Reprinted from

Proceedings of the
Physical Society

The Institute of Physics and the Physical Society

Printed in Great Britain by J. W. Arrowsmith Ltd., Bristol 3



PROC. PHYS. soc., 1965, voL. 86

Non-linear processes to result from multipole
interactions between molecules and
electromagnetic fields

S. KIELICH
Department of Physics, A. Mickiewicz University, Poznan, Poland

MS. received 2nd March 1965, in revised form 29th April 1965

Abstract. A compact and at the same time general tensor formalism adapted to
the theoretical prediction of a wide range of non-linear processes due in general to
multipole interactions between atomic or molecular systems and electromagnetic
fields is proposed. Recurring to a semi-classical method, the expectation values of
the 2"-pole induced electric moment P.™ and 2"-pole magnetic moment P,
for a transition & — [ are computed explicitly to within the third order of quantum-
mechanical perturbation theory approximation. The formalism is demonstrated
with regard to its utility and simplicity on the example of electric and magnetic
multipole light scattering with multiharmonic frequencies wy; + 01 +wz + ... +a,.

1. Introduction

The quantum-mechanical theory of electromagnetic radiation as initiated by Dirac
(1927) allows one to compute the probability of various processes involving the emission,
absorption or scattering of light quanta. In general, such processes can occur in two- or
many-quantum acts. In the visible region, simultaneous absorption and emission of
two quanta was dealt with by Goeppert-Mayer (1931). Blaton (1931), by second-
order quantum-mechanical perturbation theory, showed that a system of atoms subjected
to irradiation with frequency v emits waves of double frequency 2v. This light scattering
with double frequency was subsequently investigated by Neugebauer (1959, 1963).
The process considered by Blaton and Neugebauer (see also Kielich 1963, 1964 a) is a
special case of the scattering process investigated by Giittinger (1932), wherein two light
quanta of frequencies v; and v, vanish and a new quantum of frequency v, + v, results,
the atomic system maintaining its energy state unchanged. In the general case, when
an atomic or molecular system goes over from quantum state % to state [ under the
effect of incident photons of frequencies v; and vy, a new scattered photon arises with
frequency vy = v; +vy tv,; (Giittinger 1932, Kielich 1963, 1964 b, ¢). On extending
these considerations to the third-order approximation of quantum-mechanical perturba-
tion calculus, it appears that additional non-linear scattering with frequencies v, + 2y, + vy,
(see Kielich 1964 b, c) or, generally, v; +vy+v3 £ v, is to be expected.

Of the various processes presenting great theoretical importance, those should be
mentioned here which find a satisfactory explanation within the framework of the non-
linear electrodynamics of Born and Infeld (1934 a, b, 1935). In non-linear theory of the
Maxwell field, the principle of superposition is not fulfilled ; the waves interact giving rise
to characteristic non-linear effects as, for example, reflection of light on light or scattering
of light on light (see e.g. Karplus and Neuman 1951, McKenna and Platzman 1963, and
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710 S. Kielich

the papers cited by them) and harmonics in the scattering of light on free electrons (see
Vachaspati 1962, Mizushima 1963, Brown and Kibble 1964).

The probability of an n-photon process related with an electric transition of dipole
type is proportional to (E;/E,)2", where E| is the electric field of the light wave and E, the
mean atomic electric field. Thus, the probability ratio of a two-photon and one-photon
process or, quite generally, of an (n+ 1)-photon and #-photon process is of the order of
(E\JE,)?. Consequently, at normal conditions, the probability for a two- or many-
photon process to occur is very small and such processes have become accessible to
detection since the coming of lasers, which are sources of coherent light beams
of extremely high intensity. Owing to the use of lasers, a number of non-linear
processes are at present the object of observations in laboratories, as for example genera-
tion of optical harmonics (see Franken and Ward 1963, and the list of papers given by
them). The theory of generation of optical harmonics and that of related non-linear
processes wherein two or more photons participate is discussed by Braunstein (1962),
Armstrong et al. (1962), Loudon (1962), Kelley (1963), Price (1963), Butcher and
McLean (1963, 1964), Ward and Franken (1964), Cheng and Miller (1964), Ducuing
and Bloembergen (1964) and Caspers (1964). Higher order coherent Raman processes
were considered by Bloembergen and Shen (1964) and Tang (1964).

In all the above-mentioned non-linear processes, the principal role is played by
electric transitions of the dipole type; however, higher order transitions, of the quadru-
pole, octopole etc. types, are possible. Higher order transitions related with the multipole
electric or magnetic radiation of atoms have been discussed from a theoretical viewpoint
by Rubinowicz (1930, 1949) (see e.g. the reports by Rubinowicz and Blaton 1932 and by
Bowen 1936). Contributions to the electric dipole moment from multipole moments are
discussed by Armstrong et al. (1962) to within the second order of perturbation theory.
Non-linear effects due to electric dipoles and quadrupoles and to magnetic dipoles have
been dealt with phenomenologically by Pershan (1963) and quantum-mechanically by
Adler (1964). Strictly, these non-linear processes have to be approached by the methods
of quantum electrodynamics; nevertheless, in a number of cases, a semi-classical method
is adequate for their quantitative description, and will be adhered to in the present paper.
The basis of our theory is given by the multipole expansion of the Hamiltonian of
interaction between a system of electrically charged particles and a classical electro-
magnetic field (see Power and Zienau 1959, Fiutak 19637).

