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By statistical mechanics and a multipole tensor formalism, an expression for
the dielectric polarization of dense mixtures is derived, of such generality as to
account for certain new factors of a molecular nature not taken into account in
hitherto-existing theories. The general results are discussed in some special
cases of dipolar, quadrupolar, octopolar, etc. systems and applied to moderately
dense gases, in which the second dielectric virial coefficient provides the basis
for determining molecular multipole moments or multipole polarizabilities of
order higher than dipolar. 'This indirect method yields a quadrupole moment
of 5% 10~ e.s.u. cm? for the CO, molecule and an octopole moment of
4 x 10-3% e.s.u. cm?® for the CH, molecule.

1. INTRODUCTION

The statistical theory of isotropic dielectrics initia.ted by Kirkwood [1] and
Yvon [2] has been modified and further developed in various ways by several
authors [3-18]. Most theoretical work on dielectric polarization dealt with
onc-component systems of identical non-polar spherical molecules [1-7], dipolar
molccules [8-14] and quadrupolar molecules [15-19]. Brown [3], Harris and
Brush [20] and Buckingham [21] discussed the application of the statistical
mechanical theory of diclectric polarization [8-12] to dilute solutions of dipolar
molecules in a non-polar solvent. A virial theory of dielectric polarization of
compressed gas mixtures has been given by Buckingham and Raab [22] (see also
ref. [23]).

The importance of investigating the dielectric polarization in various substances
resides primarily in the possibility of obtaining information not only on the mole-
cular dipole moments themselves, as already shown by Debye, but moreover
on the higher order molecular moments such as quadrupolar [15-19], octopolar
[23-25] or hexadecapolar [26]. Obviously, such information on the molecular
multipole moments of order higher than dipolar can be obtained only when,
in the medium under investigation, molecular interactions are sufficiently apparent.
These interactions will lead to an effect consisting in the induction, in any given
molecule of the dense medium, of a dipole moment by the electric field of the
permanent quadrupoles [15-19], octopoles [23-25], etc. of its neighbours.
Clearly, such data on molecular multipole moments will be of a rather orientational
character. Nevertheless, this indirect method deserves further study.

The present investigation is aimed at deriving a statistical-molecular theory
of dielectric polarization for multi-component systems on the basis of the existing
theories. A consistent and general tensor formalism will be developed which
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enables us to obtain a general expression for the dielectric polarization in terms
of multipole permanent moments and multipole polarizability tensors of
molecules of arbitrary symmetry as well as of statistical averages of inverse powers
of the mutual distances between molecules interacting in pairs, triplets, etc.
The theory thus generally formulated can be applied to a wide range of vastly
varying special cases beyond the one-component systems mostly discussed
* hitherto, comprising two-, three-component systems, etc., consisting of quad-
rupolar, octopolar or hexadecapolar unlike molecules.

In the Appendices we glve in explicit form the first, second- and third-order
multipole moments induced in a molecule by a strong inhomogeneous electric
field as well as the higher-order ‘energies of interactions between multipolar
molecules. Various aspects of intermolecular energies have been discussed and
developed in suitable approaches by several authors (see refs. [27-31] and the
papers cited there); a tensor formalism for the multipole expansion of inter-
molecular energy was given by Frenkel [27], Carlson and Rushbrooke [28]
and later by Jansen [31], whose general and concise tensor notation we use in the
present paper.

2. GENERAL THEORY

We shall considerﬂ/a medium of volume V placed' in an external, in general
inhomogeneous electric field with the potential ¢. The tensor of the electric
permittivity of such a medium is given in general by the equation [17, 32]:

d 2mn!
(e-U).E=tn 3 (1)1 o Vr-ifn—1]PO, (1)

. n=1
in which P® s the 27-pole electric polarization operator of the medium and E
the homogeneous electric field in the medium; U is the second-rank unit tensor,
V the differential operator and the symbol [#] denotes n-fold contraction of the
product of two tensors of rank ».
In the presence of the electric field at thermodynamical equlhbnum of the
system we have by classical statistical mechanics

M;)e p{ US::,I‘gb)} .

f exp{ U(/:]'fﬁ)} b ’

wherein M{)(,¢) and U(r, $) are respectively the Zn-pole total electric moment
and potential energy of the system at conﬁguratnon r in the electnc field with
potential ¢.

