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A consistent and general tensor formalism is developed, allowing to compute easily the
higher-order energies arising from various molecular interactions. In the case of interaction
between a multipolar molecule and an external, in general inhomogeneous electric or magnetic
field, the higher-order energies are calculated from quantum-mechanical perturbation theory
to the fourth order approximation inclusively. Also, general expressions for the first, second,
third and fourth-order energies of interactions between multipolar unlike molecules of a multi-
component system are obtained in a classical picture. The formalism proposed can be of use in
computing various effects involving multipole interactions, as shown here on the example of
the tensorial part of the excess free energy of multi-component systems.

1. Introduction

The long-range intermolecular potential energy consists in general of three parts: (i)
the Keesom electrostatic part representing interaction between permanent dipoles, quadru-
poles, etc., (i) the Debye-Falkenhagen inductional part arising from interactions of the perm-
anent dipole or quadrupole of one molecule with the dipole induced in another molecule,
and (iii) the London dispersional energy resulting from mutual polarization of the electron
clouds of neighbouring nonoverlapping atoms or molecules, e. g. from induced dipole-
-induced dipole interaction.

Various aspect of the respective intermolecular energies have been discussed in detail
and developed in suitable approaches by several authors (see Refs. [1—15] and the papers
cited there). In general, the electrostatic potential of an ‘electric charge distribution can be
written explicitly as a multipole expansion in terms of spherical harmonic functions [5].
Carlson and Rushbrooke [3] showed that the multipole expansion of intermolecular electro-
static energy can be obtained by applying irreducible tensor algebra (see also [5]). Subse-
quently, Fontana [7] combined the theory of angular momentum with irreducible tensor
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formalism and calculated by this method the second-order dispersional inter-atomic energy.
The earliest tensor formalism for the multipole series of electrostatic potential was given
by Frenkel [12] and later by Jansen [13], whose general and concise tensor notation we use
in the present paper (the tensor formalism used in our previous papers [14] is less compact
and not so convenient for the definition of 2"-pole moments N aad n-th rank interaction
tensors T™ as given by Jansen).

Quite generally, an electric field (external, atomic or molecular) induces in atoms or
molecules not only a dipole moment, but also a quadrupole and higher-order moments.
Thus, the changes in the electric charge distribution of an atom or molecule due to an elec-
tric (generally inhomogeneous) field can be characterized by a series of multipole polariz-
abilities [12, 15, 16]. In this connection, the need may be felt of a tensor formalism allowing
to derive, in a concise and simultaneously general manner, the -higher-order energies, as
well as the higher-order electric multipole moments induced in molecular systems by strong
inhomogeneous electric fields. For the case of an external electric field, the higher-order
energies of an isolated molecule are computed in this paper to within the fourth- order
approximation of quantum-mechanical perturbation theory. First, second and third-order
multipole polarizability tensors are introduced and their diagonal matrix elements are given
in explicite form. Also, a general relation betwen the (s+1)th-order energy and the s-th-
order multipole moment induced in a molecule by an external electric field is derived.

We also propose a classically conceived tensor formalism useful for computing the
total intermolecular energy, for the general case of multi-component systems of unlike
multipolar molecules. Namely, in addition to the energy arising from electrostatic interac-
tion of the permanent 2"-pole moments with other permanent 2”-pole moments, we take
into account the higher-order interactions between the permanent 2"-pole moments of
molecules and the 2”-pole moments of respective orders induced by them in other molecules
of the system. However, we do not consider here the dispersional energy discussed recently
by a number of authors in second-order [6—9] and third-order approximation [10, 11}.

The tensor formalism developed in the present paper can be applied for computing
various measurable effects in which molecular interactions of multipole type are sufficiently
apparent. Investigation of such effects is liable to provide information on permanent as
well as induced multipole molecular moments. As an a example we give a general equation
for the tensor of electric permittivity of a gas in a strong electric field as well as evaluations
of various tensorial contributions to the excess free energy of multi-component systems.