In this paper we propose a general tensor formalism allowing the determination of
the multipole electric or magnetic moments induced by electromagnetic fields in atoms
or molecules. By quantum-mechanical perturbation calculus, to the third-order
approximation inclusively (without quantization of the electromagnetic field), we shall
compute in explicit form the matrix element of the 2"-pole electric moment for a transi-
tion 2 — . Accordingly, we introduce tensors of multipole polarizability of the first,
second and third order accounting for the electric and magnetic properties of systems
consisting of charged particles when these systems undergo the polarizing effect of
electromagnetic fields. The expansions obtained by us for the dynamical quantity F and
the total induced multipole electric moment P, and magnetic moment P,,™ can be of
use in the quantitative treatment of various non-linear effects deriving from the presence
of multipolar interactions between molecules and electromagnetic fields. In particular,
the formalism developed here has been applied to compute the tensor of electric multipole
light scattering with multiharmonic frequencies. The tensor is discussed for several

t The author wishes to thank Dr. J. Fiutak for drawing his attention to the paper by Power and
Zienau (1959) and for discussions relating to the multipole expansion of the Hamiltonian.



Non-linear effects inherent in multipole interactions 711

special cases, successively in the first, second and third approximation of perturbation
theory. The importance of investigating non-linear processes of this kind resides
primarily in the possibility of obtaining information on the multipolar and non-linear
properties of atoms and molecules in the presence of intense electromagnetic fields.

2. Fundamentals of the theory

Let us consider an atom or molecule subject to external periodically time-variable
fields. Its total Hamiltonian is

H = Hy + V(1) (1)

where Fl; is the non-perturbed Hamiltonian, which is time-independent, and V(#)
is the time-dependent perturbation to H,.
We search for a wave function ¢ fulfilling Schrédinger’s equation

'ﬁ&p— Hy+V 2
i = (Ho + VO @

Assume that, before the perturbation set in, the molecule was in quantum state & with
energy F,°. In the presence of the perturbation, the wave function of the state con-
sidered can be written as

b = 2, anl(t)p exp( —ik,° ;

> . 3)

where E;° and ¢,° are the eigenvalue and eigenfunction of H,,.
By (1) and (2), the matrix element a;,(¢) defining the transition of the molecule from
the state & to j under the effect of the perturbation V(¢) is obtained in the form

S ()
ap(t) = 2, <lUK (4)
n=0
where for ¢ < 0 and # = 0 the initial condition is determined by

a3(0) = GLUIRS = (iD= 8y 5)

(n)
For t > t,, the nth order of the evolution operator U of the series (4) is defined by

U, 1) = (_ ;-:) f " P f D(ty)dts ... f " Py, (6)

wherein ' .
D) = exp(% Hot) V(1) exp( - thot) )

is the perturbation operator in interaction representation.
With the Dyson time-ordering operator T, equation (6) can be rewritten in symmetric
form with respect to £, fg, ... £, (£ > £, > t; > ... > t, > t;)

((Jm(?, to) = —’117(— é)nf: f: T{V(t,) ... V(t,))dt, ... dt,. (8)
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Let us now assume, in general, the perturbation V(z) in the Hamiltonian (1) to be the
superposition of several perturbations V5, V, ... V,, varying in time with angular fre-
quencies wy, wy ... w,, 1.€.

1 @2 3

c w
Vty=V+V+V+..= >V 9)
in which the first-, second- and third-order perturbations are of the form

V= 43 (P expliont) + V™ exp(—iont)

(2)

(2)
V= 4 Z ‘[ Vab+ * exp{i(wa +wb)t} + Vab+ - eXp{i(wa - wb)t}

ab
@ . 2 )
+ Vab—. * eXP{ - l(wa - wb)t} + Vabu - CXP{ - l(wa +wb)t}] (10)
3) 3) . ) .
V=3 D [Vape? 71 expli(wg +w, +0 )t} + oo + Vg™ 77 exp{—i(w, +w, +wc)t}];

abc

@
the brackets in V' contain 2° components.
The expectation value of a dynamical operator F(¢) for the transition k& — /

Fiu(t) = [ F(e)pdr (11)

can be expressed by (3)-(10) in the form

(1) 2) (3)

© w
Fi(t) = Fkl +Fy +Fg +F+ .. = > Fy (12)

)
with F,; denoting the zeroth-order approximation of Fy,.
In the first-order perturbation theory the expectation value of F is

1)

Fi(t) = %Z (Fu( +0,) expliosgt) +Fu( — ) exp(—iwgd)} expliod)  (13)

with

(14)

(1)
%JMH%)_ lﬂ(<k]F[r><r]Va l> <k] |r><r|1«‘u>)

&

T Wy +wa Wiy

Here, w,, = (E,°—E,°)/# is the frequency of the transition #» — k when perturbation is
absent.
The second-order expectation value of F is given by

