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Synopsis

Starting from the Lorentz microscopic field equations and using a statistical ensemble
averaging method and a compact tensor formalism, general equations are derived for
the tensors of electric and magnetic permittivity which contain all contributions from
the multipole electric and magnetic polarizations of a medium at rest. For the case
of an intense DC magnetic field, the multipolar magnetic polarization is calculated by
quantum mechanical perturbation theory and Boltzmann statistics to the third-order
approximation inclusively. The multipole and nonlinear formalism evolved is effec-
tively applied for calculating the variations in magnetic permeability due to the
square of a strong homogeneous magnetic field or to a magnetic field gradient.

§ 1. Introduction. The theory of the electrodynamic field is essentially
due to Faraday and Maxwell; the latter’s well-known equations provide its
compact mathematical formulation. Maxwell’s theory refrains from inquiring
into the structure of matter, which it regards as a continuous medium ; thus,
it is a phenomenological and macroscopic theory. Lorentz1), in his theory
of electrons, formulated a microscopic electrodynamics and showed how
to make the transition from microscopic to Maxwell’s macroscopic field
equations by time- and space-averaging of microscopic field quantities over
physically infinitesimal regions. The approach of Lorentz was developed by
Van Vleck?) as well as by Rosenfeld3); the latter, in his elegant and
modern theory of the electron, showed that if in Maxwell’s equations
dipolar magnetic polarization is taken into account beside dipolar electric
polarization,/{heh a contribution of the same order due to quadrupolar
electric polarization has also to be considered. Voisin 32) extended the
Lorentz-Rosenfeld theory to multipoles of arbitrary order.

Mazur and Nijboer?) replaced Lorentz’s space-time averageing over
physically infinitesimal regions by a statistical ensemble averageing and
carried out the transition from microscopic to macroscopic field equation
in a consistent way. The statistical-mechanical approach of Mazur and
Nijboer was modified by Jansen®) and Schram52) on a quantum-
mechanical basis. Recently De Groot and Vlieger®) developed a general
method for deriving the macroscopic Maxwell equations from “‘atomic field
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equations” in a covariant way by an appropriate averaging procedure in a
“fluxion-space’”’. They also took into account the retardation of the fields
as well as all possible motions of the particles in a medium discussed earlier
by Mazur and Nijboer?).

In the present paper, applying Mazur and Nijboer’s statistical procedure
and Jansen’s tensor notation, a multipole expansion for the electric charge
and current density is derived allowing to obtain general equations for the
electric and magnetic permittivity tensors & and u# on the basis of the
Maxwell-Lorentz equations. The equations derived contain 27-pole tensors
of the electric and magnetic polarization, P and P". However, a detailed
quantum-mechanical discussion focusses on the magnetic multipole polar-
ization P only. The calculations proceed from the multipole expansion of
the perturbation Hamiltonian discussed in various approximations by a
number of authors (see e.g. refs. 2, 3, and 7-11). Since we are interested
mainly in linear as well as non-linear diamagnetic multipole polarization, we
recur to the multipole expansion not only of the first-order Hamiltonian,
but moreover of that of the second, third and fourth orders. In this way,
taking into account also paramagnetic polarization, the results of Lange-
vin12) and Van Vleck?) are generalized to the case of multipole magnetic
polarization, both linear and nonlinear.

For the sake of clarity, the final considerations of this paper are restricted
to media sufficiently rarefied for atomic and molecular interactions to be
neglected (recently, Kaufman and Sodal3) proposed a linear, dipolar
theory of the magnetic susceptibility of imperfect gases), more stress being
laid on the construction of a general multipolar, nonlinear formalism rather
than on the physical aspect of the problem already discussed with insight
in the monographs of Lorentz!), Van Vleck?) and Rosenfeld3). The
formalism evolved is applied to some simple examples of nonlinear variations
in magnetic permeability due to the square of a strong homogeneous magnetic
field or the gradient of a magnetic field.

§ 2. Derivation of general equations for the electric and magnetic permitiivi-
ties. We consider an assembly of N identical microsystems (atoms, molecules
or ions) in statistical equilibrium at the temperature 7" with average uni-
form number density at position r and time ¢ defined as#)

N
plr, §) = < Sy — 1. (1)

p=1
Here 6(r, — r) is a three-dimensional Dirac d-function, ry is the position
vector of the p-th microsystem and the brackets ¢ > symbolize a suitably

defined ensemble average (see e.g. refs 4-6).