_ In the case here considered we have:

Ul )= U 0) 5 20 [V
T =U(r,

’ n=1 (2 )' 0

~ where U(r,0) is the potential energy of the system in the absence of an external
electric field (¢=0) and E®= —{V"g}, is the strength of the external electric
field of V-degree n within the medium and E{®—at a large distance from the
medium or in the absence of the medium (in vacuo).

P =

(2)

M [n] dE®, 3)
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1f the medium contains N, molecules of the firstspecics, N, ofthesecond , . . .,
and N; of the ith specics, its multipolc clectric moment is given by:
S Mo :
(1) = ) -
MP=2 2 M, *
i p=1

where ;M{") is the total 2"-pole electric moment of the pth molecule of species
i. Generally, when the electric field is present, M can be expanded in the
form: -

o (8)

(1) - M 4 M) + M 1. Mo (m
= ! 3 3

0
with “;;;’EM;,’? denoting the 2"-pole electric moment of the isolated molecule
in the zeroth approximation, i.e. the permanent multipole moment in the absence
of electric fields (see Appendix A), g

In the case when the molecule of a medium is acted on by the total electric
field E("+ F® of degree # the multipole moment of order s> 1 induced in the
pth molecule of species ¢ is of the form:

() 1 = ® 2mt gy Ny |
M = 1 2
2. % (2n)! . .. (28!

i 1
s‘nl=1 fg=1

X OAGE -ty 4 L (B + FO) (EyP+F00)  (6)

with A;';"L “+*") denoting the sth-order multipole polarizability tensor of a
molecule p of species ¢, This tensor describes the sth-order polarization of the
2"-pole moment caused by the sth power of the electric field of degree n, (see
Appendix A). ‘ :

- The molecular electric field F% of degree # at the centre of the pth molecule
of species 7 due to the other N—1 molecules of the system in the presence of an
external electric field is defined in general as [32]: o

N @ 2™m!
Fi=22 2 (-1 m‘”’T;’;"[m]TM%”, 7
j g=1 m=1
. q#p ’
wherein :
T = _ grtm (..1_)
rpq

is the tensor of rank # +m describing the (27-pole)-(2™-pole) interactions between
the molecules p and ¢ separated by a distance ,,, (see Appendix B); here, the differ-
ential operator V*+™ is directed from molecule ¢ to p. ‘
Equation (1) with the expressions (2)~(7) provide the basis for the general
theory of the electric permittivity of a multi-component system whose components
consist of molecules possessing multipole permanent electric moments as well
as induced multipole moments of the first, second, third, etc. orders given by
(6)fors=1,2,3,.... The multipole polarization operator (2) can, in general,
be expanded in powers of the applied field E, and its derivatives. Thus, the
theory as formulated above is applicable not only to the case of a weak electric
field but to the cases of non-linear variations of the electric permittivity tensor
as produced by the square of a homogeneous electric field (E= E® = — V), by
~ the gradient of an electric field (E® = VE), or by electric ficlds of higher degrees,

.
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such as the gradient of a field gradient (E®=VVE), and so forth. Obviously,
‘a theory thus generally formulated is, in its explicit form, apt to present obstacles
of a mathematical nature; this, however, is compensated by its wide range of
applicability to various special cases, of which only some—and we might well
say the simplest—are discussed in detail in this paper.

In the case when the applied electric field is weak and homogeneous and when
for convenience the isotropic medium is represented as a macroscopic spherical
sample in vacuum for which (e+2)E=3E;, equation (1) yields by (2) and (3)
for the Clausius—Mossotti function:

e~1
2 et lo (8)
where
4r s O
Pp= —3‘<E(MT‘D-E)> ’ (9a)
is the distortional or deformational polarizability of the medium and
=— M, 1, @)2
Po 3kT<(M > 3kT< (M. ) (©8)

is’its orientational polanzablhty e is a unit vector in the direction of the applied
electric field E,
The brackets in (9) denote the statistical average at zero external electric

field:
f X(r,0) exp{ UE’,}O)} dr

oo ]~ L0

3. DISTORTIONAL POLARIZATION

(X)= (10)

We now discuss the distortional polarizability of (9 4) which in the approxi-
mation of the first-order- dipole moment given by (6) for s=1 and n=1 is of the

form:

20 IFm
= _.z S {(e OAD &)+ 3 (e.(l)Ag})[n]—",'>}. (11)
T p=1 n= 1 2 )' N an

This is a general equation for Py, containing the effects due to induced multipole
interactions of unlike molecules of the system; beyond the Kirkwood-Yvon
effect from fluctuations in the induced dipole moments (n=1), equation (11)
contains similar effects from quadrupole (n=2), octopole (n=3), etc. moments
induced in the molecules by the molecular field gradient F®, gradient of field
gradient F, etc. of the other molecules.