2) @ ]
Fi (1) = 1> [Ful +w, +o,) exp{i(w, +w,)t}

ab

@ .
+ F(wy, —wp) exp{i{w, — w,)t} +Fkl( We, twg)exp{—i(w,— wy)t}

(2>

+ F( — g, — w,) exp{—i(w, +ap)t}] exp(iwyl) (15)



Non-linear effects inherent in multipole interactions 713

where

@ @ W
Fiu( +wg, +wy) = FiyD(+w,, +wp) +F 2+, +w,). (16)

The first part of (16) results from second-order perturbation theory when only the
first-order perturbation Hamiltonian is used:

(1) @
(2) 1 EIF Va+ V. *l
Fkl(l)( +wa, +wb) _ < ] |7><7’l |S><Sl b I >
e (@ +wg +w,)(wg +w,)

(17)

1) 1 (1) (1)
IV T lr ) SriFlsySslVp* (L) <k|Va+lr><r[Vb+{s><le|l>}

(wrk_wa)(wsl +wb) (wrk—wa)(wsk_ Wy — wb)

whereas the second part of (16) results from first-order perturbation theory with the
second-order perturbation Hamiltonian and is of the form

(2) (2)
(¢H) 1 . |<k|F [ aal) RVt tlr><r|Fll
R gy ) — — Ly [FE Ve 1D | RV > <1 1>}.(18)
(/- Wyt W, Fwy Wy = Wo — Wy

In the third-order approximation we have

@) @) .

Fiu(t) = § 2, [Fu( +wg, +owy, +0) exp{i(wy +w, +wo)t) + ...
abe
‘3) - .

+Fu(— wey — @y, — ;) exp{ —i(wg +w, +w,)t}] expiwy,t) (19)
with
@)

(3) (2)
Fu(+ws, twy, +o.) = FyD(+a,, +ay, +a) +F@(+ag, +ay, + o) (20)

(2) (1)
+F1k(2)( — Wy — Wy, — W) +Fkl(3)( twg, +w,, +wg).
Here
(1) (1) (1)
B 1 <k[Fjr><r|Va+|s><8’Vb+|t><t|Vc+ll>
#e rot (g +aq +w, +wc)(wsl +wy +wc)(wtl +wc)

(3)
Fkl(l)( tTwg, +wy, +wc) =

@ W W
| K[V F < Fsx<s| V< Ve D

(wrlc”“ wa)(wsl tw, +wc)(wtl +wc)

1) (1) (1)
RIVT N> iV T Is H<s|F ) V" DD

(W — W) (W — wg — wp)(wy + )

1) (@8] 1)
SRIVGE ) (riVy T ls ) sVt () < FIL

T
(wrk: - “’a)(“’sk — Wy wb)(wtk — Wy — W, — @)

21)

is the first and, in general, most important contribution to (20) obtained by third-order
perturbation theory in the approximation of the first-order perturbation Hamiltonian

of (9).
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The second and third terms in (20) correspond to the expectation values of F which
can be obtained in second-order perturbation theory if the second-order perturbation
Hamiltonian of (9) is used. In this case we have the result

W @)
@ RIFr>r| Vot s> sVt 1L
D o b 1o, ) = L5 [[AED TVl Ve 11
72 75 (o, twg +o, +o)wg +o, +o,)

RV 15 s> (s Dot 11D

(wrlc" wa)(wsl +w, +wc)

<
PR +|r><r[Vbc++|s><er|1>} @)
(wrk wa)(ws}c wy )

In order to obtain the exact result we must also take into account a small contribution
to (20) arising from first-order perturbation theory with the third-order perturbation

Hamiltonian and given as

CRIF|r (7| Vgt * * |l>+<kf5’abc+ = 1r><r1Fu>)'

Wy T w, Twy Hw, Wy — Wy — Wy — W

1) 1
Fu@(+ay, +w,, +wg)=— % Z(

(23)

3. Electric and magnetic multipole moments induced in a molecule

Our further considerations require that the explicit form of the perturbing Hamil-
tonian V(¢) shall be well-defined. Accordingly, let us consider an atom or a molecule
consisting of particles of electric charge e; and mass m;, with Z, ¢, = 0. Let r; denote
the position vector of the ith particle and p; the operator of its generalized momentum.
Thus, if the molecule is acted on by an electromagnetic field with vectors

1.
E=—-A-V¢$, H=vVxA (24)
c

its total Hamiltonian in the non-relativistic approximation is given by
H }j{ : ( e"A)2 } (25)
= S \Pi—— +ep;
“ \2m, P P ¢

where ¢; and A, are the scalar and vector potentials at the point of the ith particle of the
molecule and ¥ is the derivation operator. In (25) we neglected for simplicity the
interaction between electron spin and the field and assume Coulomb interaction between
the particles in the molecule to be contained in the term e;;.