Let the p-th microsystem consist of v point particles (nuclei and electrons)
with electric charges ep;, masses my; and positional vectors Rp;(z = 1, 2,...
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.. vp). For convenience, we introduce the set of independent coordinates
tp= 3 MpRpi/Xmy; and ry = Rypy — 1p, (2)
B i

where ry; 1s the (relative) position vector of the 7-th particle with respect
to the center of mass of the microsystem p whose position is 5.

According to Lorentz’s1) classical theory of the clectron, the “microscopic”
electromagnetic field equations are of the form

1 ¢oh
Vxe=—-— -, V-h=0, )
c Ot
1 oe 4z
Vxh=—"1+""j F-e=dimp, (4)
c ot c

where e and h are the microscopic electric and magnetic field strengths,

N vp
pe =2 epid(Rpi — 1) ()
p=1 1i=1
is the electric charge density and
. N vp .
J=2 X epiRpid(Rpi — 1) (6)
p=1 =1

is the electric current density4).
Since the function 8(Ry; — r) = 6(rp - rp; — r) can be expanded in a
series in powers of rp; around rp — 1,

orp + tpi — 1) =X P rpn] Vid(ry — 1), (7)
n=140 .
we obtain from (5)(Fp, = —V is the differential operator at position

whereas V' operates on r)

| — g I gb’ (3(1‘ — r) -+ E .21”?,1_ M(n)[n]Vné(r - 1‘)1 (8)
Pe ?7:111':1 pEVE =1 (2%)! ep o\ P J,

where we have introduced the 27-pole electric moment of the microsystem
p defined as14)

Mf?;) =X ‘3101"';?/1:1/;)751)- 9)
i=1
Here, Y is the operator of degree n having the properties of spherical

harmonics, whereas the symbol [#] according to Jansen’s notation®) denotes
n-fold contraction of two tensors of rank #.
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In the same way we obtain from (6) by (7)

i { S epiipdlry — 1)+ 3 o [9M35) 1 -1

J —1)§1 ,,-Ele:m pO(tp — 1) ”El (2n)1 T (n— 1V 1o(rp — 1) +
X (M — 17 o0, — 1 ] 06 (10

wherein11) |

n ’» .
M= e S X fu (1
is the 2#-pole magnetic moment of the p-th micro-system.
If now we take the ensemble averaging procedure on both sides of each
of the microscopic field equations (3) and (4), we get immediately

PxE—_ LB pp o 12
o c o' - 12
1 0E i, '
VXBIT_&Z~+T<]>, V'E:4JE<P3>; “3)

where E = <e> and B = (h)> are the macroscopic electric and magnetic
field strengths.

From the expansions (8) and (10) we obtain for the ensemble average
charge and current densities

o 20
oty = pelt, ) + 3 (— )2 = Pr[n] PO, (14)
n=1 (2’”)'
e o0 i) 2ny1 {Vn—l[ 1 oP™
Go=Je ) = (=055 we e F
b X (P — 1 P;:m}, (15)
wherein
N vy
pe(t, t) = <Zl 2 epid(rp —1), (16)
p=1i=1
N vy
J(r, ) = <X X epifpd{ty — 1), (17)
p=1i=1

are the average true charge and current densities at position r and time ¢ and

N
PO, 1) — (X M&S(r, — 1), (18)

p=1

mp

N
P™(r, ) = <X MM 6(ry, — 1)> (19)
p=1
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define the 27-pole electric and magnetic polarization tensors (or moment
densities) at r and ¢, dependent on the thermodynamical state of the medium.

By the expressions (14) and (15) we may write the equations of (13) in
Maxwellian form:

1 oD 4n
VxH=——+4+—J, V- D= 4np,, (20)
c o ¢
if the following electric and magnetic displacement vectors are introduced:
® 2np
D=FE—day (—1)n- " prin— 1] P, 1)
n=1 (2%) !
i 2np
H=B 4 4xX (—1)r = Fi[n— 1] Py, (22

n=1 (2%) !

