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Within the framework of the classical statistical theory of isotropic dielectrics, the effect
of pairwise and triplet interactions between molecular electric multipoles on the orientational
polarization Py of a multi-component system is discussed. Applying an adequate tensor formalism,
the general form of the contribution to Pg due to the induction of molecular dipoles by the
electric fields deriving from permanent multipoles of neighbouring molecules of the medium
is computed in the zeroth approximation of the theory, i.e. in the absence of potential energy
of tensorial interaction of the electric multipoles. Analogously, as a first approximation
of perturbation theory, the additional contributions to Py accounting for the effect of the
potential energy of tensorial interaction of permanent mulecular multipoles on the permanent
multipole-induced dipole effect resulting in the zeroth approximation of the theory are computed.
Moreover, the effect on Pg of the anisotropy of the molecular dipolar-polarization tensor is cal-
culated. The general results are discussed in detail for systems whose components consist of (i)
weakly dipolar molecules, (i) quadrupolar axially-symmetric or arbitrarily-symmetric molecules,
(iii) tetrahedrally-symmetric molecules presenting an octopole and hexadecapole moment, and
(iiii) octahedral molecules presenting only a hexadecapole moment. The theory is applied to gase-
ous mixtures, for which the second virial coefficient of orientational polarization, providing the
basis for determining molecular multipole moments of order higher than dipolar, is found.

1. Introduction

Part II of our paper is concerned with a detailed discussion of the influence of multi-
pole molecular interactions on the orientational part of the electric polarization which,
from Kirkwood’s statistical theory (1939), is given by

4n 9 :
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Po= o (M¥ (B

We shall concentrate on multi-component systems consisting of weakly dipolar molecules,
or non-dipolar ones presenting higher order electric moments, thus a quadrupole, octopole
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~ or hexadecapole moment. The choice of these systems is linked with the restriction of the
mean statistical average of the square of the system’s dipole moment M? to the zeroth or
at the most to the first approximation of classical perturbation calculus

(M) = (M) o (P 02V (12)
wherein the total potential energy of tensorial interaction between the molecular electric
multipoles, V,, is the perturbating potential.

It is generally known that in dealing with a system of N identical permanent molecular
dipoles g non-polarizable in the electric field of neighbouring molecules we obtain in the
zeroth approximation i.e. in the absence of angular molecular correlations

(M?)o = Nu?; (1.3)

this result together with Eq. (1.1) yields the well-know formula derived by Debye for a di-
polar gas. Debye’s formula, which describes polarization in its dependence only on the
square of the molecular dipole moments, their number and the temperature of the system
T, has for many years provided the basis of a simple method of determining the values of
molecular electric dipoles.

It can be asked whether the effect of electric orientational polarization of an isotropic
medium can also provide information on molecular electric moments of higher orders.
Several papers published in the course of the last ten years have answered this question
in the affirmative.

However, since this case involves no direct orientation of molecular moments of order
higher than dipoles under the influence of the externally applied electric field, the systems
under investigation cannot be rarefied to such an extent as to preclude angular molecular
correlations (which is the prerequisite for applicability of Debye’s method of determining
molecular dipoles); condensation of the molecules has rather to be such as to admit of the
presence of interactions of the tensorial type between them. These interactions will then
lead to an effect consisting in the fact that, in any given molecule of the medium, a dipole
moment is induced by the electric field of the permanent electric multipoles of the neighbour-
ing molecules in the medium. Thus, even in the case of molecules possessing no permanent
dipolar moment we obtain in the zeroth approximation the corresponding contributions
to Pg, since (M%), 0. Accordingly, if the molecules present a permanent quadrupole
moment @ and isotropic polarizability & and are distant by r, we come to the formula

(M>»y= 30:2@2Ng(r—8)R (1.4)
containing the mean value

= [ T g()dr (1.5)

to be computed by means of the radial distribution function g(r), with p = N/ denoting
the average number of molecules.
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If the gas is condensed to the extent that only pairwise correlations appear, we have
u(r
gl(r) = exp { — —A—(f?} Consequently, if the form of the energy u(r) of central interaction

of a pair is known, we are able to compute the radial mean values of Eq. (1.5) and, if « is
known, we can determine numerically the quadrupole moment @ of the molecules from
Eqs (1.1) and (1.4) and the appropriate experimental data for P,. The effect in question,
consisting in the induction of molecular dipoles by permanent molecular quadrupoles,
was first discussed quantitatively in the theory of the dielectric permittivity of real gases
by Buckingham and Pople (1955) as well as by Zwanzig (1956), who applied it for deter-
mining molecular quadrupoles (also, see Jansen 1958, Johnston and Cole 1962, Birnbaum
and Maryott 1962).

Johnston, Oudemans and Cole (1960) showed that a similar effect takes place in gases
such as methane, whose molecules possess a permanent octopole moment £ and are able
to induce a dipole moment in neighbouring molecules leading, in the zeroth approximation,

to the value (see also Kielich 1962)
. ~10
(M%), == T (2N (r~10p. (1.6)

From this formula and appropriate measurements of P, we can determine the value of
12 for tetrahedral molecules; thus, e.g. in the case of methane measurements by Johnston
et al. (1960) yielded (Kielich 1963) Oy = 610734 e.s.u. cm3, which is a wholly reas-
onable figure.

Theoretically, analogous effects due to molecular moments of higher orders are possible.
Numerically, however, they are negligible; we can hardly hope to detect any such effect,
unless it be in a gas such as SF; whose octahedrally symmetric molecules possess a perma-
nent hexadecapolar moment @ and induce dipoles in their neighbours, yielding the non-zero

contribution (Kielich 1964)

(M, = 22 2 @aNg( 12y, ()

The above considerations show that the zeroth approximation of the theory of dielectric
polarization provides a simple means of determining molecular electric multipoles of the
respective order. The method loses much of its simplicity if we have to take into considera-
tion other contributions to Py, as e.g. the anisotropy of dipolar polarization of the molecules,
or higher ones which appear in the first approximation of the theory i.c. when M? in ac-
cordance with the expansions (1.2) contains contributions dependent on T-L Thus e.g.
in the case of quadrupolar isotropically polarizable molecules we have by (1.2) to within
the first approximation (see Johnston and Cole 1962, Kielich 1962)

(M2 — 3a262Np {(r %>R+ = (r‘13>RI (1.8)

These complications mostly concern cases when the molecules are quadrupolar, since it
is only in such cases that the first approximation yields a thus non-negligible contribution
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to Pg,. In dealing with higher order molecular moments (octopoles, etc.) there is generally
no need to proceed beyond the zeroth approximation of the theory, and further approxima-
tions can be neglected.