2. Interaction of a molecular system with an external electric field

We consider a molecular system consisting of point particles with electric charges e;,
€y, ..., €,. The position of the charge e, with respect to the origin 0 of the reference system
%, ¥, z (chosen within the molecular system) is represented by the vector 7,. If the molecular
system is in an external electric field with the potential @, at 7 , the potential energy of elec-
trostatic interaction is given by the well-known expression

V=2 o). (@)
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Assuming that the field varies but slowly in the region of the molecular system we can
expand (1) as a Taylor series around O and obtain finally

=1
V— — Z) — NOn]E®, @)
wherein [13]
N® =3l enr; ®3)

v

is the n-th rank electric moment operator and

E® = —{y"¢n)}, (4)

is the intensity of the external electric field of degree n at the origin 0; A is the differential
operator; in (2), the symbol [#] in Jansen’s notation denotes n-fold contraction of the
product of two n-th-rank tensors N® and E®.

In contradistinction to Jansen’s definition of (3), we introduce here the following
definition of the permanent 2 -pole electric moment of a molecular system [17].

M® =3 e Y"r,), ©)

wherein the operator Y™ of degre n (its properties resemble those of spherical harmonic
function) is given by

Y () = (—ml)” ptlgn (%)

- n,l (@n=1) 1110y oo Pa—@n—3) 11 12 X Uyy 1y 1+

rn

+@2n—5)1174 D UpyUags ... 7n— (20 — )11 18 2 UpoUggUsely . ¥+ ...+
+(—1)*2n—2k—1)11 12 D Usy.. . Uspe, 9k Paki1 - Fn+.0. 3, (6)
where Uy, is the second-rank unit tensor, and XUrs...7, etc. are sums of the terms
obtained from the one written out above by interchanging the suffixes 1, 2, ... n, the number
of such terms amounting to n1/{2%(n-2k) 1% 1}. In particular, we obtain from (6) for the opera-
tors of successive degrees

YO =1,

YO@) = riry,

YOu) = 5 i ray—tUs),
1
Y& (r) = bl 30wy —r(Upgrs + Upgry + Uy 1)},

1
YOr) = 3 43511,y — 513Uy, + Uggr gy + Uy iy vs +

+ U3+ Upsry + Uy 0%5) +14(U Uy 4+ Uy Uy, + U, Uyg)}, .. ™
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With the help of definition (5), the multipole expansion (2) can be written as follows:

o0 nn '
Z r MOmIE®, @)

This expression represents the general form of the potential energy of interaction between
the permanent 2”-pole electric moment of a molecule and an external electric field of degree n.
In particular, equation (8) becomes in a sufficient approximation

V= —_MO®EO_MW. EO_ — M<2> E® _1_ M® ; E<3)— — M<4) : E®,  (9)

where the first term is the energy of the unipole moment M (or total charge of the molec-
ular system) in a zero-degree field E® (or potential-p) and the subsequent terms correspond,
respectively, to interactions between the dipole moment M™ and first-degree field E®
(or uniform field E = —Vg), quadrupole moment M® and second-degree field E®
(or field gradient VE) octopole moment M® and third-degree field E® (gradient of
field gradient YVE), hexadecapole moment M® and fourth-degree field E(4) = VYVVE,

ete.

3. Higher-order energies in perturbation theory

We now recur to quantum-mechanical perturbation theory for the calculation of higher-
-order energies of interactions between a molecule and external electric field. In this case
the total Hamiltonian of a molecule is H = Hy+ V with H; denoting the Hamiltonian of the
nonperturbated isolated molecule; 7 is the perturbation Hamiltonian of the molecule
subjected to the external electric field and in general is given by (8).

The perturbated wave function p can be expanded in successive orders of approxima-

tion as

— g Z ) (0) (10
k

s=0

The energy of a molecular system in its perturbated ground state g can then be expressed
as follows:

S SO = WO Y WO L WO Oy 1)
s=0
Here ¢ = &), whereas the remaining coefficients ¢ for s> 1 and k+g are of the form
BT = Viy = [ #OVPar
c;zi)(Wo WO) - Z Vkl (l) Ckg Vgg’

2 1 1 2
cg)(Wg"—- k) = ; (Vk,c§g)— ig)l/;,,cfg))— ;:;Vw cees (12)
. 2
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with W) — W) = haw,, denoting the difference between the energy eigenvalues of the ground
state g and the excited state & of the molecular system in the absence of an external field
and 9” and y}” are the respective eigenfunctions of the Hamiltonian Hy; Vi, is the matrix
element of V.