The foregoing equations contain all contributions to the vectors D and
H arising from the electric and magnetic multipole moment densities of the
medium undergoing polarization. In particular, we obtain from (21) the
results derived by Rosenfeld3) and Mazur and Nijboer4)

lg = E + 4n{Pe — 3V -Qc + ...}, (21a)
% =B — 47{Py, — ...}, (22a)

where P, = P{1 is the dipole electric polarization vector, Q. = P{* is the
quadrupole electric polarization tensor, etc., and P, = P{}’ is the dipole
magnetic polarization vector, etc.

On the other hand, the relationships between the vectors D and E and
between B and H are expressed by means of the tensors of the electric &€ and
magnetic @ permittivities through the well-known expressions

D=¢E, B=pu-H, (23)
and we obtain by (21) and (22) the following general equations for the
medium at rest:

i 204

& —U)E=4z 3y (—1)» 1. po-lin — 1] P™, (24)
w1 (2n)!

(‘u — U) ‘H — 47 - (_l)n—l 2_@ | A [% . 1] P (25)
et (2n)! m

in which U is the second-rank unit tensor.

In preceding papers!3) the general equation (24) for the electric permit-
tivity was discussed classically for multicomponent systems consisting of
multipolar microsystems. In the present paper, the general equation (25)
for the magnetic permeability will be discussed quantum-mechanically
on the assumption that the isotropic medium is sufficiently rarefied so that
one may use Maxwell-Boltzmann instead of Fermi-Dirac statistics.
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§ 3. Multipole expansion of the perturbation Hamiltonian. The total
Hamiltonian of an assembly is
N
H =73 Hy, (26)
p=1
where in the classical relativistic case*) we have for the Hamiltonian of a
p-th microsystem 16)

Hyp = Zp {{mpic* + (cPpi — epiApi) 2]t + epigppi} (27)
i=1

in which ¢4; and A p; are the scalar and vector potentials at the point of the
¢-th particle having the momentum operator py;.
Expanding the Hamiltonian (27) in a power serics in Ap; we can write

Hy=HY +HP+HP +HP + ... =S HY, (28)
8=10
where H{"” is the Hamiltonian of the non-perturbated microsystem 7,
whereas its perturbation Hamiltonians of the first, second, third and fourth
order are of the form

2
H;,)l) _ 1 E e (sz pi + Api .sz) {I + O<_“>} + 24 eplwpl) (29)
i=1 mpz
‘ Vo 62 I v?
H;)Z) - %L~1 mpzcz (Apl AZJZ) 11 + O< c2 >}, (30)
H® Zp 3 (P i"Api + ApiPpi)(Api A Z)Jl —|—O<vl?_>l (31)
P i=1 mm g p v b v v l 02 J,
- 16 enrh o)
P i1 M8 pe 1 c? J

Although the second and higher-order perturbation Hamiltonians of
(30)—(32) are usually very small and lead to effects of order comparable to
relativistic corrections and retardation effects in the first-order Hamiltonian
of (29), there are, nevertheless, cases when they cannot be neglected as e.g.
in considering linear as well as nonlinear diamagnetic polarization.

We shall first discuss the consecutive contributions to the perturbation

*) In starting from the classical relativistic Hamiltonian, it was not our intention to construct in
this way a nonlinear relativistically correct formalism but we only wanted to show it was possible to
derive from it formally perturbations of higher orders in A (see expansion 28). Of course, quite
strictly one should start from Dirac’s relativistic equation % = Hpy with the Hamiltonian of a
particle in an electromagnetic field Hp = Bmc? + a+(cp — ¢A) + ep; the latter should then
be transformed to the Foldy-Wouthuysen representation Hpw = B[m2c? + (cp — eA)2]t —
— e(®t*A — @)pw, which can yield perturbations of order higher than the second with regard to
A if appropriate transformations e.g. Eriksen’s are recurred to.



ON NONLINEAR MULTIPOLE MAGNETIZATION 391

Hamiltonian from the potentials ¢55" and A3t of the external electromagnetic
field. In the general case, when the scalar and vector potentials are not
constant within the region of the microsystem (the field is generally non-
homogeneous throughout the region of a microsystem), one can expand gy
and A,; in a series in powers of r,; at the point of the microsystem occupied
by the i-th particle. Assuming that these potentials vary but slowly in the
region of the microsystem, we have the expansions,

W= S ] Vel 0, (33)
At 5 g Ar, ), (34)
n="90 n!

which by appropriate gauge transformations can be written as follows (sce
refs 8 and 10):

ol
(p;))ft (p(r’ t) - E '1/77 1)7,[”] E(n) (35)
n=1 .
o n
At — e Iy — 1 H(mn 36
= B gy e e X HO). (36)

Here, we have introduced the electric and magnetic field strengths of
degree  (traditionally we now denote the magnetic field strength by H)

Em — — pn- 1{i 4 4 V@} HW =pn x A. (37)

For n = 1, (37) defines first-order or homogeneous fields, for n = 2 —
second-order fields or field gradients, and for » = 3,4 — higher-order
degree space derivatives of the fields.