The Hamiltonian (25) can, in the well-known manner, be resolved into a non-
perturbed part /1, and perturbed part V() given by expansion of (9) with the following
first- and second-order contributions:

OB z{——(pz +Ap)—ed (26)

)
V) =1

(27)

i Mmc
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As to the explicit form of the third-order perturbation Hamiltonian inherent in
equations (9), (10) and (23), it can be derived formally from the Hamiltonian of classical
relativistic mechanics which for the term proportional to A3 yields

2
Vo =13 - oA+ A a1 +0( %)) (23)
i i
This perturbation indeed represents one of the relativistic corrections to H which
should be dealt with by a consistent quantal and relativistic procedure including inter alia
electron spin terms. The treatment of this type of higher-order effects is in general no
mathematically unequivocal affair and we shall not take them into consideration here,
restricting ourselves to the non-linear formalism in a non-relativistic approximation,
i.e. with perturbation Hamiltonian given by the sum of the perturbations (26) and (27).
The total vector potential of several electromagnetic waves is

=1 Z {A, " exp(iwgt) +A, " exp(—twyt)}; A,* = Alexp(Fik,.r) (29)

whence, by (24),

= % Z {E * exp(iwat) +Ea_ CXP(— iwat)}’ Eai = T ig‘}Aa:{:
¢

30

Z {H,* exp(iw,t) +H,  exp(—iw,t)}, H,* = Fik,xA,* (30)

k, being the wave vector of the ath electromagnetic wave of wavelength w,/c.

By the expressions (10), (29) and (30) and suitable gauge transformations, the first-
order perturbation Hamiltonian (26) can be represented in the form of the following
multipole expansion (this form can be also derived from Fiutak’s (1963) multipole
expansion)

&%) ® 2"l
V= - Z M, M[n]E™ + M, "®[n]H™} (31)
2, (2n)!
wherein
M,™ = Z er MY, (32)

is the operator of the 2"-pole electric moment of the molecular system, and

Mm(n) E—
(n +l)c

Zer"Y”xr (33)

is the operator of its 2"-pole magnetic moment, whereas Y;‘™ is an operator having the
properties of spherical harmonics and determined as follows:

1
Y = {(2n= DTy £y = (20— 3) 112 S Uparyy o xyy + -
nlr;®

(= 1) 2n=2k—=1)1r2E S Uy oo U s siionsy - Tt ) (34)

with U, denoting the unit vector of rank two, X U,t,5 ... r;, etc. being sums of terms
derived from the one written out by interchanging the indices 1, 2, ... n. The symbol [#]
in equation (31) according to Jansen’s notation (1958) denotes nfold contraction of two
tensors of rank n, thus for example M, and E™,

The first term of equation (31) describes interaction between an electric molecular
2™-pole and an electric field

E(n) — (vn-—lE)T:O
3
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of degree m, whereas the second term accounts for interaction between a magnetic
molecular 2™-pole and a magnetic field

H™ = (vn_lH)rr.o
of degree n, with

0 0
E.™ = (V" 'E, exp(T iky. 1)}, -0 = (¥ iky)" 1E, 35)

0 0
H,® = (v"~1H, exp( 7 ik,.1)},_ = (T ik,)"~*HL.

3.1. The pure electric contributions

We shall first derive an expression for the 2"-pole electric moment P,™(#) induced
in a molecule by an oscillating electric field whose matrix element for the transition
k — [ 1s given by

Poi™(t) = [ M Pdr — [ ¥ M0, (36)

Expressions (3) and (36) yield to within the third order of quantal perturbation theory

@ (2) (3)
P, (t) = Z (Po™), +3% Z (Peret™)qp + %Z (Pert™)gpe + --- - (37)
a ab

abe

The terms of the above expansion are given in general by the expressions of (13)—(23)
on replacing Fy; by P,,,™ and <(k|F|r) by (k|M,™|r).

In the first approximation, the perturbation is given by (31) (in this sub-section we
omit the magnetic part of the perturbation Hamiltonian) and the first-order electric
multipole moment appearing in the expansion (37) is given, with regard to (13) and (14),
by

L D T .
(Peri™)a = 3{Peiy™( +wy) + P (= wg)} exp(itwy) (38)

wherein the tensor

W ® 2l !
P ™(twy) = > -
° ¢ Ng=1 (Zna)'

of rank n+n, determines the linear, i.e. first-order, polarization of the electric molecular
2™-pole induced by an electric field of degree n,. With regard to (14), its matrix element
for the transition & — [ is given by

CRIM™r > (r[M™ |1 N CRIMMr ) {r ML

Wy +wa Wy — Wy

+
WA " £ 0e)[1] B exp( £ itw,) (39)

MA ™ +ew,) = %; ( ) (40)

In the dipolar approximation (n = 1, n, = 1), the expressions (38)-(40) are identical
with the well-known results of Kramers and Heisenberg (1925).

If the electric field is not homogeneous within the region occupied by a molecule, the
following expansion is obtained from (39):

(€9 + +
Pekl(n)( +wa) = {(n)Aekl(l)( +wa)' Ea(l) +%(n)Aelcl<2)( +wa):Ea(2)

. +
+ 5PALO(+ o) B + ..} exp(itaw,) (41)
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which, by (35), can be put in the form

W) Y] . 0
Pekl(n)( + wa) = {(n)Aekl(l)( + wa) . Ea - %l(n)Aekl(z)( + wa):kaEa

(Y]
~ T5PA P +w,) i k kB, + ...} exp(itw,). (42)

In the foregoing expansions, the tensor ‘WA, deﬁned the polarizability of an electric
multlpole due to a field of the first degree E,¥ = E homogeneous throughout the
region of the molecule. The further tensors (“)A @, (")A ) ..., on the other hand, de-
fined additional polarizabilities of the electric multipole as being due to fields of the
second, third, etc. degrees, i.e. to inhomogeneities of the electric field within the mole-
cular region. In particular, expansions (41) and (42) determine for n = 1 a dipole
moment of the first order, for n = 2 a quadrupole moment of the first order, for n = 3
an octopole moment of the first order, and so forth. The matrix elements of the respec-
tive polarizability tensors, i.e. of that of dipole-dipole polarizability VAV, dipole—
quadrupole polarizability ‘PA,®, dipole—octopole polarizability VA, ... and of
quadrupole-dipole polarizability =~ ®A /%, quadrupole-quadrupole polarizability
DA@, ... etc. result immediately from equation (40) for the appropriate values of
and n,.