By the general equation (8), the first-order energy of the perturbated molecule is

W = Ve =— Z (2 ") M) B, (13)
n=1

whereas the second and higher-order energies are given by

Wg(”'l) =D Vg s =12, ... (14)
kg
From Eqgs. (12) and (14) we obtain for the second-order energy

WP = —h-13 g Ver Vig (15)

ktg
which by using the explicite form of ¥V given by (8) may be written as follows:
2 = Ontmy |
2 __ . nl () q1(n) 4 (m) (1)
WE - ZZ_ zn)'(zn)[E [] A [I]E ? (16)

where we have introduced the tensor
) AA(,nl) h-1 Z W, M(n) M(nl) -+ M(nl) M(n)) (17)
kg
With the following definition of the first-order multipole moment (or induced moment):
[ee]
M mp, |

_ (n) g(m) ("1)
88 T - (2n1)' A [ I]E (18)

the second-order energy of (16) can be written symbolically in the simpler form

oo

2"!7/ ! " 1) -
W Z BV M. (19)

From the defiition (18) we see that the tensor of rank n-n; with matrix elements (17)

characterizes the linear or first-order polarization of the 2"-pole electric moment due to an

electric field of degree n,. Thus, the tensor ®A®™ can be termed the first-order multipole

polarizability tensor of an isolated molecule, or in brief, its multipole polarizability tensor.
In third-order perturbation theory we obtain by (12) and (14) for s = 2

WP =023 3 olor ValVuVie— 20 05V Vi Veg)- (20)
kg l#tg k#g
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or by using the explicite form of (8)
1 T2 2 e Qntmtmog Tt
(€ N 1: T
We'=—3% ZIZ Z @)1 @np)! @)
pry Ry R |

N E(") [n] (n)B&(,Zl+nﬂ) [n1+ n2] E("n)E("a), (21)

if the following tensor of rank n--ny+n, is introduced:

(")B("l’*‘”s) — h-2 Z P(n, ny, n2) }E; Z wkg wlgl M(n) M(”I)M(nﬂ)
gl

— 2 o MMMy, (22)
k#g
where XP(n, 1y, ny, -..) is a symmetrizing operation denoting summation over all permuta-
tions of n, ny, 1y, ...
In the same way we obtain from Eqs (8), (12) and (14) the following expression for the

fourth-order energy:
we _ _ 1 i i 20.: i ontmtnatns gl In,lng! «
£ 24 (2n)! (2nry)! 2ny)! (2ny)!
ne=l =1 n—1 o1

X E(”) [n] (”)Cégl‘i‘"ﬁ'na) [n1+n2+n3] E(”l) E(”n) E(”x)’ (23)

where the tensor of rank n+n;+ny,+ng is of the form
l+ + 8 ___. —_— 1 —1 2, 3.
(n)CL(’Z nytns) . p-3 Z P(n, ny, n,, i) {; 1; ; wkg wlg M(n) M("l) M(n ) M(n)
g 178 m#g

— Z Z Wiz wlgl[wkg M(n) M(”l) M(”n) M(”a) —I—w—l M(n) M(m) M("z) M(na) +
kg l#g
+ Wiy —1 M(n) M(”l) M("z) M(”a) + Z Wiy =3 M(n) M(nl) M("z) M(”a)} (24)

The third-order and fourth-order energies of (21) and (23) can also be written in the

following compact form:

WP =3 Z B[ M, (25)
> onp ! (3 ,
W =— Z = i1 B () Mg, (26)

where we have introduced the second-order 2"-pole electric moment

oo o0
( ) 1 2n1+n2 n ! n n 1T Lo L]
MY =3 YN Ty B b EVEY @)

ny=1n,=1
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and the third-order 2"-pole electric moment
3 ad ot e ”1+7‘n+’la ! ! !
(71) Ny:MNg: Ng .
Z: 2. Z G @ng)! (20!