By methods of statistical mechanics, equation (11) with (7) can be expressed

formally as follows:
Py= zxp(z)+ Z'V x; P“7)+ EV X5 p(ux)+ (12)

where x,= N;/N is the mole fracnon of the zth component of the system,



Multipolar theory of dielectric polarization in dense mixtures 553

The first term in (12) expresses the well-known additivity of distortional
polarizability :

PD(“=4§Na,-‘ , ' (13)

of the individual components consisting of non-interacting molecules possessing
the mean dipole polarizabilities a;=MA{D: U/3.

The second, third and further terms of (12) responsible for the derivations
from additivity of Py, arise from the interactions between unlike molecules in
a dense medium, The quantities P and P{® are in general of a very compli-
cated form and, in the special case when the correlatx?n functions do not depend
on the mutual orientations of the molecules, are given' as follows:

o 2m 2020 2! Pml(2n + 2m)! §
(i) — ___ 4
Py 9 ,El »51 (2n)!(2n+1)1(2m)!

x {a@(OAP [+ 1TWAD) + (VAP 1+ 1]AD) a2my}

X J‘J\rz;-qﬂn-}-mﬂ-l) ng)(rp, rq) drp drq’ (14.)

I ‘
P{ijt) = 7 V (n+1)(2n + 1){a@;a™ + aaff™a;, + aF"aa,}

n=1 —

Fog+ ¥ :
ff pa’ar) l+2)Pu+1<:q v > nG(rpr P t,) dry dr dr,. (15)
pdar

Here,

(21) "n! ) An n ' ’
= oy 1)!( AP [2n]U : (16)
is the mean value of the 2"-pole electric polarizability of a molecule of species
i due to an electric field of degree n and P, is the Legendre polynomial of degree
n+1. In(14),#{ (r, r,)is the binary distribution function for a pair of molecules
p and ¢ of species ¢ and j at positions r, and r,, whereas in (15) O (Y g r,.)
is the ternary distribution function for trlples of molecules p, ¢ and r of specxes
i, j and k at positions r,,r,and r,.
If the higher- -order 1 terms are neglected we obtain from (14) :

Pp= 7 [ [(atas 3+ 3201zt + Lo : o)
+ (VAR OAM),Jr=8 4 $[a,(WAD : :(‘”A,-"-:’) + (OAP :: OAD) g Jr-10
28 . .
+50;33)+ (@ :a)g,Jrd+ 5 [GOAP § OAD) 4 (VAP § OAD)g Jr0

+12[g;(DAP® :: OAD) + (DAD 1 OAD)g Ty 124 1 (rp, v ) dr, dr,,
' (17)
where, by (16), ¢;=a®=U :@A®:U/15 is the mean ,quadrupole polarlzabxllty

descnbmg the quadrupole moment @AP: F® induced in the molecule of species
¢ by the molecular electric field gradient F(2) In (17), ®A®, OA®), ., . are the
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tensors of dipole polarizabilities describing the dipole moments MA®: F{® and
MA® ¢ F® induced in the molecule by the field gradient F® and gradlent of field
' gradlent F®, Alternatively, the quadrupole polarlzablllty tensor A and
octopole polanzablhty tensor @A define the quadrupole moment (2>A(1> F
and octopole moment ®A{D ; F{Y induced in the molecule by the field F. '

The successive terms in equation (17) with (A5) correspond to the term
discussed strictly in explicit form by Jansen and Solem [17] on the basis of
quantum-mechanical perturbation theory.

As a partlcular case of interest, we shall consider that of molecules with
centres of inversion for which (17) yields in a good approximation:

P = %ff{[ai(aj 1a;) + (3, :3))aylr,,
+5[g/(2; :a)) + (3 2 )91 }"(2)(rp' rg)dr,dr, (18)

or, if the molecules possess moreover the axial symmetry :
P@= T f f (a1 +26) + a (1 + 26) 78

+5laas(1+2¢ )+ a2(1+ 262), )5 B 1y v,) dr dr, (19)

where ;= ( ")-—a(‘))/Sai is a parameter determining the anisotropy of dipole
polarizability.