By the expansions of (35) and (36) the first-order perturbation Hamil-
tonian (29) can be represented in the form of a multipole expansion {neg-
lecting relativistic corrections)

s {M(")[n] Em + M™[n] HW}, (38)

ep mp

Hi}’ = Z epip(r, £) — Z

(
in which the first term represents the potential energy of the total charge
of the microsystem in a potential ¢, whereas the second and third, respective-
ly, describe interactions between 27-pole electric or magnetic moments and
an electric or magnetic field of degree #.

With respect to (36), the second-order perturbation Hamiltonian is
obtained as follows11)
et 20+, 59 1 g !

H® 1§ 20 H )]0 AGP[ng] HoD, (39
= -1 5 Ty T Hedie A0 )

Pl
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where
2
ning voooey. )
(nz) __. ~ i ni+nef YV (n)y (12)
(nl)Adﬁz — 77'71777 1 2 %= 711; 21Ym‘1 Yn'i,z
(1 -+ Dne + 1) 2 ;27 my

— Y;rél) .Y;)’I;Z) U} (40)

is the diamagnetic multipole polarizability tensor of rank #; - #s of the
micro-system 5.

In the same way we obtain formally from expressions (30)-(32) and (36)
the higher-order perturbation Hamiltonians given in the following concise
form (s =1, 2, ...):

@y _ Lz o QrAmt eyl g 1L )
iy CEELE T eyt S

X H®W [n)m At nlyy o] Hm | H®), (4]

wherein ®WAJ* ") denotes the multipole magnetic polarizability tensor
of order s.

The explicite form of the first-order magnetic multipole polarizability
tensor is given by (40), whereas the second- and third-order magnetic
multipole polarizability tensors by

3

(n)B(m+nz) — nn1ng Vé €pi phtatn %
me 200 + D(m + D(nz + 1) 3 5y m2,

? M ni), 3 L 3
X S, my, m)(Y WX rp)(Y 0 -Y0IU — Yooyem)  (4)
nN N3 wooe , ,
_ 7,n-+— 1+ na--ns x

8(n + 1)(ny + 1)(ne + 1)(ng 4+ 1) b = md; vi
X (o, m1, 7y, ms) (Y0 Y5 U— YWY 0¥ 00 - YOOU — YOOY ), (43)

(n) C%;}#— ne-tns) __

where S(n ny, #g, ...) is a symmetrizing operator denoting summation over
all permutations #, ny, ng, ...

We shall now discuss the perturbation Hamiltonian from internal fields
existing in an assembly of interacting microsystems. If we neglect retarded
time effects, we have for the scalar and vector potentials

Vg

) N e
(Pmt(Rpi) - Z E aj

- I 7_) (44)
a-1 j-1 |Rpi — Ryl
4P
. 1 N vy e R].
ARy = — v 45
(R ¢ q§1 7'§1 [Rpi — Ryjl 45
q#Ep

where by (2) [Rp; — Rgj| = [rp — rg + 15 — rg5) (see also fig. 1).
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Fig. 1. Schematic diagram of the geometry involved in the interaction of two non-
overlapping microsystems p and g separated by a vector distance r, — 7.