< (”)Cé?‘i‘”rl-”a) [nl +n2 + n’3] E(ﬂl)E(nz)E(”a)‘ (28)

According to the explicite form of Eqs. (27) and (28) we can consider @PRmAn) a5 the
second-order multipole polarizability tensor and MCm+mtm) a9 the third-order multipole
polarizability tensor of a molecule subjected to an intense electric field.

From Egs. (18), (27) and (28) we obtain in a good approximation

@ 1 @ 1
M( ) (@ A(l) E(l) ]. (n) Ag) : E(Q) 7 (m) AS;) : E(3) 108 (] 4 &(,:) - E(4)
(29)
(2)
M&(’Z) 2 {(n)Bg+1) . E(I)E(l) 3 (n)Bg+2) : E(l) E(2) é (")B§§+2) s E(z)E(Z)—i-...},

(30)

€)
M® = %{mmgﬂﬂ) i EYEVEY o % (n>0§2+1+2) s EVEOE® +} 1)

The expansion of (29) WA®, ®A® ®WA® __ contains multipole polarizability
tensors characterizing the polarization caused in a multipolar molecule by electric fields of
the first, second, third, ... degree, respectively. Similarly, the first terms in Egs. (30) and (31)
with multipole tensors ®B®+D and ®WCE+1+D describe the second and third-order polariza-
tion produced in the molecular multipoles by the second and third power of the uniform
field, respectively. In special cases the expansions (29)—(31) yield for n =1, 2, 3, ... the
dipole, quadrupole, octopole, etc. moments of first, second and third order, respectively.

On the basis of Eqgs. (19), (25) and (26) we can write the following general relation:

1 onn !
s+1 -

(s)
wEt = — E®nMS,- (32)

between the (s -+ 1)th-order energy and s-th-order 2"-pole eleciric moment defined in general by

M utetin e ngl o gon e ) gt
MY == Z Z T e R [ng+ ... +n] E™ .. B (33)
with ®A®++1) Jenoting the multipole polarizability tensor of order s.

The numerical values of diagonal matrix elements of the second and third-order multipole
polarizability tensors of (22) and (24) can be calculated directly by the methods discussed
in the paper of Dalgarno [16] for the case of first-order multipole polarizability.
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4. The energy of intermolecular interactions

We consider two nonoverlapping molecular systems p and g which have in general
2"-pole and 2™.pole electric moments, respectively. The vector connecting the centres of
these interacting molecular systems is 7,,, and 7, and 7, are radius vectors of their electric
charges ¢,, and e ,. The potential ¢(r,,) at the centre of the ¢g-th molecular system due to
all the electric charges of the p-th molecular system is defined as

=y &
Ppq) = Z oy (34)

which for r,,<r,, may be expanded in a series in powers of T ool pgs

» 1
Plrse) = Z( Iy S M ]y (—;) (3)

where M;'” is the 2"-pole electric moment of a molecular system p defined by Eq. (5) if e,
is replaced by e,, and r, by 7,

We now introduce the definition of an electric field Fi™ = — V*p(r,,) of degree m
at the centre of the molecular system ¢, obtaining by the expansion (35)

(m) Z (— 1)n (2 1 M(n)[ ](n) l(;:)’ (36)
wherein the tensor of rank n+m
1 — g (L) = (pg-erminyeem ) 7

describes (2"-pole) — (2™-pole) type interactions between molecules p and g. Here, y"*™ is

directed from molecule p to g so that WTE = (=1y"+m T and Y@+, ) =

= (=1rtm y@+tm (r,,) is defined by (6) or (7) if n is replaced by n+m and r by 7,
Similarly, the energy of electrostatic interaction between the two molecular systems

lpg = Z Z = Z ean(Fog+7a0) (38)
may be expanded into the following form [13, 17];
== 33 1y G e Ml T [ M, (39)
n=0 m=0
which simplifies, by Eq. (36), to the form
e == ), oy P IIME = > G MO . (40)
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We now generalize these equations to the case of a multi-component system containing
Ny, Ny, ... N, ... molecular systems of the first, second, ... i-th species, and obtain for the
total ﬁrst-order (or electrostatic) energy of molecular interactions