By (15) and (17), the second-order electric multipole moment of the expansion (37) is
of the form

‘B (n) 1 B (n) @ (n)
(Pekl )ab = Z{Pekl ( +wyg, +wb) +Pekl " ( +twg, — wb)

©)) o)) .
FPoi (= ey +y) +PoP(— w0y, — wy)} exp(itwy) (43)
where
@ 2, 2Mt o In,!
Pou (+aw,, +wp) = Z 2 iy
° “ Ng=1np=1 zna)'(znb)' (44)
+ +
X M B "™ g, +wy)[ng +1,] ESDE,™ exp{it(w, +w,)).
The matrix element of the tensor of rank n+n,+n, appearing above is given in
accordance with (17) by

CRIM ™ r S (r [ M s> (s M1
(mb5%+“K+am,+w0::£53maﬂ%)z il > <l 52 <l 1%

(W +w, +wp)(wg +wy)
N CRIM |7 5 (r|M™Ms > (s M™) |1 |, SRIM 7 {rM™s ) (s|M,™ [1>}

1
(@ — wg)(wy +wy) (@ = wo)(wspe— @y — wp)

(45)
where S(n,, n, ...) is a symmetrizing operator consisting in summation over all permu-
tations of wgn,, wyy, ... .

"The tensor of (45) describes the non-linear or, rather, second-order polarization of the
electric multipole induced in a molecule by the electric fields E, ™ and E,™.

Taking the electric field to an accuracy of degree two, we obtain from (44), with
regard to (35),

2) 0 0
P+, +@y) = {(WBe MY +w,, +w,):EE,
0 0 0 0
- %l(n)Bekl(l +2)( +wg, +wb) : EakbEb - %l(n)Bekl(2+1)( +wg, +wb) SkaEaEb

0o 0
—3 "B 2Dt w,, +w,):k EkE, + ...} exp{it(w, +w,)}. (46)
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In the above expansion, the first term defines the second-order polarization of the
electric multipole as a product of the square of the electric field, whereas the subsequent
terms define additional contributions related with spatial variations of the electric fields.
In particular, for n = 1, 2, 3, ... equation (44) or (46) yields expansions for the second-
order dipole, quadrupole, octopole, etc., electric moments.

Similarly, expressions (19) and (21) lead to the third-order multipole electric moment
in the form

@ @ @)
(Pert™)ave = ${Pera™( + g, +w,, Fwe) + oo + P V(= @y, —wy, —w,)} exp(itwy,)
(47)
wherein the braces contain eight terms which can be derived from the expression
@

Pekl(m("l'wa’ +wy, +w0) = Z Z Z

Ng=1l np=1 ne

2ttt ey In, In,l

1 2 )(2n)!1(2n )

+ + +
X MCp Mt Mt M o, +wy, +w,)[1, +7, +1,]E;E, ME (" exp{it(w, +w, +w,)}.

(48)
By (21), the tensor of third-order multipole polarizability is defined as
MC Mt Mty +wy, +w,)
1 CRIM™r ) <r[M™2s ) (s MM [t ) (M| T
——
# st U (@n g o, +a)(og o, Fo)(w; +,)
CRIM " |7 (r[M™s ) (s|M™ [t ) (t| M| 1)
(0= wo)(wy +w, +w)(w, +o.)
4 CRIML ™ |7 (r M ™[5 ) (s[M™ |t (M|
(0 — w )Wy — wg — wp)(wy +a)
N CRIM™r ) (r[ MM s ) (s M™2 |t (¢ M™| 1) . (49)

(@ — wg)(wg — wg ~ wp)(wy — wg — @y — w,)
Neglecting higher order terms, we have from (48)

) 0 0 0
Pekl(n)(+wa,+wb»+wc)= {(n)celcl(1+1+l)( twy, +wy, +wc)5EaEbEc

00 0
—3WC, Dt w,, t+w,, +w ) E,Ek.E. + ...} exp{it(w, +w, +w.)} (50)

in which the first term defines the third-order polarization produced in the electric
multipole by the third power of the electric field.