For a one-component system with molecules possessing the isotropic dipole
polarizability (4;#0,x;=0) but no quadrupole polarizability (¢,=0), equation
(19) yields the result of De Boer.ef al. [4].

We now consider the further contributions to Pp from induced dipole moments
of the second and third orders given by (6) for n=1 and respectively for s=2 and
s=3. In the zeroth approx1mation by unweighted averaging over all possible

orientations of molecules BM(U/BE vanishes, whereas BM(”/E)EO is non-zero
and yields the following contribution to distortional polanzatxon

‘i § 2rtm(nlm! )2 (2n +2m)!

w1 me1 (21) 120+ 1)1(2m) ! (2m + 1)

X{(U :(1)C§_1+2n)[2n]Un} (M]())z)[m]M](_,;;)) '
+ (Min)[n]Msn))(U :(1)C§1+2m)[zm]Um)}

pi="
Py 9

x ffrp—qmwm“rl)n(l)(rp’ r )dr,dr , (20)

where (‘)C(1+2”) is the third-order dipole polarizability tensor of the molecule
of species ¢ due to the second power of the electric field of degree n.

In the case of molecules possessmg only the third-order mean dipole polanza-
bility ¢,;=U :®™C{® :U/5, the expression (20) becomes:

P(u)—/s‘” o 2”(n+1) n!

27 (2n)!

n=1
+ (Mf."’[n]Mf."))rj}f (rl;,‘-’(“ T (r,, v ) dr, dry, (an

{e:(My[nM{)

-
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Hitherto, in the foregoing calculations we have considered the simpler cases
when in the definition (10) the potential cnergy U(-r,O)= U(r) depended only:
on the positional variables v of the molccules.  If in general U(r,0) consists
besides Li(r) also of that part of V(r, w) which depends both on the positional
and oricntational variables r and w of the molccules, we can obtain some further
contributions to P%;,. However, we shall restrict these supplementary calculations

(2)
to the contribution resulting from the second-order dipole moment M{). By
(6) for s=2 and n=1 we have: ‘

} :
{ MS}L) * 2" (1)3(1+n)[1 +"]eF{)"); Cy (22)
8L J E=g "=1 (2 ) ?

where MBI+ is the second-order dipole polarizability tensor due to the molecular
electric field F(® of V-degree n at E;=0.

In the case when V(r,w) arises from electrostatic interaction between the
2"-pole permanent electric moment of one molecule and the 2™-pole permanent
electric moment of another, i.e. when (see Appendix B)

Vrw)=-13 3 3 3 3 (-1 SR MR T M (23)
rw)=— n T m
2_1] p=1lg=1n=1m=1 (271)'(2 )' v
is non-zero, we obtain by (94) and (22) the following contrlbutlon
27 202 2vm(2n+2m)l(nim!)?
(i) =
PY = qr 2 ,,El Zn)1(Zn + 1)1(2m) [(2m + 1)1

x (M [m]M™) + (M [n]M‘i'))(U s OB [y M)}
f f rotnkms (e ) dr, e, (24)

which, as we see, in contradistinction to the preceding contributions (14) and (20),
depends directly on the temperature.

If, in particular, the molecules possess only the permanent dipole moment
M= 2k, expressions (21) and (24) yield:

iy_ 10m ith; _
p§)»=_27{w}+“gc,.+ T by i) } f f w(r,, r)dr,dry  (25)

where b, =U : ®B®  k/3 is the mean second-order dipole polarizability.
Analogously in the case of molecules with permanent quadrupole moments
M® = O, expressions (21) and (24) reduce to:

P(w—__H{ (,:0,)+(6;: 0),]r“8+m——[(u  OB):0,)

{(U OB M)

x (0;:0,)+(0;:0,)(U :WB®: ,)]r—m} #D(r, ) dr,drg  (26)

In a similar way we can calculate some other contributions to Py, dependent
on T-1and T2 (see refs. [22, 23, 32]).