U=—3 23 YY) o S MY TR M, @y

[ ot 1
N 2 B M. 2)

Here, F(? is the total electric field of degree m at the centre of the molecular system g of
species j due to the electric multipoles of all the other molecular systems and can be obtained
directly from (36) by summation over all molecular systems except the given g-th; namely,
we have

FP =Y Z Z - g5t MY (43)

i p=1 n=

with the multipole tenso. M now referring to the p-th molecular system of species i.
The higher-order or inductional intermolecular energies can be formally written on
a classical level in a form analogical to equation (32) if the external electric field is replaced
by (43) and provided the problem is restricted to multipole polarizabilities in the first power
only. In this way we have for the (s--1)-order energy of intermolecular interactions

(=1,2..)
(‘”)_ 2 m1 oms) {2 om)
L eSS, w
J

g=1 m,—l

(5)
where M{™ is the s-th-order multipole moment of the molecular system g of species j.
1)
Since the first-order. multipole moment Mg’,f") can be expressed as follows:

[¢)) Mg
(mn) § : ’”2 (m1) g (ms) (ms)
(zm ) 1 A [ 2] F q1 (4'5)

we obtain from (44) for the second-order intermolecular energy

(2) Z 2 i i . ml' m2 F(ml) [ ](mx)A(m:) [m ]F(""') (46)
7 g=1 m=1m,=1 (2m1)'(2m)' @ ol ¥'ai >

where A% is the first-order multipoie polarizability tensor of an isolated molecule ¢
of species J.
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On substituting in (46) the molecular electric field of (43) we obtain in explicite form
(2 Ni o o

9P II1010 I HERE e oL

Gk p=1 g=1 r=1m=0mn,=

% M;’;l) [ ] ("1)T(m1) [ml] (m1) A(ma) [ 2] (mn)Tgx) [nz] Mfzi)' ( 47)

Third-order energy of intermolecular interactions is given by Eq. (44) as follows:
@) 1 ad hd it 2m1+mz+mam 'm 'm '
U7—_ * 1: Mg My :
PIPIPI Z Z @) @my) T @mg) I

% Fg]"x) [mq] (ml)B(mz+m8) [m2 + m3] F(mz)FZ”x)’ (48)

or, by (43), in the following explicite form:

X (— 1yt matms et ! mgl [n,] x
@ny)!. (2m ) v
% (nl)Tng) [ml] (ml)B(q?B+ma) [m2 + m3] (mz)TYE;:z) [nz] Mﬁz») (mS)TénSS) ["’3] Ms(lna)- (49)

Similarly, with respect to the general equation (44}, we have for the fourth-order energy
of intermolecular interactions

@ 2 D D 2ttt U U me U,
U= *% Z PIIDIDIDY 2(2;1)+! (2;2)’!71(12',::)'!7:23,;3? %

X Fg [m] CG™ ™ [my+-my +my) K Fo H, (50)

where the total molecular electric field F& of degree m is given by Eq. (43).

It is clear that by appropriate simplifying assumptions we can obtain directly from the
general expansions of (41) and (47) the special results derived previously by Debye, Keesom
and others [2, 4, 5, 15] as well as the result including explicitely the anisotropy in th e dipole
polarizability of a molecule [14].

5. Applications of the tensor formalism

The tensor formalism developed in Section 3 can be applied to calculate the tensor of
electric permittivity ¢ of a gas in the presence of an intense electric field. Let o be the number
density of molecules of a gas. We have the general equation [18, 19]

(€e~U)- E = 4mp Z( 1yt (2n)vV" n—1) MY, 1)
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where

3)
MP =3 (MO + MY + MO + MO+ Yo, 2
L4

is the total multipole moment obtained by averageing its diagonal matrix element with
the density matrix g,, = exp {—W,[kT}/Z exp {— W, [kT} over all occupied states g of

a molecule in the presence of the externagl electric field.