3.2. The magnetic and electromagnetic contributions

On replacing in the preceding expressions (37)~(50) the electric multipole moments
M, ™, ... by the magnetic moments M,,™, ... and the electric fields E, ", ... by magnetic
fields H, ", ... we obtain automatically expressions for the induced multipole magnetic
moment P, . Obviously, the same expressions for P, ‘™ can also be derived im-
mediately from the general expressions (11)—(21) on replacing the operator F,,, by P, ‘™,
(k|F|r> by (k|Mpn™|r>, and the first-order perturbation Hamiltonian in (14), (17) and
(21) by the magnetic part of equation (31). When aiming at a formalism applicable to the
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description of such effects as, for example, optical activity etc., one has to take into
consideration in equation (31) both the electric and magnetic parts of the perturbation
Hamiltonian. As aresult, in addition to the induced moments P,‘® and P ‘" one obtains,
respectively, the additional moments P, ™ and P,,. In general, P, consists of a
part dependent only on the strength of the magnetic fields and of a mixed part dependent
on the electric and magnetic fields simultaneously. Thus, for example in a first approxi-
mation, P, " consists only of a part depending on the magnetic field and is given as
follows:

M AL T
P ™(+wg) = O ——— A" +wg)[n, ]H " exp(itw,) (51)
Mg =1 (Zna)'
where
1 . (<RIM™r> M| RIM " r > (M
g = L5 [FMEID ML | M (MDD

i r W, T, Wop —

is the tensor of linear polarization of an electric multipole due to the magnetic field of
degree n,.

Similarly, the expressions for the part of P,,,(™ dependent on the magnetic fields in
the second and third approximations are obtained immediately from expressions (43)—(50),
on replacing therein M, M), ..., respectively, by M, ™), M_ ™, ... and the
electric fields E,, E,", ... by the magnetic fields H,", H,"™, .... Besides, in the
second and third approximations, mixed terms appear in P,,,™; these depend on the
electric and magnetic fields simultaneously. For example, in the second approximation
the term in question is given by the expressions (44) and (45) on replacing M,™’ by
M, and E,™ by H,™’. Analogously, one obtains multipolar contributions in the
third approximations of perturbation theory. Some of these contributions have been
discussed in the dipolar and dipole—quadrupole approximations by Armstrong et al.
(1962), Franken and Ward (1963), Bloembergen and Shen (1964) and Adler (1964).

In the foregoing expressions for the second- and third-order multipole moments we
have still to take into consideration the contributions (18), (22) and (23) which result
in general with the perturbation Hamiltonians of the second and third orders (27) and (28).
Now, since the vector potential can be represented formally as a multipole expansion
consisting of an electric and a magnetic part, we can distinguish in equation (27) the
purely magnetic part of the second-order perturbation Hamiltonian

@) ©  ® ntnply’l

Vp=—% > H®[RI™A " [n' TH™ 53
P22 Gyt ] (53)
where we have the tensor of rank n+#’
(n)A (n)___;___ Z n+n Y(n)Y(n)_Y(n) Y(n)U) (54)

(n+1)n +1)e?2 T my

determining the multipole (dia)magnetic polarizability operator of a molecule.
In particular, on averaging the Hamiltonian (53) over all classically possible orienta-
tions of the molecule, we obtain the result

2)

Vpy = — Z ET;a (2n)(H(n>[n]H(n)) (55)
in which
@ny _ 2%n! mA _W2p]UD = 2n? 56)
" = Gy U2 = = G iiyen sy < > (
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is the mean diamagnetic multipole polarizability of the molecule, identical in the dipole
(n = 1) approximation with the well-known Langevin-Pauli diamagnetic polarizability.
By (18) and (53) we obtain one of the more important contributions to the second-
order electric multipole moment:
2 * 2t oy 'nb'

Pem ™ Tw,, Twy) =
™ *) ZZ @)

+ +
X PMBomig et ™+ w,, + w,)[n, +1,JH, " H, ™ exp{+ it{w, +wy);  (57)

where

1 kM, ™ MDA ()|
WB, Mt (4 wy, + w,) = : » <k| [r ) <r| i

r Wt w, L w,
A D)

wrk$ wax wy

(58)

is the tensor of second-order electric multipole polarizability determining the polarization
of the molecule due to the square 0 of the magnetic field of order #,

If in equations (57) and (58) Pem‘") is replaced by P ™ and M,"™ by M, ™, we
obtain equations defining the second-order magnetic multlpole moment and its magnetic
polarizability tensor. Similarly, other mixed contributions to the second-order electric
or magnetic multipole moments can be obtained.

An analogous procedure can be applied for performing the multipole expansion of
the third-order Hamiltonian (28) and for computing the contributions to the multipole
moments of type (23) or, recurring to (31) and (53), of type (22).

4. Tensor of multiharmonic light scattering

We now proceed to show, as an example, how the general formalism derived in the
foregoing sections of this paper can be applied to calculate the tensor of the intensity of
multipole light scattering.