4, ORIENTATIONAL POLARIZATION

In the absence of an external electric field (E,=0) all directions of M® with
respect to e have the same probability, so that (M®.e)? appearing in (95) can
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be averaged over all directions and we obtain for the orientational polarizability
of multi-component systems :

Ni Nj f ‘
M. M ), MO
. PO 9kT< > Z pzl qE] T qj> (27)
We shall discuss this equation only for the case when the system consists
. of molecules presenting no permanent electric dipoles (M{»=0) but possessing
permanent electric moments of higher ordersn>2. Up to the first- order induced
dipole moment resulting from (6) for s=1and n=1 at E;=0,

') ® ,
M= 3 AR, (28)
equation (27) yields:
® ® Nty Ni NXj )
Po= 9kT ‘? 2 z:1 (2n)!(2m)! 21 2:1 ((I)A(") F(")) ((I)A‘”')[m]F‘"")> @)
i n=1m= i q=

With the molecular electric field of (7) this equation can be represented in the
form: "

Py= 3 xp0, P+ 3 w0, PG : (30)
i ik
where in the special case when V(r,w)= 0 we have:
Py = 4 Z 2 20+m(2n +2m+2) ! [n!(m+ 1)!]?
9T (2n)!(2n+1)1(2m +2)!(2m + 3)!

n=lm=1

 { (CAPLL+ R AR M1+ M)

;m +2 (DAP[1 47 ]MED)OAM L 4 m]MG-+m)

# (ML M) AP+ nOAPR) |

Xff roAnimt D@D (r v Ydr, dr,  (31)

27(n+1)ln
(1k) —
PS 27kT )

n=1 (2 )'
+ a,(M{P[n]M{M)a, + (M [n]M{")a;a,. }

x f f f (ot o)+ H('M"m)ng}g(r,,, ro 1) dr, drodr,  (32)

Dy ar

{aa (MPnIMP)

Tor molecules possessing only the permanent quadrupole moment expression

(31) yields the formula [23]:

4 a,:2)(0,:0,)—-6(a;: 0,)(a; : O,)

(i) = e
P= prer 562,

5(0;:0,)(a, :2,)) f f sy O(r,, r)dr,dr,,  (33)
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which in the case of axial symmetry assumes the simpler form:

2

(1) =
! 15kT

{5ai(1+21})07 - 12a,0,a,1c,0;

+50%2(1+21)) f f S (r,, v ) dr,dr,. (34)

Formula (33) or (34) determines the contribution to P, from the effect con-
sisting in the induction, in a giveri molecule of the medium, of a dipole moment
by the clectric field af the quadrupoles of its neighbours [15,16], This formula,
when applied to a single-component system, yields immediately the result
derived by Jansen [17].

In the case of molecules having only isotropic dipole polarizability of the first-
order the general expression (31) can be simplified to:

2r 2 2"(n+1)!n!

Nz e ¥ 7 {a2(M(0) (n)
P'= opr 2,y MM

+ (MM [n]MW)a2} f f Pyt D (p, v ) dr, dr,,  (35)

or to the still simpler form:

(
y 27 2 .
PY= son 3 (14 DakMF + (M{9a) f f Pt D@ (e rYdr, dr,  (36)
if the molecules possess moreover the axial symmetry, i.e. when
(Zn)!
M@ Mo = (2
M [n]M{ eHE {MPR, (37)

where M{™ is the 2"-pole scalar electric moment of an axially symmetric molecule
of species 1. ‘ _

Formula (35) can be used, 7. a., in the case of tetrahedrally symmetric molecules
(e.g. CH,) having the octopole, M)=Q, and hexadecapole, M$)=d electric

moments ; namely, we obtain in this case the formula:
32
P= e | [{ a0+ azapyr

25
+ 2 (a3 @ga]z)rp—qw}ng)(rp, r)dr,dr,  (38)

which describes the effect arising in a dense medium owing to each molecule
gaining a dipole moment under the influence of the electric fields of octopoles
and hexadecapoles of its neighbours. For ®=0 and a one-component system,
this effect was first computed by Johnston et al. [24] and measured in methane.

For Q=0, formula (38), in turn, can be applied to octahedral molecules
(e.g. SFg), in which case the first non-zero permanent moment is hexadecapolar .