From equation (51) with the expressions (52), (11), (32) and (33) we can compute the
nonlinear change caused in the electric permittivity tensor by a strong uniform field,field
gradient [15, 20}, or fields of higher degree, such as the gradient of a field gradient [21].
We refrain, however, from proceeding to a discussion of these nonlinear effects in the present
paper, but wish to draw attention to the fact that the first-order multipole moment of (18)
if averaged over all possible orientations of the molecule yields

M® — go+n E®, (53

where

nlu ! n
a®®) — gtn) — @.’Zzam Z Qi’g)( ) Aéz) i2n] U
z

2ntinl ® [ M O
(2n+1)'h Z Z C() Mg Qgg (54')

is the mean value of the 2"-pole electric polarizability of the molecule due to an electric
field of degree n, and @ is the density matrix in the absence of an external field 7. e. when

W, =W,
If, in particular, the molecule possesses the axial symmetry, we have [19]
2n)!
(n) n) — ( N2 5

and Eq. (54) for multipole polarizability assumes the simpler form

@n) — (ﬂ) (n) (0) 56
a 2n+1)h ;Zw Qg » ( )

where M™ is the scalar multipole moment of the axially-symmetric molecule. From (54)
or (56) we obtain, successively, the dipole polarizability due to a uniform field (n = 1),
the quadrupole polarazability due to a field gradient (n = 2), the octopole polarizability
due to the gradient of a field gradient (n = 3) etc. (see Ref. [16]).

The formulas derived in Section 4 for the intermolecular energy U will now be applied
to computing the excess free energy of multicomponent systems by the method of Longuet-
Higgins [22] and Pople [4, 23]. Namely, we have

F excess F central + Ftensorial; (57)
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considering the tensorial intermolecular energy U to represent a perturbation to the central-
-force energy. In (57) F ... is the contribution to F,

and does not interest us here. The contribution to F,, ., from the tensorial intermolecular

from central intermolecular forces
forces can be expanded up to the second-order approximation as follows [4]:

Ftensorial = <U> — UZ) - < U> 2) +on (58)

m((

@y =D f . f (TN () dr® (59)

is the statistical average evaluated with the distribution functions n® () of A molecules
of the unperturbed system, and

where

1
UN))y = — ...fUrN,wN dwN 60
=g [ o [ v (60
is the unweighted average of U over all orientations w® of the N molecules of the system,
QN = [...[dw".
N

In the first approximation (the first term of 58) the first-order and third-order energies

@) 3)

of intermolecular interactions (Eqs 41 and 49) do not contribute to Fi o0 as U and U
vanish on isotropic averageing as defined by (60). The only non-zero contributions to Fi, .1

in the first approximation come from the second- and fourth-order energies given by Eqs.
(46) and (50). Namely, we obtain from Eqs. (46), (54) and (60) for the isotropic average of
the second-order tensorial energy

N,
@ !

<U>w——— fj

g=1m=1

1
T ag” (B [m] e, (61)

[\D'N

where by (43) and (37) we have

m m = 2(n! " ) (M) r(m n)rp(m
<F( ) F;] )>w — Z Z Z (Zn) 1 ((2’ :_1) i ( .;1') [n’] MIS’)) (( )T;q) [n + m]( )TI(’Q))
' P;ﬁq "o

27 24 2m) (W) on oo —aimid
_ Z Z Z (22)’; (2n”j_)1)(! ) (M [n] M) 204D,

i p=1 n=
b q

On substituting (61) in the definition (59), we finally obtain

o 1 o ©  ® )2 m ! (2n+2m)! (@m) (ma(n) (n)
(U) = — 4 Z 4 Z Z (Zn)'(Zm)' (2n+D! (LT M) +

—i—(M(”)[ Mn)) (2m)} ff —2(n+m+1) (2) (,,.p, r ) drp d’l"q, (62)
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where n{(r,, r,) is the binary distribution function for pairs of molecules p and g of species
7 and j respectively, and x; = N;/IV is the molar fraction of the i-th component of the mix-
ture.