In the special case of nonoverlapping microsystems when |ry,; + 14 <
< |rp — rg| we can expand |Rp; — Ryy/~1 in the form of a double Taylor
series17)

) =) (ﬁ])nﬁl

Rpi — Ryl = ¥ %

=1 ne=1 nll %2!

m[ ](n T(Ilz)[”z] 1‘""?- (46)

m a4y’

wherein the tensor of rank #; + %9

WIT = VW b (47)
» q
describes (27:-pole) — (2%:-pole) ~ type interactions between microsystems
f and q.
By (26), (29), (44)-(46) and the definitions (9) and (11) we obtain for the
first-order perturbation Hamiltonian resulting from internal forces

N oo Dmyl o Dmgy ) 1
Hii=—%3X 13 = M FG) + X - = M) Fie, (48)
ne p= 11n =0 (2 ) ! ! n=1 (2%) 7 ]I
where
N oo 2nln
Fi)= X % (—0)m o 0T0 ] MY (49)
q¢=1 n1=10 ( %1).
Uk
N 0 2n, %1
Foo— 8 % (= L oT [n) MYy, (50)
g=1 ni=1 (2%1)

aEp
are the electric and magnetic internal fields of degree » at the centre of the
microsystem p due to the clectric or magnetic multipoles of all other micro-
systems of the assembly.
On substituting in (48) the fields of (49) and (50) we obtain in explicitc form

Hi) =
N N o0 oo An,+n, %1! %2’
— _ 1¥ E ~ E (_1) . f"}‘)[%ﬂ (”)T('”)L ]M((:,z) _+_
271:1 q=1 {m~0 na=10 (2711) (2%2) & !
a+p
- & 2” I_n2 %1’ %2 " ke n 1
+ 21 21 ( 1)"2 7'(2m;t2')77 anzl))[nl] () T;;(/[Z)[%Z] an/(;)[' (51)
=1 na—
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In the case when the spins of the constituent particles are taken into
account, the first-order perturbation Hamiltonian of (29) contains the ad-
ditional term18) (the spin-orbit interaction term is omitted)

Ly o ! !

H®spin = — — % 2L §,-(F x Ap)il + O<> 29a

sp ¢ 2 My Spi~( m)l I (29a)

and the 27-pole magnetic moment (11) in expansion (38) should be replaced
by

”p

n .
) _ (n) . B (n)
Mmp (% _|__ 1) ¢ 2 1 Wl/]n {Ym X Pl)l + (% + 1) »E sz(fpz va, )} (52)

where Sy; is the spin vector operator of the i-th particle.
In special cases we can obtain directly from expansions (38), (39) and (51)
the results derived by several authors (see refs 2, 3 and 7-13).

§ 4. Quantum-mechanical treatment of the multipole magnetic polarization.
We shall now discuss the 27-pole magnetic polarization tensor of (19) for
the special case of an assembly of non-interacting microsystems subjected
to an external static magnetic field. By quantum-mechanical statistics we
have

PV =p X ¢ IMY ©m py, (53)
[
where

@M eom = [y MMy, dr (54)

is the diagonal matrix element of the 27-pole magnetic operator M of the
microsystem (for simpler notation the full set of quantum numbers is
rendered by the sole quantum state index g) and

exp{—pE}

Py = E,_exp { FEk} (55)

is the statistical matrix in the presence of the external magnetic field with
B — (RT):

The eigenfunctions y, and energy eigenvalues E, of the total Hamiltonian
H for the perturbated microsystem satisfy the Schrédinger equation

Hyy = Egyy, (56)

where we assume, for generality, that the Hamiltonian is given by a power
series in the small parameter A(0 < 4 < 1)

H=YirtH® = HO 4+ JHO® |} 2@ 4 | (57)

n=0
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Analogously we write
pg = B AN ey, Eg = X AnE)Y (58)
n=90 k n=0

and obtain finally in the case of perturbations of nondegenerate stationary
states
8
ZO{IE‘ H;(rlb)cégl -n) __ E{(]’”c%’ )z)} = Q. (59)
ne

Since in the absence of perturbation H{) = E} ), one finds from (59) for
k#g,

8
fiogg ) = EI{E{(}” e — ? Hp ey, (60)
o=
and for & = g,
. .
) v o0 p(s—n)
ES = 21 Ez" HypP cpp=™, (61)
n=

where fiwgy = E; — E} is the difference between the energy eigenvalues of
the states g and % in the absence of an external field.
By (38) and (61) the first-order energy of the microsystem perturbated by
a magnetic field is
o Dyl )
EM=HD = _ ¥ g M| g (n] H (62)

gg o ( )

where (g IM;,’L‘)\ g> is the matrix clement ot the zeroth-order magnetic
multipole moment (the moment in the absence of an external field).
In second-order perturbation theory we have by (60) and (61)
E® — 51 Y o HYHY 4 HO (63)

kg a4’
k+g

which because of (38) and (39) can be written as

[} n |
EP = 3 S 2N H ) < MY g, (64
na1 (2n)!
where
(1) o 21 gy ]
GIMP o= X —-—= <gI®WAL| g [(n)] H® (65)
ni=1 (2”1)!