We shall now calculate the contributions to P, arising from the potential
energy V(r,w) given by (23). However, we assume for simplicity that the
multipolar molecules of the-system are isotropically polarizable and mutually
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interacting in pairs only.  'Thus, by (10), (23) and (27) we obtain an additional
contribution to /) dependent direetly on 1+2: :

iy i \' 20t L (- 1)
ORI &, ST 2u+ 1)I2m+ 1)1

=2 m=2

aa;(M{P[nM{)

(M9 [ ]M{) f f (e, b)) e, ey, (39)

This expression yields for axially symmetrig duadmpolar molecules :

. B P me
P = o5 44O 0207 ff ‘p;"ngf’( ro)dr,dr, (40)
or, for molecules possessing the tetrahedral symmetry: |
2567 : ’
P= s 35T % ‘ZQ’sz oa 5 (T "q) dry dry, (41)

if the term with hexadecapole moment can be neglected.

Quite similarly, expressions (31), (35) and (39) can be apphed for other kmds
of molecular symmetry, but we shall refrain here from writing the results obtained
in the various special cases [32].

5. APPLICATION TO GASEOUS SYSTEMS AND DISCUSSION

In the case of very dense systems, P and P@® cannot in general be reduced
to a form suitable for numerical calculations and for subsequent comparison of
equations (8), (12) and (30) with the experimental data. Only in the exceptional
case of imperfect but not too dense gases can we confine ourselves to pairwise
interaction between the molecules for which P® can be reduced in general to a
form adapted to numerical evaluations. In this case of moderately dense gases,
the binary distribution function can be expressed as follows [4]:

ey =rtexp { - U L1406 (42)

with p = N/V denoting the average number of molecules of the system and u;(r,,,)
the potential energy of radial interactions between molecules p and ¢ of species
¢ and j separated by a distance 7,,,.

If u; in (42) is the Lennard-Jones potential of the form:

=t (32 = (32) @

we have:
f f (v v ) diy drg = o Fr(y,) (44)
P syu% : Yij
wherein [33]
e 1 mt+n—3
sty ) = 1/2(28+3—n)/2 2m(s —1)/8 ,
Hit )=y § —yge-onn (2222 (45)

with ¢;;and o;, denoting the well-known central force parameters and y;;=2(e;/k T)vs
and b;;= §7No},.
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With the help of (44) the quantity P60 discussed in §§ 3 and 4 can be written as:
Py 17 U B0 (p)}, (40)
where B{i7 is the second virial coeflicient of diclectric polarization.

In cases when the values of the molecular parameters ¢; and o,; arc known,
we can use expressions (44) and (46) for evaluating B{) numerxcally, obviously,
according to the system dealt with, one will have to assume such values of the
molecular quadrupole, octopole, etc. moments as to achieve satisfactory agreement
~with the experimental data available for the second dielectric virial coefficient.
In this way we cap gbgam information ceneerning the values of the multipole
electeie moments of various molecules:

For the sake of simplicity we shall carry out the evaluation of B, only for a
one-component gas. In the case of a quadrupolar gas we obtain from equations
(19), (34), (40), (44) and (46), if the anisotropy in polarizabilities are neglected,

B (S ros(B)oe ) oo
e (2 {(5) (3 e

B (@)

Similarly we obtain for B, in the case of tetrahedral molecules possessing only
the octopole moment €, :

e S (B o F(E) ) o

The table compares the values of Bl = By + B, calculated from equations
(47) and (48) for N, and CO, and equations (47) and (49) for CH, with the
experimental data [18,24]. We have performed the theoretical calculation
for simplicity for s=12 and ¢=6 (in this case the functions H12~8 are to be found
tabulated in ref. [34]) with the help of the following molecular data [30,35] for
‘Np:efk=91"5K,0=3-6814,a=1-76 x 10-24 cm3, for CO,: ¢/k=190°K, o =3-9964,
a=2:92 x10-%'cm3, and for CH,: ¢/k=137°k, 0=23-882 34, a=2-60 x 10-24 cm3.

It is seen from the table that good agreement between the calculated and
experimental values of the second dielectric virial coefficients is obtained if the
quadrupole moment of the N, molecule is ®=1-5 x 10-28¢.s.u. cm? and that of-
the CO, molecule is [18] O =5 x 1026 e.s.u. cm? with the octopole moment of the
CH molecule amountingto Q=4 x 10-34e.s.u.cm3. We note also that the second
virial coefficient B of the equation of state yields ©® =1-8—1-9 x 10-28¢.s5.u. cm?
for the N, molecule, ®=4-59~5-0x1026e.s.u.cm? for the CO, molecule
[35,36] and Q=35 x 10-34e.s.u. cm? for the CH, molecule [33].

