, Kay K, k) + ..

abc

0 ’
+P(—ws —wp, —~we, —Kay —ko—k.)} (5.1

with

oo

® . » 1 o N Qtatmotnen, Uyl !
(n) = a+ Mg T
P, (wm Wp, W, k., ks, k) = I3 : E E (2na) i (2nb) 1 (2nc)1 X

na=1np=1nc=1

X (nzxgna+nb e (as w3, w0) [0+ 75 + n | E (a) (g, k.)E () (s, kb)E (ne) (e, k). (5.2)
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In third-order quantal perturbation theory we obtain for the third-order electric multi-
pole susceptibility tensor

) +
("exﬁ"“"” "°)(w,,, Wy, W) = f%S(a, b, c) Z Or1 X
klrsti

y { CHIM |y | M5y (s My | M1y
(wr+wa+op+w,+117) (wsa+wp+wc+1Ly) (w+ow,+ L)

CRI M > M sy (| ME™ |8y <o | ME 1y
(0re—ca+i L) (wa+wp+wc+11g) (w0 +w,+11y)

o <k[Me("u)lr> <r]Me("b),S> <SIMe(n)[t> <lee(nC)|l>
(Wre—wa+ i1 vk) (O —g—wp +i L) (Wt +iT )

CRIM |y (M |5 (s | M ey e | M)y }

5.3
(0 —wa+ i ok) (O —0a—0p + 11 g) (0 — g —p— 0w, + 1. o) (5-3)

We will now proceed to the discussion of the expression of (5.2) for several special
cases.

In the first step we consider the special case when a weak and homogeneous DC electric
field is applied to the medium, i.e. when all o, = 0, and obtain from (5.2)

(3) 1
" (14+1+1
P(ng(wa’ Wy, Oc’ ka’ k’b’ Oc) {(”3Xe A )(ww Wp, Oc)—

i .
- [(n3Xel+2+1)(wa? W, Oc) . kb +<"3X52+1+1)(wa’ Wp» Oc) : ka] -+

4 } : E(w, k,)E(w, k,)EQ,). | (5.4)

Here the first term describes the DC electric-field induced multipole sum-frequency genera-
tion whereas the further terms account for the spatial variation of this effect.

If the homogeneous DC electric field is very strong the expression (5.2) yields (all
w, = w, = 0) .

3)
P(ne)(wm " c’ k Obv Oc) — 1 {(n)X(H—H l)wa, Ob? 0 )_

l T T 0,05, 0,) Ko, } P E(w,, k,) E(0,) E(0,) (5-5)

for the multipole electric double refraction. In the dipole approximation (n = 1) the first
term of Eq. (5.5) describes the well-known Kerr effect whereas the second term — the optical
activity induced by the square of the DC electric field.

In the general case when all the electric fields are time- and spatially variable, the expres-
sion (5.2) becomes in a good approximation

3) 1
(1+1
Pt(!n)((oav Wy, W, ka’ kb7 kc) - {(ne)xe * +1)(a)a, Wy, (OC)—
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241+1 1+2+1
3 [("3)(2 * )(wa’ Wy, wc) : k‘a "‘(nZXE * )(wa’ ) wc) : kb —+

+(n3xg1+1+2)(wa7 wb’ wﬁ) : kcl +' ) } : E(wa’ ka)E(wb’ kb)E(wc’ kc) (5'6)

If we take into account both the electric and magnetic part of the first-order perturbation
Hamiltonian of (3.8), we obtain further contributions to the third-order electric multi-
pole polarization, one of which is of the form

o0

®© % Qnat+nytnen |yl 'n!
eem as s Wes k“’ E »fe) — T Z Z I
(w Wy, O, 5, Ko) = 5 - _ (2n,a ' Crp)! 2n) ! 8