In this paper, within the framework of classical statistical electric polarization theory,
we will compute the above-mentioned effects for dense multi-component systems. The mole-
cules of the systems will be considered to possess arbitrary symmetry as well as electric
multipoles of arbitrary order (dipoles, quadrupoles, octopoles, hexadecapoles, and so forth),
and multipolar interactions will be described by means of Jansen’s tensor formalism. The
theory thus generally formulated can be applied to a wide range of vastly differing special
cases beyond the one-component systems mostly discussed hitherto, comprising two-,
three-component systems and the like. The results applied to gaseous, not excessively
condensed mixtures allow i.g. to glean information concerning interactions between the
induced dipole of an atom or molecule of one kind and the permanent electric moments
of various orders of molecules belonging to other components.

2. Fundamental equation for the orientation polarization

The statistical theory of electric polarization of an isotropic medium leads to the fol-
lowing equation for the orientational polarization

4
Po =4 (M -M), 2.1)

where M is the total electric dipole moment of a macroscopic spherical sample of the me-
dium, and the symbol { ) stands for classical statistical averageing in the absence of an
externally applied electric field.

In the general case, the total dipolar moment of a medium not subjected to an external
electric field will consist of M., the sum of the permanent dipole moments of the mole-
cules in the sphere, and M, 4, the sum of the dipole moments induced in the various mole-
cules by the electric fields of the remaining molecules of the sphere:

M=M,_ +M

perm ind*®

2.2)

If, quite generally, the spherical sample contains N; molecules of the first species, N, of
he second, ..., and N; of the i-th species, we have

N;
Mo, = Z El i (2.3)

where g,; is the permanent dipole moment of the p-th molecule of species zin the absence
of intermolecular interactions within the sphere, thus representing the permanent moment
of the isolated molecule. :

Similarly to what has been done in (2.3), we can express the induced moment of the
spherical sample which, in the first approximation, is of the form

Ni
Mnd = Z Zl o, - sz’ 24)
i p—



99

with a,; denoting the tensor defining the dipolar electric polarizability of the p-th molecule
of species i due to the electric field F,, arising from ‘the electric charges of the remaining
molecules of the medium. In the general case, the molecular field F,; is of a complicated
form; however, on restricting ourselves to the part due to the permanent molecular electric

multipoles, it can be expressed by the following formula (Jansen 1958, Kielich 1965):

Nj [
. 2mm!
I ) T AR
7 g=1m=1
wherein
1
P

is the tensor of interaction between the electric dipole induced in the p-th molecule and
the 2™-pole permanent electric moment M of the g-th molecule of species J distant by
I,q from the p-th molecule (the explicite definition is to be found in Appendix A); V¥ is a dif-
ferential operator directed from molecule g to p; while the symbol [m] in Eq. (2.5) denotes
m-fold contraction of two tensors of order m.

If, in particular, the medium consists of molecules presenting no permanent electric
dipoles but possessing permanent electric moments of higher orders (higher than 1), the
fundamental Equation (2.1), by (2.2) and (2.4), assumes the form

N; Nj;
4«7'[ y ) §
Po= o7 2, (Z PNCALERCR «f)>’ &0
ij p=1 g=1
or explicitly, by (2.5),

N e}

. Ni Ny Ng 1 =)
A O ntmp Im !
Po=g1 <ZZ PIDIDIPWC L
’ ikl p=1 g=1 r=1 s=]1 n=;rq ' :
X (MR [T - o) - (etg; - CT [m] M. (2.8)

Thus, we have obtained a general formula determining the orientational polarization of
systems consisting of molecules presenting permanent electric multipoles of order beyond
the first, i.e. quadrupoles, octopoles, hexadecapoles, etc. We shall discuss this equation
in detail later.

In writing Eq. (2.4) we assumed tacitly that the molecular fields acting within the medium
are of the first order, i.e. that FpiE Fi(,li), and that these cause electric polarization of a mol-
ecule as given by its electric polarizability tensor o of the second rank. In general, however,
electric fields of higher orders arise between the polar molecules, thus a field of order
two F or field gradient, one of order three F® or gradient of field gradient, etc. and quite
generally a field of the n-th order given by the equation

[ee]

Nj
2mm! .
anm) m {")gn(m) (m) (m)
FP=3 33 D a1 o Il (M 1 P, (2.9)
7

g=1 m=1

f%:

L g
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wherein

m - 2m’mI! m) g(m’ ' m’!
rp- 3 S ny 0
m! =1

is the 2™-pole electric moment induced in the g-th molecule of species j by the electric
field of order m’ of its neighbours, ("')Ag’]'.") denoting a tensor of rank m-+m’ describing the
polarization of the 2"-pole permanent electric moment of the g-th molecule of species
j due to the molecular electric field of order m'.

Taking this into consideration, Eq. (2.4) for the total induced dipole moment of the
sphere has to be replaced by the equation

N; Ni o
A @ _ 2! @ g @
”%—Z;%—ZZ AT Y, (2.11)
- =

i p=1 n=1

which, with regard to (2.9) and (2.10) can be rewritten in a good approximation as follows:

N,

Nj 0 <
ind = — mM(D () (mgp(m) om)
) PZ Zl Zl 21( V" Giamy A 1 Tog ml Mo+
i g=1 n=1 m=

=1

Ni %1 Ng o & 0; ad Ly 2n+m+n1+mln‘myn/ Im'!
— tmn’ tm’!
+Z > Z > > (=D 20 12m) 1@n) 1@m") !
ijk p=1 ¢g=1 r=1 n=1lm=1n'=1m' =1
X DAL [n]) PTG [m] AL [T | ME” + .. (2.12)

Recurring to the expression already derived for the induced dipole moment of the
sphere we can calculate, beside the contributions to the orientational polarization Py from
multipolar molecular interaction as taken into account to within dipolar polarizability
a = DAD (see Eq. (2.8)), further contributions resulting from the electric polarizabilities
of higher orders taken into consideration in the present theory. '

In addition to the already discussed direct influence of multipolar interactions upon
the total dipole moment M of the sphere and thus upon the orientational polarization Py,
-we have to deal with the indirect influence of multipolar interactigns arising through statistical
averageing of M2 with the total potential energy U(7) of interaction between the molecules
of the system at configuration 7 in the absence of an external electric field. Indeed, we -
have by a well-known formula of classical statistical mechanics