- It is evident that further research in this direction can be fruitful and will
surely bring much interesting information on the electric multipole moments
and multipole polarizabilities of molecules.

In concluding, it should be stressed that the total dielectric polarization P
of a multi-component system can be expanded in a power series in the mole
fraction,

P= 3wt SuinPy+ %xixjxkp ik e © (50)
1 1] L
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where the first term represents the additivity rule, while the subsequent terms
account for deviations therefrom. The quantities P;; and Py, arc non-zcro only
for systems in which interactions occur both between molecules of the same
species and between those of various components in dense systems. The
expressions obtained here for Py; and Py, allow to state that investigation of
" deviations of P from additivity can be a source, 7.4., of information concerning
the permanent and induced electric multipoles of molecules of various species
as well as on the nature and magnitude of the forces with which they interact
in the dense mixture.

-

Gas T°x BD BO‘ B(I‘?IC=BD+B() BI;\.DOI'

N, 2421 19 1-9 3-8 4-2(+1-0) [24]
O=1-5x10"*esu.cm? | 296 | 1-8 1-4 32 2:0(+1-0) [24]

Co, 323 | 98 | 409 50-7 49-7 [18]
O=5x10"*%esu.cm® | 348 | 96 | 373 469 ’ 46-4 [18]

CH, 242 | 55 35 9:0 9-0 (£ 0-4) [24]
Q=4x10"%es.u. cm® | 315 53 2:9. 82 7:3 (£ 1:8) [24]

Calculated and experimental values of the second polarization virial coefficient in cm®/mol?.

APPENDIX A
Quantum mechanical form of first-, second- and third-order multipole moments

We now consider, for simplicity, 2 system of identical, non-interacting molecules
subjected to an external inhomogeneous electric field. The Hamiltonian of
a molecule is H= H,+ H', where H, is the Hamiltonian of the non-perturbated
(isolated) molecule and

! 5 2l (M 1EM (A1
== 3 g )
is the perturbation Hamiltonian resulting from interaction between the 2"-pole
moment operator of the molecule [33] '

M= S, YOr,) (A2)

and an external electric field E{"= —{Vng}, of V-degree nt. In (A2), e, is the
vth electric charge of the molecule with radius vector r, and the operator Y
of order # is given by:

vour)= Sl e ()

nl

1
=n|1,,1{(2”“1)”"u1"u2 e b= (2n =323+

+(=1)E2n—2k 1)1 F U, oo Ui g axFagir o+ Fan bl (A3)

where U, is the unit second-rank tensor and YU, r 5. .. r,,, etc. are sums of

vy

terms resulting from the one written out by interchanging the indices 1, 2, . . . n.

+ By V-degree n» we mean n-fold ap;}vlication of the operator V.
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Using (A1) and the quantal perturbation method we obtain in turn for the
first-, second- and third-order multipole moments induced in the molecule by
the external electric field :

(h 2Mn
M = z 1 (n)A(n.)[” ]Ef)n.),
ny=1 ( ”l)
(2) X ® 2mtegy Ay, .
M(II) = 1 z Ay 17 (")B("H—?H)Lnl + 712] E("‘:) E(”z)
0 g ?
ny=1 4:,"1 (2n1)1(2ny)! r (A4)
3 i 2+, '
M@= 1 % § o 2mEm g g g
’ ) ‘- ™)
=1 =2 171::1 (2711)!(2712)!(2ﬂ3)! .

X (N Cmtnatnay, 4 g, 4 ,,3] E(WE(E(), ]

Here, the first-order multipole polarizability tensor or, simply, the multipole
polarizability tensor

NP — F~1 (M (n
(A0 = f~ ngh M”LMM,
g

D+ MMy (A5)
characterizes the lincar or first-order polarization of the 2"*-pole electric moment
of a molecule duce to an clectric ficld of degree n;; M%) is the matrix element
for the transition from the ground state g to the excited state % with the frequency
w, in the absence of perturbation, .

Similarly the quantum-mechanical expressions for the second- and third-order
multipole polarizability tensors are of the form:

B = — F-2P(, ny, 1y { S wZMOMEIMe

-1,,~1
-3 Sujley M,sz)mf;omgzﬂ}, (A6)
k#gley
(st = =8 P,y ”3){ 3 w3MEPMEIMEIME)
. kg
- z zw 1M(“)M“‘¢1)M(’h)M<"a)+w—1M(n M(m)M(m)M(n;)
k#g L#£g

+w;lM"’)M(“‘)M("’)M("') -+ z E z wMJw ;;M(n)M(nl)Mg’th)M%)}’ (A7)

k#gl+g m+#g

where P(n,ny,my, . . .) denotes a symmetrizing operation over all permutatioris
of nyny,n,, . ...