X(ngx(na+nb+nc)(w Wy ) [n +ny+n, ] E(”a)(w , k ) E(nb)((ub, kb) H(nc)(ww kc)’ (5'7)

eem

where the third-order multipole susceptibility pseudo-tensor (Wglnatnotne s given by (5.3)
if the electric multipole moment M(™ is replaced by the magnetic multipole moment M} (e,
For weak spatial dispersion Eq. (5.7) yields

(3)
1+1
e eem(w Wy W, kb’ k )=y {(anlejz_ * )(wa’ W, ) —

l
(2+1+1 . (n)a (14241 .
[( ¢ Keem )(wa’ Wps wc) ka -+ eXeem )(wa’ Wp, wc) kb +

O P gy 0y 00) - K] - } i B, k) E(oy, k) Hlw,, k). (5-8)

In the case of a zero-frequency magnetic field (o, = 0, k, = 0), the expansion (5.8)
yields

e” eem

1
P(n) (wa’ Wy, 0c7 ka’ kb’ 00) - {("e)x(eb—’i;1+1)(wa’ Wy, Oc)—'

[( eXeerjt_1+1)(w W, Oc) k +( eXe2.+2+1)(w Wy, Oc) kb]

m

+} : E(o,, k,) E(w, k) HQ,) (5.9)

for the DC magnetic-field induced multipole sum-frequency generation effect and its spatial
variations. :

Similarly we have the further contribution to the third-order multipole electric polariza-
tion:

3 natnytney p !
( 2 E E b c
emm(wa, Wpy We, kav kba c) — (2na) I- (2nb Y (2nc) T X

neg=1np=1 ne

eXemm

Oy Gratm 1 0y, 03y, @0) [+ + 1] B, ko) H ooy, ) HO o, k), (5.10)
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where, by (3.8) and (4.10),

), (Ma-+np+ne) ()., (na-+np+m0)
(nexgzlam rote (waa Wp, wc) - nexg;;n notne (wa, QWp, wc)D +

4 Gt (g, —py — )+ % S(a, b, ) Z 0w X
klrst

y { CRIMP|ry (e[ M | (| MEP | £ (o | MG 1>
(0 +ws+wp+oc+il) (gt ws+o.+iTg) (0g+o,+11 )
Ch |MO| ) <r | MEP |y | M [ e MG | 1
(w—wa+ilm) (wa+wp+ w+i ) (wy+ we+ily)
<k [ME2 ) < MY |55 <s M <2 | ™ | 1
(wrk“wa"‘i[’rk) (wsk“wa_wb'*“irsk) (wt1+wc+iptl)
KB M |y <r [ MY [ 5 (s| M3 |3 < |MP |1y }

(0rk—wa+11 ) (Op—0a—wp+ 1.1 ) (0h—~Wa—wp—w, + 11 )

(5.11)

with the following diamagnetic contribution:

ot
("3)(,(,%,, #ot#o) (way Wpy 0)p = f% S(a, b, ¢) Z Okt X
Rlrs

" { kM| < | M2 [55¢s | ™ AG | 1y
(wrl + wat+ wp+ e+ 1) (g + wp+ e+ y)
<l£ ]M(”a) I ><r]M('l)|s>< l('lb)A(ﬂc) I I
(wrk 0q+i 1) (wa+ wp+ o, + i)
_@lMgna) ,r><rl(”b)A’(:c) [s><__'5;IM¢(n) ’ l> }

(wrk_wa "I’ iFrk)(wsk—wa_wb_wc + l]-'sk)

(5.12)

which can be obtained in second-order perturbation theory if the first- and second-order
perturbations Hamiltonians of (3.8) and (4.10) are used.