[Mz exp I— -[—]@} dr

\ T
Mo == @),
fexp {_ _lﬁ‘_} T

Tn the general case, the configurational variables 7 are the set of positional variables
of the molecules ?™N =7, .7 and their orientational variables w¥ =w, ... wy. In many
cases it is convenient to resolve the total potential energy U(r) = U(r, w), which in general

(2.13)
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is a function of the position and orientation of the N molecules of the system, into a termn
U®@Y) due to interaction of central type and dependent only on the positional variables
N, and one V,(r™, w") due to interactions of non-central type and depending both on the
positional and orientational variables of the molecules. Strictly, ¥ is the potential energy
of interaction between permanent or induced electric multipoles of molecules that cannot
be dealt with as rigid spheres. Obivously, such interaction will in general be of a tensorial
nature, leading to a mathematically highly involved form of the energy ¥,. E.g. the potential
energy of the system due to electrostatic interaction between the 2"-pole permanent electric

moment of one molecule and the 2™-pole permanent electric moment of another is given
as follows (Kielich 1965 a):

e D N N X B G M

ij p=1 g=1 n=0 m=0

Still more highly complicated mathematical expressions result for the case of the po-
tential energy due to molecular interaction of the inductional type. Naturally, in these
circumstances there can be no question of carrying out the calculations of Eq. (2.13) strictly,
and we have to recur to approximations. Satisfactory success is achieved by treating the
tensorial part of the potential energy ¥, as a small perturbation to the central energy U,
as this allows to replace the exact expression (2.13) by the following approximation:

(M) = (M2 e (MR — (M2 Ve OT-), 2.15)

where (), denotes statistical averageing with the non-perturbated energy of the system
Uo,

The approximation (2.15) is entirely satisfactory only in cases of systems consisting
of molecules which are non-dipolar or weakly dipolar but present higher (quadrupole,
octopole, etc). electric moments. By this relatively simple approach, we are able to compute
numerically the additional effect of multipole intaractions on M2 as explicitly dependent
on the temperature. Further approximations, more strongly dependent on the temperature,
play an essential part only in the case of strongly dipolar molecules, and have been dis-
cussed in detail for gases by Harris and Alder (1953), Buckingham and Pople (1955), and
this author (Kielich 1962) (see also Dymond and Smith 1964).

The statistical averageing on the right hand side of Eq. (2.15) can be put as follows:

(X)o = (N];!h) i j (.};). f X(rNyn®(rkydrh, (2.16)

where

X(rN) = fX('rN oN)dwN  with QN~f fdwN (2.17)
o)

stands for averageing of the function X with equal probability over all possible orientations
of the molecules.



102

Into the definition of Eq. (2.16) we have introduced the molecular distribution functions
for A molecules defined as

N!
(N—#)!

* ©)( N
] exp {a M} drN-h
P = SRS

N
[ ;zvsf ex { T

is the probability of finding a chosen group of A molecules within the element dr* about
the point 7*. In the case of a multi-component system, the function (2.18) ix replaced by

n(rk) = P@®)(ph), (2.18)

where

(2.19)

the following molecular distribution functions:
an(r,) = N,PO(r,),
xan(1y,1,) = M(M*%)RS?’ (1),
BTGy s T,) = NN — ) (N — 03— 83) P11y, s (2.10)
with x; = NV,;/N denoting the molar fraction of the i-th component. In (2.20), n{" is a single-

-molecular distribution function, n(z) a bi-molecular, and n{§) — a tri-molecular distribution
function.

3. Contributions to Py, in the zeroth approximation of the theory

We will first compute (M?) in the zeroth approximation i.e. when the potential energy
of tensorial interaction vanishes (¥; = 0) and by the expansion (2.15) (M2) can be replaced
by (M?),. By the definition (2.16) we now perform the statistical averageing of (M?2), with
a distribution function independent of the orientational variables, obviously subsequent
to averageing M? over all possible orientations with equal probability, as required by the
definition (2.17). Thus, with regard to (2.2) we have to compute

<M2>0 = < erm>0+2< perm md>0+< md>0 | (31)

The simplest case that we can consider here is that of molecules having only a perma-
nent dipole moment p non-polarizable in the electric field of neighbouring molecules.
With M,y = 0 we have the total permanent dipole moment M., of the sphere given by
Eq. (2.3), where by (2.16)

Ni Nj
erm>0 - Z <§ g “'qj>0 . f:u'pz n’(l)( )drP+

+ 25 ff By ° pq].ngj@(rp, r,)drdr, =N 3] wul (3.2)
i i
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as fhy; * Wy = 0 for p # ¢. Our fundamental Equation (2.1) in this special case yields the
well-known result of Debye

daN 9 4
_ xid = E P 3.8
Fo T & i , WP, (3.3)

1

which states that the orientational polarization of a system (as a whole) of ideal dipolar
components whose molecules do not interact tensorially and possess non-polarizable electric
dipoles is an additive quantity of the orientational polarization P of the components.

In the present zeroth approximation of the theory, additional contributions to the
foregoing result of Debye will appeat only if we assume that the various components of
the system undergo mutual polarization by the electric fields of their permanent electric
dipoles. We will first take into account polarization of the molecules in the dipolar approx-
imation, assuming for simplicity that, although they possess permanent electric multipoles,
their tensor of dipolar polarization is isotropic

a = al, (3.4)

with @ denoting the scalar polarizability, and U — the unit tensor. Here, also, M, ,F#0
and we have to compute, in addition to the term in (3.2), the cross term M, - M 4 as
well as M ,. The general expression (2.12) yields to within the square of the dipolar pola-
rizability of the molecules & = WA®,

Ni Nj oo
Mins — Z \; Z ;(~-1)" (22”
N,

+ 2 i Zj i i (1) %,’f)ji i T '(;)TE?’[IL]MSZ). (35)
g=1 r=1 n=1

itk p=1

(UT(”)[ ]M(n)

On taking the scalar product of the moments (2.3) and (3.5), and considering (3.4),
averageing over all possible orientations of the molecules yields

N; Nj ’
s ] ‘'R Drp(D) . W
(Mperm - Ming)is = 3 Z L Z “pz/‘m“w( )T( ) ¢ )Tl(m) +
ij p—=1 ¢g=1
aF#p
1 N; N; Ng
D) | (1) ‘
T LYY Y megan TS O (3.6)

As shown in Appendix A, we have

DT OTD — 3,755 (3(n,, v, )2—r2r (3.7

P’ "‘1 pr qr
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so that by the definition of Eq. (2.16) and considering the distribution funetions (2.20),
Eq. (3.6) goes over into