For axially-symmetric molecules we have the relation (55) and Eq. (62) assumes the
form

@ 1 . ) — 2n+2m) m! a2

(M2 oy f f StmtD D ) dr, dr, (63)

which in the case of molecules possessing only the dipole M{" = y; and quadrupole M{P= @),
moments reduces to the simple formula

& 6 3 2 2 -8
Uy =—+ 2 agy || s +ia)ng+ o (@6 +6ia)n+
5(gitt; +17 )5 +14 (0,07 +6q), ‘m} n(ry, 1)) drydr,, (64)

where a; = a® is the dipole and ¢; = a®— the quadrupole polarizability of the isolated
molecule of species i, defined by expression (54) or (56) for n = 1 and n = 2, respectively.
4)

Averageing of the fourth-order energy U can be performed in the same way; however
for simplicity, we restrict this calculation to the case of dipolar molecules possessing the
mean third-order dipole polarizability ¢; = U: PC®:U/5, and finally obtain omitting the
term with ternary interactions of the molecules

@ 1
Uy = — ) (et +pic )ff nlind(,, v )dr,dr, . (65)
i

In the second-order approximation the average of the square of the first-order energy
@
U is non-zero and the result is in general given by the formula

N o 2tm(n ! m )2 (2n+2m) !
(0 = Z Z Z @)1 @m)! @i D) @miD! >

i

X (M ) M) (M ) ME™) [ [ 52200, 1) diry dirg (66)

A further simplification of the general result of (62) and (66) can be obtained by appro-
priate assumptions on the type of symmetry of the molecule (e. g. the cases of molecules
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with tetrahedral or octahedral symmetry are discussed in Refs. [17, 19, 21]. In some special
cases expressions (62) and (66) yield the result derived by Pople [4, 23] and Barker [24].

Other contributions to Fy o Within the framework of the second approximation
omE@ @G
come from the terms (U U), (U U) etc. if, in averageing these terms, we take into consid-

eration besides binary correlation also ternary or higher correlations as well as the anisotropy
of the multipole polarizability tensors. However, we shall restrict these supplementary
calculations to the following contribution only:

@@

U0y =5 Z g +) [ [ oo, voan,dr, (©7

resulting from eqs. (41) and (49) in the simpler case of dipolar molecules possessing the
mean second-order dipole polarizability b, = U:PB® . E/3, with k denoting the unit
vector along the axis of molecular symmetry.

In order to be able 1o test numerically the foregoing contributions to I . .., we have
to know the values of the radial averages of r,;". To compute the latter, one has to assume
some form of the binary distribution functlon n ( » 7). In the special case of moderately
dense systems, when the binary distribution functlon can be expressed as follows:

4«8," [oFF] s [oFY] ¢
ng 1y 1g) = % exp {—— = [(;;:-) — (j) ]} (68)

we find [17]
f f o 0y ) iy diry = DI (), ()
SJ’UUU
where
5— s++3—n)fs = 1 m (s—1)/s mt+n—3
Hy () = gtk Z ,—n—,yz = F(—S—> (70)
m=0

with ¢; and o;; denoting the central forces parameters having the dimensions of an energy
2
and length, respectively, and y;; = 2(e;/kT )} and b = 3 7N, If in particular s = 12

and ¢ =6 7. e. with the 12—6 Lennard-Jones potential, the functions of Eq. (70) reduce
to the functions HX*~%introduced by Pople [4], whereas s = 18 and ¢ = 6, as well as s = 28
and t = 7 involve the functions discussed by Saxena and Joshi [25].

In cases when the values of the parameters ¢;; and o,; are known, we can use expression
(69) for evaluating numerically the appropriate contrlbutlon t0 Fiengorial Siven by expansion
(58), with (62)—(67). In this way we can obtain information concerning the values of the
permanent multipole moments and multipole polarizabilities of unlike molecules of sub.
stances,
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APPENDIX

Interaction of a molecular system with an external magnetic field

Let a molecular system consist of point particles with masses m, and electric charges ey
without consideration of their spins. The nonrelativistic Hamiltonian of such a molecular
system is represented by the well-known equation

1 e 2
T A o

in which p, is the momentum operator of the »th particle and ¢, and A, are the scalar and
vector potentials at the position of the »th particle.