The numerical values of diagonal matrix elements of the second- and third-
order multipole polarizability tensors of (A 6) and (A7) can be calculated directly
by methods discussed in the paper of Dalgarno [37] for the case of first-order
multipole polarizability.

The effect of molecular interactions on the multipole polarizability tensors
(A5)-(A7) can be calculated, e.g., by a method analogical to that elaborated by
Jansen et al. [5,17].

AprpPENDIX B
Higher-order intermolecular energies

We consider two non-overlapping molecular systems p and ¢ which have in
general 2"-pole and 2™-pole electric moments, respectively. The vector connec-
ting the centres of these interacting molecular systems is r,,, and r,, and rg,
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are radius vectors of their electric charges ¢,, and e,,. The energy of electro-
static interaction between the two molecular systa,ms

erﬂ—q—“—-— (B1)

FpoT Py l N

may be expanded in the following form [31,33]:

g % 2y ) M \n)T(m) Mo, B2
n=0m=0 (2n)!1(2m)! [m (B2)

where the multipole interaction tensor is of the form:

1
(n)T](;[rlz) = — ntm <___

r]’ a

) = (_. rpq)—(n+m+l)Y(n+m)‘(rpq) (B 3)

with (WTOD = (— 1)ndm0uT@ and Yo+m(r, ) defined by (A 3) if # is replaced by
n+mandrbyr,,.

We now generalize the equation (B 2) to the case of a multi-component
system containing N3, Ny, . . . IV, . . . molecular systems of the first, second, .
ith species, and obtain for the total ﬁrst-order (or electrostatic) energy of molecular
interactions:

NN e o onmy |
Vo133 3 33 (-1 o MM, (B4
Y p=1lg=1n=0m=0 (2 ) (2 )

or, in concise form:

(1) Ny «© 9ny
3 3 e MODRG, (85)
p=1n=0

-2
i

where the molecular electric field of degree 7 at the centre of the molecular system
p of species ¢ due to the electric multipoles of all the other molecular systems is

given by:

F(n)__ Z z Z ( l)m ) (n)T(m)[m]M;?;t)_ (B 6)

Opt
7 ¢g=1m=0

Similarly, the second-order intermolecular energy may be expanded in the
following form:

2 Yoo o 2ntmy )y
V==32 X 2 X iy eI OA IR (B7)

1 p=ln=1m=1

or by (B6) in explicit form:

@ Ni Nj N o o o, 25T Ly |

V=-3433 333 3 3 3 (-1 T Ry @) [y

Yhp=1lg=1r=1n=1m=1n=0m,=0

x MU [, JOOT W ] A [T g, [MI0, - (B 8)
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In general we have for the (s+ 1)-order energy of intermolecular interactions
(s=1,2,...):
6+ 1) "', ] 2)2 1 @

M [nIFG, ®9)
1 i p= 1n=1
where
() 1F e e e | |
y = l % % A Tenyl Lo Lomyl
s'nrl nim1 (2u)t. .. 2ny)!

XOOAUE 4y L JE, Fg;] (B 10)
is the sth-order multipole moment induced in a molecular system p of species
¢ by molecular electric fields of (B 6).

It is clear that by appropriate simplifying assumptions we can obtain directly
from the general expressions (B4) and (B 8) the special results derived previously
by Debye, Keesom and others (see e.g. [30]).

By (A3) and (B3), we obtain the following identity :

, 2n+2m)! r_.r.
(")T;(IZ:;)[n + ’”](")T%")= (_'21—';4-75—)_ (rpqrrs)—-(nr+m+1)Pn+m < :q - “) ’ (B 11)

pars
which has been recurred to in the course of the present investigation. If in
particular R r and g=s we have P, (1)=1, and (B11) yields the identity
derived by Jansen [31].
The computations of the various contributions to Pp and P, were performed
with the help of the following unweighted orientational average:

— (M@ TMNR =m,
(Mgz)Mgn)>w= 2n+1( » [n] p) or n=m (BlZ)

0 for n-+modd.
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