M,y = 2 Z Wx“u‘h“,jf Toa B (1, )Y, dr +

< perm
+ § XX 0 f f f ro e By, 1, ) 2o} nR (1, v, 1 ) dr d, (3.8)
i

Taking the square of (3.5) and neglecting terms containing the dipolar polarizability
in powers higher than the square, one obtains

Ni N3y N N1

ik p=1 g=1 r=1 s=

X (M) T - o) - (g VTG m| M), (3.9)

whence, by isotropic averageing,

md)xs = Z Z Z Z (”" )n+1 (2’7;)2'”((;;)_*2_1)| pg(MS;;)[ ]M(n)) ((n)T(l) [n -+ 1](1)T§!11)) +

i =1 g=1n=

aF£p
N 24(n1)2
B33 > 1 e R M) (T 1T,
ijk p=1 g=1 r=1 n=1
a#p r::g (3.10)

Applying statistical averageing (2.16) and the distribution functions (2.20), as well as the
relation (see, Appendix A)

! P P,
TP )r = C D e e, (rriﬁr ) (3.11)
qr

we have fmally

2” n+1 n n —2(n
(MEado = Z i) Z ((2 S (M| M) [f 204D, Dy )drpdr,

= 9n(n+1) In ! ’ .
+ Z o Z -%L)%i o; 0 (M $°[n] M) %

itk n=1

) — Tpr T 2 16
X fffrp,("*z) TP, (ir'—r—l‘l) BT 1, W) d¥pd W g, (3.12)
prlrq

By substitution of (3.1) with the above contributions (3.2), (3.8) and (3.12) into the
fundamental Equation (2.1), we can formally represent the orientational polarization of
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a multi-component system in the form of a power series in the molar fractions

Py = 2 x P® + Z WLP(”)%— > xxAkP(”k) + s (3.13)

ij gk

where we have introduced the notation

4aN 2

P = (3.14)
Py - [ f {2oc,az,(/4z e + ZZ"(’;;;!”“- (M P[] M) +
(M) M) ‘2‘"”)} nD (1, vy, (315)
rgY = 9kT ff [{2(“’“’+“'”’)“kr"' ol (%) "
N Z 2n(n(;rl))" n! (M) M)+ 2049p, (&r_r;';:_rq) +
1 } n,ﬁ,?;g(ﬂ,, P, 1) dr,dr dr, . (3.16)

From the above expressions, the orientational polarization is seen to behave additively
in ideal systems only, i.e. only if molecular interaction is absent. Dense multi-component
systems such as mixtures of real gases, or liquid mixtures, exhibit a deviation from additi-
vity determined in the expansion of (3.13) by terms in the second or third power of the
molar fractions. The coefficients PY and PY® of these terms depend respectively on
the two-molecule and three-molecule distribution functions and are given in general by the
expressions (3.15) and (3.16). The explicite form of these coefficients allows to state that
investigation of deviations of P, from additivity can be a source i.a. of information cor-
cerning the electric multipoles of various kinds of molecules.

If 1he various components of the system consist of molecules having only a permanent

dipole moment, Egs (3.15) and (3.16) reduce to

i 4 - .
P = g (i) +2e(u +155) + o)) f f v drydry. - (3.17)

_ Ypr * Vrg , |
paw 9“ {//z%ak‘ma%/‘kﬂclmmk,f [[,Pr%rrqs (1; ) f]"}g(r,l,,:q, AP d ¥ Aty
orive (3.18)



106
Eqgs (3.15) and (3.16), when applied to systems of components consisting of molecules

having no permanent dipole moment but presenting higher order moments, such as qua-
drupoles, etc., assume the form

2% o 2(n+1)!n!

Py — SEr 2, (@XMl M) +

HMPRMP) [ [ 12 P nP v p)drpdry, (3.19)
=\ on 1t

pgn . A 2 tl)!nt oc; (M {°[n] M) x

kT 4 2n)!

[ f [ [ et Ap (’“‘" ) ng (W ) drpdrdr,. - (3.20)
Tprlrq

The expansion (3.13) and coefficients (3.19) and (3.20) indicate that deviations of P,
from additivity can be due to the presence of an effect consisting in the induction of electric
dipoles in molecules of one species by the electric fields of quadrupoles, octopoles, etc.,
of molecules of another species.

We now proceed to a fuller discussion of Eq. (3.19). Let us first consider the case of
molecules of all components possessing the axial symmetry (e.g. along the z-axis of the
molecule); we have now

) (2m)!
i 27 (n 1) 2

M M{” = (M, (3.21)

and Eq. (3.19) reduces to

P(’J)

n-1) {af (M2 + (M2 o} DD (1, ¥ d¥pdr g, (3.22)
()A] ) rTq

where M{™ is the 2"-pole scalar electric moment of an axially-symmetric molecule of species i.
If, in particular, the molecules possess only the quadrupole moment M® = 6,, Eq.
(3.22) reduces to the simple formula (Kielich 1962)

oG 2 9 o
PE 3[,‘[1( 2@2+O ;) ] [rpq n,] (lp, ") AT pd g, (3.23)

which determines the contribution to Pp from the effect consisting in the induction, in
a given molecule of the medium, of a dipole moment by the electric field of the quadrupoles
of its neighbours. This effect had originally been the object of calculations for the case of
pure gases by Buckingham and Pople (1955) and by Zwanzig (1956).

The general formula (3.19) can also be applied to molecules whose symmeiry is not
axial. Indeed, it is applicable to ones of arbitrary symmetry having electric moment. of
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order n>2. Expansion of (3.19) up to the term with hexadecapole moment yields
P(u) 9kT [f{[ (M(2) M(2))+(M(2) M(2))a ]rpq
4° L
+ = M s M)+ (M s MP)oglrp® +

4 .
+ 7[0:?(M,(4);M}4))+( MP i M®P)al]rpg® + .. In,] D1, r)drydr,. (3.24)

This formula can be used Z.a. in the case of tetrahedrally symmetric molecules (e.g. CHy).
Their first non-zero electric moment is octopolar, Mg)z = £, and their next moment is

hexadecapolar with component M%) = ®. Consequently, for tetrahedral molecules, we

have to put

M®:M® =0, M®:M® =622, M®:M® — 3007 (3.25)

in Eq. (3.24), leading to the simple formula

327 _
(u) . 2 2 2 0
T O1BkT f f { 1+ Qi

+ = (a O} + D)), 12} 11, 1) dr,dr,, (3.26)

which, for @; = 0, reduces (i.e. if we can restrict the problem to the octopole moment
only) to a formula derived earlier (Kielich 1962)
2z [

()
Po" = 15kT |

{2+ 02} 1, 0D (v, ) dpdr, (3.27)

Eq. (3.27) describes the effect arising in a dense medium owing to each molecule gaining
a dipole moment under the influence of the electric fields of octopoles of its neighbours.
For a real gas, this effect was first computed by Johnston, Oudemans and Cole (1960) and
measured in methane.