We now assume that the eleciric field strength E(w,, k,) conveyed by the wave of
frequency w, is small and assign to it the role of measuring field, whereas the DC uniform
magnetic field is of very high intensity, sufficient for producing non-linear polarization of
the medium. In this case we have by (5.10)

1
PEZ:m( Wy s Ob L Oc ? ka ’ Ob H Oc) = ——{(”e)xgnj;xl—*-l)(wa » Ob » Oc)h

_ ; () E?,,f,,”l)(wa,oba 0) -k, +. } E(w,, k,) H(O,) H(0,), (5.13)

where, in the dipole approximation, the first term accounts for the Cotton-Mouton effect
and the second term for the optical activity induced in a medium by the square of the DC
magnetic field (or the quadratic change in optical activity).
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6. Higher-order optical processes

We now generalize the foregoing considerations to the case of multipole polarization
operators of arbitrary order. Namely, the s-th-order multipole electric polarization can be

written as
® 1 ©
PO (r,1) = 5 Z (PP (wayy ... Waps Kayy - ag) +-..
ay...as
(S)(n)
AP (—way s . —0agy —Kays oo —Rag)}, (6.1)
wherein the brackets { } contain 2° terms which can be derived from the first one
(s) Ona1+ .. +ﬂu3n 'ooon !
R SIS o Z ol
e ( ay as @y (2na ) 1 2na )
nm—l na
x ™ 5”¢1+-~-+"as)(wa1,... g} [y, 4. 1, (”“’)(w k, )...E(”as)(was, k,) 6.2)
by consecutive interchange of the sign of the arguments w,, ... w,,, K, ... k,,. The explicite

quantum-mechanical form of the s-th-order multipole electric susceptlbility tensor is (for
comparison see [15] and [22]),

ot Q ’
o at A (o 0g,) = Y S(ay, ... ay) Z or X

kiy...1sl
,<k|M<"“*>1L1><LIM<”“>|L2> i 1|M‘"“»>iz,><z,|M<">;z,+1><z,+1;thﬂ’]z,+2> L ME2| 1))

Hl(wmk Wa,—Wg,—..—Wgy +1I'zuk) H (wm""wau F Wayyy+ - F0as+iL50)
6.3)

if only the purely electric part of the first-order perturbation Hamiltonian of (3.8) is used.
From Eq. (5.15) we obtain e.g. for the fourth-order multipole electric susceptibility

tensor
(ne)x(nu+-nb+nc+nd)(wa, W, e wd) — S(a, b ¢ d) Z ORI
klrstu
{ CHI M) (| M5y < |M"‘">|t><t|M<"°>|u><u|M‘"">|z>
(w1 +wa+wp+ 0+ wa+id o) (wg+wp +wc+wd+z1“sz)(wﬂ+wc+wd+zftz)(wuz+wd+zl’u1)

T <k_| M < MP)s <SlMe(”b)lt> I MEuy <f4Me(M)|l> |
(wr— g+ 11 ) (05 +wp + e+ wat il ) (@a+oc+wa+ i) (g +oa+il)
CEIME | <[ MEP)sy (s | M8 <t | ME™ |y u| MDD .
(@rk— g+ i L) (@ —a—p + i L)@+ 0c +wa+ilu)(@u+wa+ilu)
<k|Mg("c)]r> <rlMe(”b)]S> <3|Me("°)[t> <the(n)|u> <u|Me("d)|l>
(wrk— g +i L) (e —0a—wp + 1L ) (Wp— W —p— e+ i L) (@ +0a+11ur)
<k[Mg("a)|r> (r'Me(nb)ls> (S'Me("c)h) <tIMe(nd)|u><ulMe(n)|l> }
(@rk— a1 18) @k —wa + i L) (@i —00a—0p — e+ T ) (@u—a—p—0c—wa-+il )]’
(6.4)
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In the special case when the spatial variation of the electric field can be ignored, Eq. (6.2)
reduces to the following simpler form:

(s)

n ]' n $
PP(wa,, ... w4,) = 5 A Oars .. 00r) 51 E0a,) ... Ewogy), (6.5)

which corresponds to generation of the s-th mixed waves.
Consider, for instance, the case when a DC uniform electric field is applied to the
medium; we obtain, instead of (6.5),