is the diagonal matrix element of the first-order magnetic multipole moment
with

g ImARY &> = g |MAGD &> 4 (g |WALY)| & (66)

the diagonal matrix element of the total magnetic multipole polarizability
tensor.
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The first term in (66) is the diamagnetic part with (W A{) given by (40),
whereas the sccond

GIMAT g =1 8 ot (<@ 1MW k> MO g> 4
k#y
+ <g IMGO| Ry<k M) g>)  (67)

"

is the paramagnetic part of the magnetic multipole polarizability tensor.
In a similar way, one obtains from (41), (60) and (61) the magnetic
energies of third-, fourth- and generally (s + 1)-th-order

1 g
B oy H® MO oo 68
u s+ 1 "Zl anyy T € IML o (68)
where
() ] oo oo gmat.tme gy ) g
GMPlon=-5 X .. % 1 )

s! ni=1 ns=1 (2%1)' (2%8)'

X (g WAL o5y o] Hw L H®Y(69)

is the diagonal matrix element of the s-th order magnetic 27-pole moment
induced in the microsystem by the external magnetic fields H®), ... H(®),

By definition (54) and expressions (53) and (60), the matrix element of
the total 27-pole magnetic moment can be expanded as follows:

(8)
@ |MY gop = Z < M| g, (70)

where the moments of consecutive orders are given by
(s)
EIMY o = 2. z ety <k IMG| b, (69a)

m
r=

or, in explicite form, by (69).
Thus, with regard to (55), (68) and (70), and since in the case considered
0)
I IMY e py = X EN py =0,
1 g
we can expand the multipole magnetic polarization of (53) as follows:
@) (3)
P;)" P(n) + P P(n + ..., (71)
where the first-, second- and third-order contributions are given by
(1) ] (1) 0)
Pl = p B pyi<g IM)| oo — g [M()1 > EY, (72)
g
(2) (2) .
P = p 3 plice M) o — Blcg IM) > B +
g

() 0
+ < MY on E) + 1% 1M1 > EVE®MY,  (73)
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(3) (3)
P — o 3 e 1M oon — Bce M| E + g IM3Y) o ES) +
g
(1) . o
— e 1M o — g M| g BLY) (B — 3 o B +
k
(0)
— IBEY Y — S pL B B+ 40 ¢ M, @ B B ES, (74)
k

wherein pY = exp{—BE}}/ X exp{—pE}} is the statistical matrix in the
absence of an external field.

§ 5. Tensor of magnetic permeability. In the case when an intense magnetic
field is applied to the isotropic medium, its tensor of magnetic permittivity
experiences a nonlinear variation which by (25) and (71) is given as follows
in the dipole polarization approximation:

3)
(4 — po)-H = 471{1’(1) + P+ ) (75)

wherein
1)
(o — U)-H = 4zPD (76)

is the magnetic permittivity in the absence of the strong magnetic field.

i) Weak magnetic field. We will first compute the first-order
multipole magnetic polarization which by (62), (65) and (72) can be re-
presented in the following explicite form:

W g !
P =p s, o Z pAcg |™ ASl e +

1= 1 (2 )'
+ B IMY o< IMY Y m] H®D, (77)
or in the special form
) 2y

n!
Bl =r (2n + 1)! Y pof<g WA g>[2n) Un 4
g

+ Bg IMWP| [n]<g IME| @}y Hw  (78)

hold for the case of spectroscopic stability?2).
The first part of (78), independent directly of the temperature parameter
§, can be written in simpler form

)
Pl = pa"H™, (79)

where we have introduced the mean value of the multipole magnetic
polarizability of the microsystem
2np!

altm — (Zn——l—l)—' Y pig IMAW) g>[2n] Un (80)
‘g
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consisting the diamagnetic part

2n2 P e 1
@2n) . 0 (2 2n
W= i e S AT e e
and paramagnetic part
i ontly |
Uy = o X Z Pyry <8 IMLY] B>[n] <k IMD{ o>, (82)

v 2w+ 1)t
If, in particular, the microsystem possesses the axial symmetry, we have 14)

M [n] M — -25,2(") -y, (83

and expression (82) assumes the simpler form

al?") = . ¥ Y plwg g M) k2 (84)
T 2 1) b G, e

where M{ is the scalar multipole moment of the axially-symmetric micro-
system.