Eq. (3.26) or (3.24), in turn, can be applied to molecules of higher symmetry, namely
to octahedral molecules, in which case the first non-zero electric moment is hexadecapolar
and is of the same form as for tetrahedrally symmetric molecules. Thus, on putting 2 = 0
in (3.26), we obtain for octahedral molecules such as e.g. SF the formula (¢f., Kielich 1964)

i 1607
S = 317 f [ {0 D] + Dl rpg i (10, )y, (3.28)

which determines the permanent hexadecapole-induced dipole effect.
Quite similarly, Eq. (3.20) can be discussed for other kinds of molecular symmetry,
but we shall refrain here from writing the results obtained in the various cases.
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4. Contributions to Pg in the first approximation of the theory

As already mentioned, considering the potential energy of tensorial interaction between
the molecules leads to the appearance of further contributions to P which depend explicitly
on the temperature. Since we are primarily interested in systems whose components consist
of molecules that are non-dipolar but possess higher non-zero electric moments, we may
as well restrict our calculations to the first approximation taken into account in the expansion
of Eq. (2.15). Asnow M, = 0 and, as readily seen, (V) = 0, we see from the expansion
(2.15) that the only term to be computed is (M2 V). Assuming as before that the dipole
polarizability tensor is isotropic and given by (3.4) we obtain, on taking the product of the
energy (2.14) and the square of the induced moment (3.9) and on averageing over all
possible molecular orientations,

Ni Ny o ™

T-_—— — (—1)’”+12(”+’”)n!m! - %
Mina Vi = Z }_. Z Z 2 @) Em)  @ri ) @miDT %X

ij p=1 ¢g=1 n=2 m=2
aF#p

X (MP[n] MS) (M P m) M) (T8 - CT) [n+m T} + .. “.1)

In the above computation, we have retained only the first non-vanishing term with
double sums.
Introducing into (4.1) the definition (2.16) and the relation

D), Wgpom) wgew (=D t+m D! Cn)! 2m)! i)
(5, - VTR In+m] Py = Gtm o 1o " (4.2)
we obtain by (2.1) and (2.15) a new contribution to P’ depending on 72
P
G 2ntm(n+m+1)! nl m! A 0
Po 9k2T2 Z 2 i) @il AHMT I M) X
(M) M ff St @ ) dwydr,. (4.3)
On expanding this expression to within the term in octopole moments we have
i 32ma; o -
PE)]) = 135k2T]2 [f{(Mfz) 3Mz<2)) (MJ('Z) :MJ@)) rp413+
6 -
+ = (M2 : MP) (M : MP) + (M2 MP) (M - M)+
= O MP: MO MP :MPr; "} ng (1, 1) drydr,. (4.4)

If the molecules of all components of the system are axially-symmetric, Eq. (4.3) with
regard to the relation (3.21) reduces to

(u) (n+m+1)! L are (e
Po 9/£2T2 Z Z n\ml(2n+1) 2m+1) ;i ( M) (M)* X

% ff —(2n-+2m-5) (2)(rp,rq)d1pd1“q, (4.5)
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which, for the case of molecules having only a permanent quadrupole moment, leads to the
simple result

P —= Bmpm%@@/ylﬁ@mwnqu (4.6)

On substituting into (4.4) the relations (3.25) one obtains immediately a result that
holds for a system of components with tetrahedrally-symmetric molecules:

3 2 -
P = %522;2 oclocJQ!) ff 2 i (1, M) dTpdry . (4-7)

In order to take into account here the higher contributions due to the hexadecapole
moments possessed by tetrahedral molecules, we would have to apply the general expression
(4.3). Also, for octahedral molecules, Eq. (4.3) yields a formula describing the contribution
to PY due to the influence of hexadecapole-hexadecapole type interaction on the perma-
nent hexadecapole-induced dipole effect.

5. Effect of anisotropy of dipolar polarizability on Py

The calculations of Sections 3 and 4 were based on the assumption of an isotropic
tensor e of dipolar polarizability of the molecules. Obviously, if the latter present permanent
electric multipoles, this assumption is valid as a first approximation only, and has to be
replaced by one stating that & is an anisotropic tensor which can be represented as the sum
of the isotropic term (3.4) and an anisotropic term a*

a = alU+as, (.1)

wherein the tensor a® accounting for the anisotropy of dipolar polarizability has the property
of vanishing on isotropic averageing; similarly, the trace of a® vanishes, i.c. a®: U = 0.

Our subsequent calculations both in the zeroth and first approximation will be restricted
to terms which, ultimately, can be expressed by means of bi-molecular correlation functions.
Thus, considering the dipole polarizability tensor in Eq. (3.5) as an anisotropic tensor, one
obtains in place of (3.6) the following expression:

N; Nj
M) | Brp(1)
Mperm' ind — & Z Z Z (p'pz apz p“Pl) <’CQJ TP‘I ‘ TP‘I‘ (52)
ij  p=1g=1
9#D

which, by (5.1), can be resolved into two parts:

Mperm ' Mmd _ ( perm md)ls +( perm ' Mind)anis‘ (53)

The first, which is purely isotropic, is given by the ﬁrst term of (3.6). The other, purely
anisotropic part is expressed as follows:

P, N;
(Mperm ' Mmd anis — =2 Z Z 2 p‘pz upl)aq] pq (54)

i p=1g=1
aFD
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Similarly, by (3.9) one obtains instead of (3.10) the following result:

N;
2R DID) Z {75 M ) (MG : ag) (V157 OTG) +

i p=1g=1
aF P

+ Z T &) MG M) TR0 |, 65

or

Mlznd — nd):s T (Mmd)ams ° (56)

wherein the first, isotropic term is given by the first term in (3.10) while the second, aniso-
tropic term is given as follows:

(M fdhanis = — Z }: Z { (M3 - o) M3 - o) 13" —

ij  p=1g=1
qaFp
oo2"n+1!n,' “ ” W —(n .
- 3 EOLD k) L M) ) 67

n=1 ‘

since M®: a1,; M‘z) (@U+af) = M2: of; with regard to M®: U = 0, and o, o, =
= 3a; —f—up, w1th regard to U : U 3 and a: U=0.