() 1 ‘
Pgn)(waﬁ e was—l’ Oas) = (S"‘“ 1) 1 (n)XES)(thn e was—l’ Oas) ><

X [s]E(wq,) ... E(wg,.,)E(0,,), (6.6)
for the linear DC electric field effect (s>2), and

o 1
Pgn)(wan was—v Oas—n Oas) = 2(3__2) [} (n)XS)(wan L was—-z’ Oas—n Ous) ><

X [s]E(wa,) ... E(was.,) E(0s,.,) E(0,,) (6.7)
for the quadratic DC electric field effect (s>3).
If the frequencies of all interacting waves are the same Wy, = Wy, = ... w,, Eqs (6.6)

and (6.7) reduce to the following ”simpler form:

© n e 1 n), (s §—

Pg )(wsﬂ) - (S—].) !( )Xc(a )(ws—l)[S]Em lEDC, (6.8) .
(s) (s o
PP, 3) = ey OISR} o -9 (6.9)

Here, Eq. (6.8) describes linear DC electric field induced (s—1)-th-harmonic generation,
w;_1 = (s—1)w, whereas Eq. (6.9) — quadratic DC electric field induced (s—2)-th-harmonic
generation, w,_, = (s—2)w.

For the case of an oscillating electric field as given by (1.4) the expression (6.8) yields
(s>1) :

s—1
(25) 1 2s—1
() _ (n) (2s)
P (“’)“22:—2(23—1)12( r ) Xe (wz-2r-1) X

r=0
X [25| Epc B3 cos (2s—2r—1)wt, (6.10)
@t 1 2s 2s1 ’ 2
P(w) = CETEnY {( s )“”xi T0)2s + 1] EpcEy +
s—1
4+ 2 "Z (2,3) ‘">x§2‘“>(wzs,2,)[2s+1]EDCEgs cos 2(s—r)wt}. (6.11)
r=90
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The preceding expressions show that on imposing a linear DC electric field the multipole
electric polarization operators of even order are given by the odd harmonics w, 3w, 5w etc.,
whereas the multipole polarizations of odd order contain terms with the zeroth frequency
and terms with the even harmonics 2w, 4w, and so forth. Thus, e.g., by (6.10) and (6.11)
we have for the polarization operators of respectively the second, third, fourth etc. orders

@
P (o) = Oy D (w) : EpcE, cos wt,

(3) n ]- n . n .
PM(w) = 1 {5 2(0) 1 Epc B2+ P2w) t EpcER cos 20t}

(&)
P () = {3<">x§1+3>(w) : EpcES cos wt +

+ <”>x<1+3>(3w) : 1 Epc cos 3t},... (6.12)

Similarly we obtain from (6.9)

(2”(:; 1 23 (n) (2x+2) 2 25
P (0) = FETI(y) 1 Xe  (0) [2s+2]EpcEy +
s—1 2 .
S
+ 2 Z (r )<">x93+2>(w23)[2s+2]EE,CE?,‘ cos 2(s—r)a)t}, (6.13)
r=0
asy 1O (21 o
0 = gy 3 () e
r=0 .
X [2s+ 1] EpcEs ™" cos (2s—2r—1)ot (6.14)

for the components of the multipole electric polarization operator of even and odd order
(s>1) which in the third, fourth etc. approximation yield

P(") (w) = (") ¥ D(w) 1 E3cE, cos wt,

4)
PP(w) = {(”) @+2(0):: B2 Ey+™MyD(2w):: EjcEj cos 2wt}, ... . (6.15)
In particular, the fourth-order multipole polarization includes the contribution
1
P(")(2w) (")X(2+2)(2w) B2 E2 cos 20, (6.16)

which is responsible for quadratic DC electric field-induced second harmonic generation
from non-centrosymmetric crystals, if the dipole approximation is made, or from centrosym-
metric media, if the quadrupole approximation (n = 2) is made.