Similarly, by (83), the second temperature-dependent part of (78) becomes
(II’)‘) ——ﬂ 0 IM™| g2 Hm 85

T N _ 9 n n

In the dipole (» = 1) approximation, expressions (77)—(85) yield the well-
known results of Van Vleck?).

i) Strong magnetic field. By expressions (62)-(69) the explicite
form of the second-order multipole polarization of (73) is

(2) o oo 2m+n, gyl gyl

m 9 Z E B S p— }_“ 0 < (n)B;:LL1+na) S +
2Pmﬂ n=1 (2m1)! (2m2)! 7 Pol<8 | lg

+ (< 1M @< | ™) ALP| g5 4 248 |MAGY] g><g M) ) +
+ 02 M) @ <el M1 g><g [MG| @} [m1 + me] Hw) H). (86)
In the case when the applied magnetic field H is homogeneous (H(® = 0
for » > 2) the second-order dipole magnetic polarization does not con-
tribute to a nonlinear variation of the magnetic permittivity of (75), since
the terms on the right-hand side of (86) vanish for n = #; = ng = 1 by
averaging over all classical orientations of the microsystems. At the same
time the quadrupole magnetic polarization of second-order is nonzero and
is given by

(2)
PLY = Jop S Al(U : BV s Ut M s DAL+ 2MY-OAL s U) +
+ 2M{) M) M1 (3HH — UH?2), (87)
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wherein @A{}) and @B\ ") are the matrix elements of the first-order and
second-order quadrupole magnetic polarizability tensors due, respectively,
to the first and second power of the homogeneous magnetic field.

The explicite form of the third-order multipole magnetic polarization of
(74) is, by (68) and (69),
(3) o0 oo oo D tny by 91 mol ngl
PR—4p X ¥ X

oP ni=1 na=1 na=1 (2%1) (2%2) (2743)'

+ A< IML)] g><g |m) BRet™] ) + 3¢¢ r<">B£,’f” "< IMEY| @) +
+ 3B(<g IMAGY &> + Bg M| ©<g M| ©)[<g [ ALY g> —

— X pick ) AGH k> + B(<g IMOY] ><g IM3| &> —
k

{<g }(”)C("H na 773)[ g> _}_

m m

— Xk M <k M B)] — 267g M) g<g (ML g IMGY) g
k

X g M%) g>}n1 + ne + ng) H)H) H(ny, (88)
In the dipole approximation (» = 1) and when, as above, the magnetic

field is homogeneous (#1 = ng = ng = 1) the third-order magnetic polar-
ization of (88) is nonzero and finally yields the result

mey

P == 153 o030 : WCEHTHD s U 4 682U : MBIV ML -
g

+ (1)A(1) s (AW + Zﬂ(M(l) (1AM, M(D)] +

my my my

¢ AWM MO M<1) U: (3WAWL 0(1)A(1)
—|— ﬂ( my + /3 )[ ( mg E ) _l_

myg mk

+ FEMUY-MLY — 5 5 MY M) HE (®9)
where WAL WBOFD and WCH 1D are matrix elements of the tensors
of the first-, second- and third-order dipole magnetic polarizabilities pro-
duced by the first, second and third power of the uniform magnetic field,
respectively.

In general, when the applied magnetic field is inhomogeneous, beside the
contribution to @ — go from third-order magnetic dipole polarization as
discussed above, we obtain an additional nonzero contribution from the
second-order magnetic dipole polarization (86); namely, we have,

@

PO _ Lp S p%U s OBUSY s U+ B2U : WAL -MY)
k

my

+ WAWN s M) 4 MO -ME-MO} HO -H®,  (90)

myg my my
wherein VAP is the first-order dipole magnetic polarizability tensor due
to the magnetic field gradient H® and MB{*? is the second-order dipole

magnetic polarizability tensor given tise to simultaneously by the fields
H® and H®,
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§ 6. Discussion and conclusions. For micro-systems with centres ot
inversion (diamagnetic molecules for which MY = MBI+ — 0) we obtain
from (75) and (89)