On a%embhng the above results (5.4) and (5.7) we obtain the following contribution
to P& from anisotropy of dipolar polarizability

amsP(OU) = gk[v [f{[“z(l’v aJ w) + (i - o - i) o] rpq

1 e a - a n n,
IR TP ey o7 s o) LY M) +

n=1

H(M"[n] M) (of : of)] 175 2‘"”’} ng (15, 1) d1pd,, (5.8)

wherein by ©; — M® we have denoted the tensor of the quadrupole moment of a molecule
of species 1.

If, in particular, the molecules of the various components present a dipole moment

only, Eq. (5.8) becomes
i — ST (o) Sl - )+ o ]+

b0 2 o)} [ [y, rdrydr,, (5.9)
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or, in the case of the axial symmetry,

.. 8n
aniSP(Ov) = oLT )az(}() +2“z aj( %Ilui +lu] &)(’ )

il I3 [ [ @ rodrydr,., (5.10)

since of: of = 6a2#2 and ., - af - @; = 2%, uf, with #; = (2’ —a’)[3a standing for the
anisotropy of dipolar polarizability of an axially-symmetric molecule of species i.

By summation of the results (3.17) and (5.10) (see, Kielich 1962) we obtain finally
: 4 :
p<f> k“T (o (1+297) 11} + 20005 (1-+295) ol -+ (1+2%,)] +

+ul2 U290} [ [ ron P vy, (5.11)

For molecules presenting a quadrupole moment only, the general formula (5.8) yield=

pty A 2., (@ - 0)—6(a®: 0) (af : O
anisl O 135kT {S(al . G,)(@; M e]) 6(“; 01) (a] M GJ)J‘_

+5(0;: 0) (f : o)} [ [ om0 ro)drpdre, (5.12)

whence for axially-symmetric molecules we have

anisPS = (507N O} — 60,0, 0¥ ;0; -+ 507N} / [ Toan (1, 1) d¥ydr, .

(5.13)

- 15 k T

On assembling the results (3.23) and (5.13), ‘we have finally for quadrupolar axially-sym-
metric molecules!?

re’ = 5 15kT {507(1+296) 0] — 120 W:O,;0; +

+30%2 L+ 2D} [ [ rrn (s v)drydr,. (5.14)

q. (5.14) when applied to a single-component gas, yields immediately the result derived
by Jansen (1958).

For the general case of quadrupolar molecules of arbitrary symmetry, Eqs (3.24)
and (5.12) yield

& = .. R .. .
Po” = 135kT {5(ati : ) (O; : ©)—6(as; : ©;) (o : 9+

+5(0; : 0;) (o = o)} ff ’pq ”'v (’I'p, ro)drydr,. (5.15)

1 In the second part of our previous paper (Kielich 1962), in Eqs (10) and (13) analogous to Egs (5.14)
and (5.15) of this paper as well as in Egs (8), (16), (19), (21) and (22), the middle term containing the product
0, & _was erroneously preceded by the sign -+ instead of the correct sign minus.
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On referring the polarizability tensor @ and quadrupole moment tensor © to the principle
axes of the molecule, one has to put in Eq. (5.15)

oo = 3%+ (2/3) (02 +of +ai — o, — a0, — %),
0:0 =0, ,+a,0,+0,0, ©:0= @;4- 02+ 0% (5.16)

with a,, &, @, and 6@,, 6,, 6, denoting the components of the tensors & and © in the direc-
tions of the three prmmple axes %,y and z, respectively.

Recurring to the expressions (5.16), we can apply Eq. (5.15) to a one-component gax
and after some transformations obtain the result of Johnston and Cole (1962) for ethylene
and similar molecules.

We will now calculate the effect of anisotropy upon Pp within the framework of the
first approximation of the theory, resiricting ourself for simplicity to the two special cases
of 1) molecules presenting only a permanent dipole moment and 2) ones presenting only
a permanent quadrupole moment. In the first case, we will carry out our calculations only
to within the term linear in « i.e. when by (3 5) we can write

M, =— Z 2 ;OIS (5.17)

i p=1g=
Since for the same case Eq. (2.14) yields

R TS S T S
i p=1 q=1

we obtain, on considering Eq. (2.3)

Ny Ny
(Mperm . Mind) Vfl = Z ZI Z (!"‘P‘. *Opi p"Pl)/”’]z (1)1119!1) : a)TgI)' (5]())
o

We thus obtain for P& in the first approximation, taking into account the anisotropicity
of the tensor a,

i 8n 2 — =
PE = s (- o s (- o )} f [ Foa 1 (P PPyl (5.20)
or on assuming axial symmetry of the tensor a,

Py = 57 szz {o(1+28:) + a5 L+ 20,)} i / f Tpg 17 (1 vy (5:21)

Similarly, we obtain from Eqs (2.14) and (3.5) for a system of quadrupolar (:0mim-
nents

Ni N;j
vi=—-1g Z Z Z 0, : V157 : 0, (5.22)
i p=1 g=
N; Nj

M — Z Z Z a. VTP .0, (5.23)

g p=l g=



so that isotropic averageing in the approximation of pairwise correlations leads to

Ni
Mid t!zl 99225 Z Z Z {42[( i* pz)(eq] 0 eq])+

i p=1 g=1
a5

F (07 0y 1 0,)(ay; - gy O NPT - VTR) 1 BTG+
+ [49,,(0,,: © ,0)0%4;(0,; 10, + 14,0, : G)p,-)(a‘;j:(-)q,.- 0,) +
+76(a5;: ©,, - 0,,)(az;: B, - ©,) +-14(a;: 10, 0,)a,(0,: 0,1 x
X (OTY - OTS) ; OT@y,
Now, considering that

@) . W@y - Q@) (@) | (V@) : () _ —13
(PT3g - Ty Ty = —(OTy,) - T3)) T, = —1080 7,,;”,

we obtain by (2.1), (2.15) and (5.24)

32n

()
Fo’ = 6615427

{42(;- 0,2 ©,)(0; - 0,: ©,)—194,(0;: ©)),(0,: O, —
—14,(0;:0))(c:0,0) —76(c?: ©,:0,) (e : 0,0,) — 14(c?: ©,0,);,(8,0,) -+
+42(0; - 0;: 0))(a; - «;: ©))} | [rln@ v )dr,dr,
On substituting herein the relations
(ei-ei):e,.:%@?, £ (O, - e)ﬂ—m@,, (- &): ©; = 3252+ 3,0,

one gets for quadrupolar axially-symmetric molecules

] 8760,0)
P — 73”5?1{2_ {42022+ 32,) 02 —,0,0,0,149 + 14, + ;) +

+763,7;1+420;0 3,2 +3)} [ [ 10D, v )dr,dr,.
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(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

With #; = #; == 0, this formula reduces to Eq. (4.6) which holds for quadrupolar isotropi-

cally polarizable molecules.