When considering radiation in a wave zone, we can express the intensities of the
electric and magnetic fields at the point of observation R by the well-known formulae

1 . 1 .
E; = -EE{S x(sxZ)}, Hz= — Eg(s x Z) (59

where s is the unit vector in the direction of the observation vector, R = Rs, and Z is
Hertz’s vector (taken at retarded time #— R/c) consisting in general of a part accounting
for electric multipole radiation

© 27041 n+1

Zo= 3 e i)

n=1(2n)!cn 1 tn+l

Pe(n) (60)

and a part accounting for magnetic multipole radiation
2"n!
n=1 (2”)'Cn !

with P, and P,™ denoting respectively 2"-pole electric and magnetic moments
defined in analogy with equations (32), (33) and (36); however, in considering scattering,

n+1

dtn+1

Ms

n—l[n—l](sx Pm(")) (61)
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k, has to be given the meaning of the difference between the wave vectors of the incident
and scattered waves.
From (59), we obtain Poynting’s vector by the usual procedure:

c S s e I
S = —EpxHp = o {(Z.2)- (s.2)%) (62)

and the intensity component of scattered light with oscillations in the direction of u, a
unit vector perpendicular to s,

1 =
I, = (Bgu) = o (2. wp? (63)

where the bar stands for time-averaging.
Considering at first only electric multipole radiation, we have by (60) and (63)

= 22n(nl)2

(Zo-w)? = >

o1 [(zn)!]2c2(n—1)

By analogy with the above classical expression, we introduce the following tensor:

dn+1 n+1

s"‘lu[n](dthrl Pe(n)dt"” Pe(n))[n]us"‘l. (64)

artl drtt
Se M = (W Pe™ ey Pellc(n)) (65)

which defines electric 2*-pole light scattering for transition k& — [.
On substituting the expansion (37) as well as the expressions (38)—(50) into
equation (65), we can write quite generally

am 29 o D oom 2D om D en
n) n) . n. n n
Sk = z Sk = Sei®™ +861,%™ +8,%™ + ... (66)

r=1

where the rth-order contribution to the tensor of multipole electric scattering is defined
as follows (for the sake of simplicity, only the term in summation frequencies

w; twg+ ... tw,
for w; # wy # ... # w, 1s written out):
(r) 1 e 22ty 1w, )2
S kl(2n) = (wkl +U.)] + ... tw )2n+2 e Z
° 22r-1 ' n1§=:1 n=t  [2n)t ... (2n)I]?

x(n)Aekl(n1+...+nr)( +wy, + .., +wr)(n)Aelk(n1+...+nT)(_wl, cees _wr)

X [21y + .. +20,)E,E 00 . E (WE 00, (67)

The foregoing expressions describe electric multipolar scattering with multiharmonic
frequencies wy;+ w;+wy+ ... w,.
In particular, equation (67) yields for the first-order tensor of multipolar scattering

© 22m(p,1)2

o
Ser® = Yogg +w1)?"+? 3
¢ niz1 (2n))1(2n;)!

+ _—
28 (n)Aekz(n‘)( +w1)(n)Aelk(n1)( — w1)[2n,] E,("WE, ‘") (68)
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which can be approximated by

e
Seri®™ = My + )2 2H{MA G D(+wp) VAP (— w;)

)
+5PA P () PAy P~ wy): Rk + 3 E TE; T (69)

In the case of electric dipolar scattering (z = 1), the first term of this expansion
defines normal Raman scattering, whereas the second term accounts for the influence of
induced quadrupoles on Raman scattering. Regrettably, this influence is but of the
order of k,21071% = 42k,2 (with a of the order of atomic dimensions) and can play a
role solely in the case of short wavelength.

For n = 2, the expansion (69) defines quadrupolar electric scattering of order one;
with sufficient accuracy, this can be expressed by

16D
0 o
Sein™® = Hwp +01)° DALV (+w)PAP(—wy): E;TE; 7. (70)

By (67), the second-order contribution to the tensor of electric multipolar scattering
is of the form

@ A 22(n‘+"2)("1!”2!)2
S Icl(2n) _ %(w}cl +wy +w2)2n+2 Z Z : (MPB kz(n1+n2)( +w,; +w2)
‘ mome [(Cn)l@n) P ’

+ - + -
X MBI~ wy, — w,)[2n; +2n,]E, "E, "WE,"IE,"? (71)

whence for the special case of dipolar scattering we have

@
Sert® = g + w1 +@2) { VB T P(+wy, +0) VBt Y(— w, — wy)
+%(1)Bekl(1 * 2)( +w11 +w2)(1)Belk(1 + 2)( - wl y wz): k2k2 (72)

o 0 0 o
+3DBe PV +wy, +wa) VB PP (—wy, —wy): ik +.. 3 E TE TE;TE, .

From the foregoing expansion, it is seen that non-linear dipolar light scattering with
the second harmonic can appear in the first approximation (the first term in equation (72))
only for molecules having no centre of inversion (the tensor VB, *+1 vanishes for mole-
cules possessing one), whereas in the second approximation it is non-vanishing also for
molecules with a centre of inversion, although being regrettably small in normal
conditions.