In the usual way (Al) can be split into a nonperturbated Hamiltonian H;and a pertur-
bated Hamiltonian ¥, which now represents the interaction of the molecular system with
external electric and magnetic fields and may be written in the form of

V=V, +V,. (A.2)

Here, V, is the electric part of the perturbation and is given in general by the multipole
expansion of Eq. (8), whereas V,, is the magnetic part of the perturbation which can be in
general expanded as follows:

V, = VO V@ VO VO .. (A. 3)

The magnetic part of the first-order perturbation Hamiltonian has the form (for com-
parison see Refs. [27], [28])

(v ¢}
2t n!

Ve = — @ M [2) H®, (A. 4)
n=1
where
MP = "(h%c‘ Z e Y X7, (A. 5)

is the 2"-pole magnetic moment of the molecular system, and
H® = {y"xA}, (A. 6)

is the strength of the external magnetic field of degree n.
By (A. 4) the first-order magnetic energy of the molecular system in the ground state g is

o0
27n !

1]
ra-rg=-Y 2
n=1 :

M%), [n] H® (A.7)
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The second-order magnetic perturbation in (A. 1) and (A. 3)
1 e
@ __ v .
Ve — 53 E o A4,-4,),

can be expanded as follows

i ontnp !
yo— 1 R s O A (] HO,
2 =1 m=1 2n) 2 )
where
nn ev 141, 7 7y n "y
WA — — Y (n11+1) e Z - At )(yu Y™y — Yyt ))

is the diamagnetic multipole polarizability operator of an isolated molecule.
In the second-order perturbation theory we have
@ . __p-1 -1 M@ (2)
W® = —h éwk&, VRV +V,
£

g8 °*

which because of (A.4) and (A.9) can be written as

1 X0 2] goopy) Ao
we Z2n HOn) Mo

o mgg s

_—

n=1

where

(1) gy
() 1 ) A (ny)
M= E ( 3 A™ [n,] H

is the first-order magnetic multipole moment with

D] ("1) — ("1) 1 () (m) (m) ny(n)
A A+t 3w (M, ME + MM

mgk mkg mgk mkg)

(A. 8)

(A.9)

(A. 10)

(A. 11)

(A.12)

(A. 13)

(A. 14)

the diagonal matrix element of the total magnetic multipole polarizability tensor. The first
term in (A. 14) is the diamagnetic part whereas the second — the paramagnetic part of the

magnetic multipole polarizability tensor.

Averageing over all possible molecular orientations we obtain from (A. 13)

)
M,f,") — aff”) H®™,

where

7 2np ! n) 4(n
o = Gt D O A 20) U
g

(A. 15)

(A. 16)
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is the mean value of the magnetic multipole polarizability consisting the diamagnetic part

2n?
¢m — (0>
- = T aln+1)? @ntl) 02 Qe } Z > (A. 17)
and paramagnetic part
ont+ln 1
) = ) (O
= @nr)h Z Z wre Mie [n] Mig " Qe - (A. 18)

In particular for n =1 Eqgs. (A.16)-—(A. 18) give the well-known result of Van
Vleck (1932).

Analogously, one obtains the magnetic energies of third and fourth-order by using the
following formulas (see e. g. [30]): -

3) 1) (2 2) (1) 3
Wi =2 Vs + Ve + Ve
g

WO =3 (DD + VDD VD D} VO, (A. 19)
k#g

where we have now

2 (1} 0y ___ 1) (1 1 1 2
cl(cg) (Wg - Wk) —I§ Vk(l)cgg)_cl(eg) ngg)—" Vk(g)’
&

3 (1} 0 1) (2 2) (1 1 1) (1 2) (1 2 1 3
D W— W)_Z(V‘ P + VPP — PV PeP) — VL — DV D +VE. (. 20)

In the general case, when the total perturbation Hamiltonian of (A.2) is introduced
in equation (A. 11}, (A. 19) and (A. 20), we find total energies of the second and higher-
-orders consisting, in addition to the pure parts depending only on the electric or magnetic
field, mixed parts dependent simultaneously on the electric and magnetic fields.
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