6. Application to gaseous systems

The formulas derived for Py, in Sections 3, 4 and 5 will now be applied to not excessively
condensed gaseous systems i.e. to ones admitting of a binary distribution function n(z) in

the form

U )(rp’r ) = 0 exp { l]( M)} {1 +o(g) }

{6.1)
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in accordance with classical statistical mechanics, with ¢ == N/V denoting the average
number of molecules of the gas and u,; the potential energy of central interactions between
molecules p and g of species z and j, respecitvely, distant from one another by r,,

By the approximation of Eq. (6.1), the quantities P& appearing in the expansion
(3.13) can be represented as follows:

PE = o BE’ +0(0)} (6-2)

where B is the second virial coefficient of orientational polarization describing the inter-
action of a pair of molecules of species i and j.

With regard to (3.13) and (6.2), the total orientational polarization of a mixture of real
gases is given by the following expansion:

Po =X %A +o 3 weyBY +0(eY, 63)
i L

wherein A% = P® is the first virial coefficient of orientational polarization which, for
dipolar gases, is determined by Eq. (3.14) and is always zero, AS = 0, for non-dipolar
gases.

In particular, if the various components of a gaseous mixture consist of weakly dipolar,

axially-symmetric molecules, one obtains by (5.11), (5.21), (6.1) and (6.2)

. 4nN
B — 9ZT{ N0+ 2T 212+ 2]
2 2uiud . 6
+,u, (1+2:% )+ ST [e;(1+-2%,) ‘Faj(l—i-szﬁj)] (r,-f R> (6.4)

where we have introduced the radial mean values

iR = f Tpq €XP { — uﬁlg;q) } drpg. (6.5)

Applying Eqs (5.14) and (5.28), we obtain the following expression for the second virial
coefficient of quadrupolar, axially-symmetric molecules:

¢

27N
B = o {[50:2(1 296302 120, 5,0,0,3,0,; + 502} (L +2 D5 D +

46,0
— ot 4202 .2+ #)6? — 0, 0,49+ 14, + 14 3,4 T6 3,8 +

+420% #;2+ ;)I(ry 1"’)R g (6.6)

which, for #; = #; = 0, reduces to

N 2aN
B = —__ 1(a?OF + O2a? 4 ;00X (r7 Y ot 6.7
0 0T {(“, )+ Q) (i e+ SkT““ O:(r; )R} 6.7)
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For gases having tetrahedral molecules, Eqs (3.26) and (4.7) on neglecting small
contributions from hexadecapole moments yield

. 32aN B 24 _
B — o {60 0 (7 e 010G 3. ©3)
Similarly, for octahedral molecules we have, by (3.28) and (4.3),
. 160xN _ 64 -
p 1] {(a§¢;+ BNy Dt 5w B 21>R}. 69

In order to be able to test numerically the foregoing expressions for B, we have
to know the values of the radial averages (6.5). To compute the latter, one has to assume
some form of the central forces potential u(r). With

o) = 46,;{ ( % )A— (f—) } | (6.10)

Tpq

Tpq
and applying the Lennard-Jones method (1924), the radial averages (6.5) reduce to
4 .
"R = — ¥ o H () (6.11)
where we have introduced the functions (Kielich 1965 b)
o 45+ 6—2n i 1 2m (s—1) tm+n—3
H ) =y, ¢ L Yy 0 Tl (6.12)
m=0

of argument y;; = 2(e;/kT)", with &; and o; denoting central forces parameters having
the dimensions of an energy and length, respectively.

If in particular s = 12 and ¢ = 6 i.c. if using the 12—6 Lennard-Jones potential, the
functions of Eq. (6.12) reduce to the functions H>~¢ introduced by Pople (1954), whereas
s = 18 and ¢ = 6 as well as s = 28 and ¢ = 7 involve the functions introduced by Saxena
and Joshi (1962).

In cases when the values of the parameters ¢; and o;; are known, we can use Eq. (6.11)
for evaluating B’ numerically; obviously, according to the system dealt with, one will
have to assume such values of the molecular quadrupole, octopole or hexadecapole moment
as to achieve satisfactory agreement with the experimental values available for the second
dielectric virial coefficient. In this way we can obtain information concerning the values
of the higher order electric moments of various molecules.

The author is indebted to K. Flatau, M. Sci., for the English translation of this paper.

APPENDIX A
Explicite expressions for M®™ and TI(,’;)

In contradistinction to Jansen’s definition (1958), we have been applying the following
definition of the 2"-pole permanent moment of a system of electric charges (e.g. a molecule)

M® — DerrY®(r,) (A1)
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wherein

YO (r,) = (;1)'1 g (l) ’ . )

! Ty

and e, is the v-the electric charge distant by 7, from the centre of the system. The operator
of order n determined by Eq. (A.2) can be expressed as follows (for simplicity, the index » is
omitted):

rn>{(2n—1)!!r1r2.,.rn—(2n—3)!! 2 Z Uty ¥tk

—}—(———l)k(Zn—Zk-—]) 11,2k Z Ug... U1, P98 41. - 1',,} , (A.3)

ZU,,7;...1, etc. being sums of terms resulting from the one written out by interchanging
the indices 1,2, ... n and the number of such terms amounting to n!/{28(n—2k)1k!}. The
properties of the operator Y™ resemble those of spherical harmonic functions.