Similarly, as in the case of n = 2, equation (71) yields quadrupolar scattering of the
second order; in contradistinction to dipolar scattering, the quadrupolar effect in the
first approximation can in general exist for all molecules, irrespective of their symmetry
(clearly, provided the selection rules are observed). The best chances of detection and
experimental investigation are still those of dipolar scattering with the second harmonic
as defined by the first term of the expansion (72). This kind of scattering has been dis-
cussed in detail in earlier papers (Kielich 1964) for a number of molecules having the
point group symmetries Dy,, Dy, Cgy, Cyy, Cgyy Copy and T, The respective numerical
evaluation for chloroform yieldegi a non-linear variation in intensity of scattered light

of the order of 1071(1 4 wy/w,)*E,? accessible to detection by means of the high power
pulse lasers now in use. As we see, the size of the effect depends, in addition to the inten-

sity E,? of the powerful incident beam, on the judicious choice of the ratio wy/w; > 1.
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As to the third-order scattering tensor, we give it here for simplicity only in the dipolar
approximation defined by (67) as follows:

3)

2 _ 1 sa 1+1+1
Seit® = sx(wiq w1 @y +wg)* PCy (+wy, +wy, +w;)

0o 0 0 0 0 o
X DCuA* D (—wy, —wy, —w3)iE Y E; TE;*E;"E;YE; . (73)

Such dipolar scattering with the third harmonic can be caused by molecules of
arbitrary symmetry, the spherical symmetry included. However, it will in general
present a smaller value than scattering with the second harmonic, and can become of
some importance when scattering with the second harmonic is absent.

Change in sign of the frequencies w,, wg, etc., allows us to obtain from (67) or (72)
and (73) tensors for scattering with difference frequencies, for example

Wy twy twy, Wy tw;twyt wg

and the like.
The discussion of magnetic or electromagnetic multipolar light scattering with
multiharmonic frequencies proceeds along similar lines.

5. Conclusion

One feels that the detection and experimental investigation of the many hitherto
untouched non-linear processes resulting from the theory is at present but a question
of further developments in measuring techniques and of appropriate judiciously con-
ceived experiments. Were such measurements to prove feasible in gaseous media, we
should obtain immediate information on the non-linear and multipolar properties of
atoms and molecules in intense electromagnetic fields. Obviously, it has to be kept in
mind that non-linear processes in gases are proportionately smaller than in solids; but
then the strict theory of non-linear effects for the case of dense media is highly involved
rendering difficult the correct interpretation of the results. In the latter case, one can
hardly hope to obtain information relating to the properties of isolated atoms or mole-
cules without making far-reaching simplifications of the theory. More considerable
values of non-linear effects in gases are to be awaited in experimental conditions when,
for example, one or several oscillation frequencies of the light beams applied lie near an
absorption band of the substance investigated.

Indeed, from expressions (45) and (71) or (72), resonance scattering of order two
occurs in the following cases: (1) if the sum of frequencies of the incident quanta is equal
to the transition frequency, w;+ wy = w,y, or (ii) if one of the frequencies w; or wy
is equal to the transition frequency w,;,. Similarly, from (49) and (73), resonance
scattering of order three can take place if w, + w,+ wg = wy, or if

w; twy = w; twg = wy twg = Wy

or if one of the frequencies w; or wy or w; is equal to w,,.

The tensor formalism proposed in this paper can be adapted to the computation of
the non-linear variation in optical activity due to an intense electromagnetic field, and to
various electro-optical and magneto-optical effects of higher orders.

The effect of molecular interactions on the multipole polarizability tensors of appro-
priate orders can be calculated, for example, by a method analogous to that elaborated
by Mazur and Mandel (1956) for the dipole polarizability. In this case, i.e. when a
system of N interacting molecules is considered, the total perturbation Hamiltonian is
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composed of two parts, one of which arises from the interaction of all molecules with the
electromagnetic fields and is obtained by summation of (31) over all the molecules of
the system. The second part of V results from interaction between the molecules in the
system and is given in general by (Jansen 1958, Kielich 1965)

2 oy Iy

N N © w0
| 74 :% z Z z Z (_1)n1+1__ Mep(n,)[nl](nl)’rpq(ng)[nz]Meq(nz) (74)

p=1lg=1n,=1ny=1 (2ny)!1(2ny)!

where

1
(nl)T,,qmz) = —yYut na(

Pq

) — (”1 +n2)!(—qu)"("1+”2+1)qu("1+"2) (75)

is a tensor of rank n, + n, describing the interaction between the 2":-pole electric moment
M,, " and the 2™:-pole electric moment M,, "+’ of molecules p and g separated by a
distance 7,,. The operator Y,,"1* ") is given by (34) if # is replaced by #; +n, and r;
by r,,. The explicit results for multipole polarizability tensors from calculations with
the additional Hamiltonian (74) are highly involved and we refrain from writing them
here.

In this case, with p denoting the mean number density of molecules of the medium
under consideration, its dynamical electric permittivity e is defined in general by the
following tensor equation (Kielich 1965):

@ 27!
(€ULE=dmp 3 (-1 v - 1R (76)
in which "
P. (1) = > Pu™()px (77)

denotes the total electric multipole moment which results on averaging its diagonal
matrix element P, ™ as given by expansion (37) for k£ = [ over all occupied quantum
states k of the molecule with the density matrix p,, in the presence of the electromagnetic
fields acting on the medium. A quite analogous equation can be written for the dynamical
magnetic permittivity w, if in (76) E is replaced by H and P, by P,,,‘™. If, on the other
hand, in the expressions derived in §§ 3.1 and 3.2 we deal formally with P,™, P, ™,
(WA () (MB (Mt M) etc,, as representing multipole operators defining the macroscopic
electric or magnetic properties of an isotropic or anisotropic medium, we arrive at a
generalization of Pershan’s phenomenological formalism (1963) to multipolarity of
arbitrary order.
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