In a similar manner we can examine the various contributions to higher-order electric
multipole polarization from the magnetic field as well as the non-linear magnetic processes.
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7. Conclusion

The general tensor formalism proposed here is adapted to the quantitative description
of non-linear processes of arbitrary order, variable not only with regard to frequency but
simultaneously spatially-variable. It is found that the formulation of a non-linear optics
wherein beside frequency dispersion account is taken also of spatial dispersion of the opera-
tors of electric and magnetic polarization is by no means solely a matter of taking into con-
sideration various corrections of the order of ak = afA (where a can denote the lattice
constant or the radius of molecular interaction and A — the wavelength in the medjum)
but is essentially a procedure whereby qualitatively quite new effects appear. Obviously,
with regard to their order of magnitude, these novel effect (e.g. induced optical activity)
are small as compared to known, experimentally investigated phenomena. By a judicious
choice of experimental conditions, however, some of them may be measurable.

We have introduced tensors of the electric and magnetic multipolar susceptibilities
of the first, second, third, etc. orders and determined their frequency-dependence by means
of quantum-mechanical expressions. In order that the latter shall be valid within regions
of resonance too, in deriving them we have recurred to the perturbation method based
on excited-state wave functions with phenomenologically introduced damping constant [34].
The matrix elements of multipole transitions of the electric, magnetic or mixed type appearing
in these expressions can be computed e.g. by means of a complete set of unperturbed Slater
wave functions for the case of isolated atoms or, in considering the crystal state, with ap-
propriate Bloch wave functions for the electrons. In the dipole and quadrupole approxima-
tions, one obtains results already derived by various authors [11—17, 20—23].

For the sake of simplicity, we have refrained from considering, in the present theory,
stochastic properties of non-linear optical processes [35] and coherence properties of
electromagnetic fields (see [36] and the papers cited there). It would be very useful to develop
such a thoroughgoing theory, both in the classical and quantum approach. However, the
mathematical expressions derived in this paper already raise some difficulties when we
proceed to adapt them to numericdl computations, which requires on the one hand various
assumptions taking into account the specific micro-structure of the medium and, on the
other, some degree of idealization involved by the inevitable simplifications of the model.
These close studies will give us deeper insight into the mechanism and nature of various
optical processes, thus yielding valuable information on the multipolar and non-linear
properties of atoms and molecules in the presence of intense electromagnetic fields.

Since, in general, the statistical matrix g, contains Boltzmann’s factor exp {—HylkT},
additional contributions to the multipole operators P and P will appear resulting from
the efects of optical molecular orientation (orientation of the optically anisotropic molecules
in the optical field [37—39]). Therefore, in an isotropic medium such as a’gas or liquid,
the presence of the non-linear effect is due not only to direct influence of an intense electro-
magnetic field on an atom or molecule (the induced effect), but, moreover, to statistical
orientation in this field of the optically anisotropic molecules. Which of these two processes
will play the essential or sole part in any particular case will depend primarily on the struc-
ture and symmetry of the molecules, on the thermodynamical state at which the substance
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is investigatéd, on its frequency-dispersion, etc. "The effect of intermolecular angular cor-
relations upon measurable quantities can be calculated, as was done for other nonlinear
phenomena in liquid dielectrics (see, e.g. [38—40]).

The formalism d%veloped in this paper can be used with slight modifications for com-
puting the nonlinear variations of static electric or magnetic permittivity tensors due to
the strong electromagnetic field. Usually, in experimental investigations of these variations,
the medium is acted on simultaneously by the weak measuring field, electric or magnetic,
which varies slowly with frequency, and the strong DC electric or magnetic polarizing field,
sufficing for producing nonlinear polarization of the medium [39]. Since, in general, the
polarizing field may be electric or magnetic or else an optical field, we shall be dealing with
several electric and magnetic saturation phenomena previously discussed for isotropic
media, such as gases and liquids {38, 39].
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