2m 14
B o= =P 2. PASU s WCLTITD U 4 WAL + WA, -
+ (U: WA Us BWAL — 5% p,g(l)A(U )]} HH, (91)

mik

where we have by (40) and (43) on neglecting paramagnetic contributions

WAL = — 402 <g *L iUt — rutin) g>, (92)
S(1, 2,3, 4) 4
(1+1+1) ’L z
wey “‘"‘1'2”;3@'” <g m? PUre — rut)(riUss — risry ‘ g>

(93)

eq. (92) defines the diamagnetic (first-order) dipole polarizability tensor
calculated theoretically for some molecules by Tillieu!8) and others19),
whereas cq. (93) defines the diamagnetic third-order dipole polarizability
tensor.

In the special case of microsystems possessing the spherical symmetry
eq. (91) reduces to the simple form

27
" — o= TPCmHH: (94)

wherein by (93) we have

g> (95)

3
1 EPOU . (1)C(1+]1 1) : U = ,70,06 <g‘ m

tor the scalar third-order dipole magnetic polarizability.
Using the fact that in the absence of a strong magnetic field the magnetic
permittivity tensor is isotropic, uo = uoU, expressions (76) and (79) yield

(;MO e U) ‘H — (MO — 1) H == 47'LpamH, (96)
and we obtain from (94) for the relative nonlinear variation of the permeabi-
lity

— woU 1
Mol 1 < Cm ) HH, (97)
Ho — 1 6 aAm

where a,, = a2 is the mean dipole Langevin-Pauli diamagnetic polarizability
given by (81) for n = 1.

Since for atoms the ratio cyfam, is at best of the order 10-20, by (97) the
nonlinear variation is of the order 10-21H2; this is a very small variation,
not accessible to observation.
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In the case of anisotropic microsystems possessing the axial symmetry
we obtain by (91) and (96) in a good approximation

u—wlU 28
wo — 1 B 45ay,

E Pg(“%y o arhg)z HH’ (98)
g
where a/!/ and a;; denote, respectively, the dipole magnetic polarizabilities
in the directions parallel and perpendicular to the molecular axis of symme-
try.
Applying the formula of (98) to benzene or nitrobenzene we obtain in
normal conditions a nonlinear change in permeability of the order of 10-15H2.
Similarly, for paramagnetic microsystems, one obtains from (75), (78)
and (89), on neglecting the (in this case) small diamagnetic terms,

" — ,UOU B ‘32 %Pgm?](smg —35 %pgmz)

S 99
wo — 1 30 > pgmg HH, 49)
g
where by (52) for # = 1
1 7
m = M;,lb) = — — (r; X pi + 28)) (100)

2¢ ;o1 my

is the dipole magnetic moment.

For a paramagnetic gas of oxygen molecules the formula (99) yields a
nonlinear variation in g of the order of 10-13H2,

As very intense magnetic fields of the order of 108 Oe are at present being
produced in laboratories applying pulse methods, it is obvious from the
preceding evaluations that nonlinear variations in the magnetic permeability
of appropriately chosen diamagnetic or paramagnetic substances have
become accessible to observation. Such experimental investigation will by
no means be easy; nevertheless, in favorable conditions it will be feasible
and no doubt will yield important information permitting to gain deeper
insight into fine details of microsystems. Hence investigation in this field
can be fruitful, providing quite generally data on the multipolar and non-
linear magnetic properties of molecules.

The considerations of sections 4 and 5 can be generalized to dense media
by a procedure similar to that applied by Jansen and Mazur29) for calcu-
lating the linear electric polarization. In this case, in addition to the full
Hamiltonian of interaction between the microsystems and the external
magnetic field, one has, moreover, to apply the Hamiltonian of mutual
interaction between the microsystems as defined in a first approximation
by the multipolar expansion (51). This problem will be discussed in a
separate paper.

The formalism developed in sections 2 and 3 is in general applicable to
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the case of time-variable electric and magnetic fields as e.g. conveyed by
a light wave. This case is all the more interesting as it is related with the at
present highly improved laser techniques which provide an excellent ex-
perimental basis for the investigation of various novel nonlinear electro- and
magneto-optical effects11). Subsequent to some modification (e.g. by applying
time-dependent perturbation theory) the formalism proposed above can
be employed for calculating e.g. nonlinear variations of the Faraday cffect
or nonlinear variations of the optical activity.
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