From (A:1) and (A.3) we derive the uni-pole, dipole, quadrupole, octopole and hexa-
decapole electric moment as follows:

MO = Z e,,

MO — Z e,r,

1
M® — 5 Z e, (31,1 — 17 Upy),

k4

N B 1 N .
M® — D) Z e F\gl\g — T, (U12’"v3+U23"'v1+ Usir,)},

14

‘ 1 ‘ ' : .
4 2 . .
M® = I E {350,115, — 57, (Upalg, s + Ugg?, 4,1 + Uyt 15+
t

+ U ¥+ Ugygty g+ Ungt o) + 10 (UpoUs 4+ Uy Uy + U, Ugg)y. (A4)

By means of the operator Y™ we can express the interaction tensor TV? defined by
{2.6) thus

T(n) . ( 1)n+1 nyr (n—l 1) Y(n)(/'l ) (AS)

on replacing » by r,, in (A.2) or (A.3), with T0 = (—1'TS).
By the definition of (A.5) we have

T(O) T(O) -1 ’;17

IO TO — 55, 1),

T . T = 3,5, {3( 7 'ﬁqrfs}»

TS : TO = 45,7177{5(r,, o To(py o)}

T : TY = 3155, —9{35( ,5)4 3072, ,s( r,)%+3r,

pq TS

(A.6)

P’l Tes
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or, quite generally, recurring to the definition of Legendre polynomials P,, -

A (CRL B a3

Tpqlrs

If in particular p = r and ¢ = s, we have P(1) = 1, yielding the identity derived by Jansen
(1958):

TO[n] T = @n)! 27" 1 204D, (A.8)
Similarly, one obtains the following identities recurred to in the course of the present in-
vestigation
TOML - TY) = —r; =373 (1, 1),
TE (T TE) = —r, 2 3(1pg T (¥ 1)) =151y T}
TS (1D TD) = =305, 5150 D0y 1) Ty )
' B2 (1 Ty 2= B2 (7, 1) 23 (W " 1) 2200 T},
TS : (TG - TS) = =915} 5(1pg 1) (g 1) —
relrog(Ter 'Trp)+2(" o) (T 1)}
T3 : (T - TY) = =971 1 {5(1yg ) [15(1 - 1) (Vg 1)1 " Wp))—
P2 (g 10 2—0ra (T, -r,p)2~6rq,(r 7,,)%—
Srpqrar (Tg *Tep) (g To) =T (W T )T ‘
TS : (TP - TY) — —45r,7r? ,;3{35( r, )3(1' )~
1572 (¥ T (T 1) T+ (P T ) (X Ty 43075 (g " 1)} o (A9)
APPENDIX B

Total multipole electric moment of a dense medium

Both in Part I and in the present, second part of our paper we have taken into account
explicitly only the multipole electric moments induced in a molecule by an electric field
of order n in the first power. Generally, the total multipole electric moment will contain,
in the higher approximations, moments induced by higher powers of the electric field,
and can be written in the form

) N © @@
Mp =3 ZI{M;:!) +MP +MP+MP + .3, (B.1)
i p=

with M(P = M? denoting the 2"-pole electric moment in the zeroth approximation i.e.
when the molecule is not acted on by the external electric field.
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In the first approximation, the total electric field E™ + F{ induces in the p-th molecule
of species ¢ the 2%-pole electric moment

<n> 20y ! Gy g o) () | gplm)
Z T A ) (B4 B, (B.2)

ny==1

(this moment has previously been denoted by P(?). The molecular electric field of order n,
given rise to by the other molecules of the medium immersed in the electric field, and acting
on the p-th molecule of species 7, is given by the expression

> ) @)
Fo (=D"2%ny! ) ma) o ) )
EDY Z ) Gt T D ] (MG 4 M + MO 4. (B
J g=1lny=1
The induced electric moments of the second and third approximations appearing in
the expansion (B.1) are produced in molecule p of species i by electric fields in the second
and third powers, respectively, and can be expressed thus

n, !
-3y Z sl A1) (0 B (B B, (B
1

T
=1 n,y (2n2)
3 X * X gratncim, 1
<n) ny!nglng !y gonenin
Z 5:“ Z (2ny) 1(2ny) (2n,) ! A .
><[n1—|-n2+n3](E("’)+ F;?l>)(E(n2)+FI(;?))(E("H) 1(”3)) (BS)

wherein WALt and WA+ are tensors respectively of ranks n-+ny +n, and
n+n, -+ny+ny accounting for the electric deformation of, respectively, the second and third
degree of the molecule under consideration as arising through the effect of the second and
third power of the total electric field E™ +F&»,

The expansion of (B.1) together with the equation

2"n!
(2n)!

(e—U)- E__V-’z Z ~t 2 o -1 M) (B.6)

provides the basis for the general theory of the electric permittivity of a multicomponent
system whose components consist of molecules possessing 2"-pole permanent electric
moments M™ as well as 2"-pole induced moments of the first, second and third orders
given respectively by Eqs (B.2), (B.4) and (B.5). Obviously, a theory thus generally
formulated is, in its explicite form, apt to present obstacles of a mathematical nature;
this, however, is compensated by its wide range of applicability to various special cases,
of which only some — and we might well say the simplest — have been discussed in
detail in this paper. Moreover, the theory as formulated above is applicable to the case of
variations of the electric permittivity tensor as induced by the square of a homogeneous
electric field, by the gradient of an electric field, or by electric fields of higher orders,
such as the gradient of a field gradient, and so forth.
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APPENDIX C

Effect of second and third order moments on Py,

In Part T of this paper, the distortional polarization was defined as

] Az [ 9 ‘
PD:—§-<ﬁ(M'e)>, ((l)
here, with regard to the expansion (B.l), it can be put in the form
@) @ @
Py =Py+Py+Pp+ ..., (C.2)
where
Ny
(m 4ar d (1) \
_ 4z 9 3

iz the distortional polarization due to a dipole moment of order n =1,2,3, ....
[¢3]
The distortional polarization P, given rise to by the induced moment of the first order
(B.2) has been discussed in detail in Part I (Kielich 1965a). We shall now deal in brief with
() @
the polarizations Pp and Pp, deriving from induced dipole moments of the second and third

orders given, respectively, by (B.4) and (B.5) for n == 1. By (B.4) and (C.3), we have

d n Ng ) D
@ dn 2"n! W gain é)F( ) (n)>
L ?Z ; @n)1 <PZ AU (Ltn] e+ [ B ) o (C4)

or, on substituting herein the molecular field (B.3) and neglecting higher order terms,

@ 4m e Oty 1p 1 |
i I O L 1 @ 4@+ . ] M
P8 Z ) >, D (2n7) 1(21g) ! <Z Ze el (] >
i =1 ny=1 (C 5)

In the zeroth approximation, i.e. ¥, = 0, this contribution vanishes, whereas in the
first approximation by the expansion (3.13) we obtain to within pairwise correlations

® ® .
Pp = >} xx, PP, (C.6)
i

with

@ 2m o 2(n+1)In!
P § = WA L MM [ M®
+(MP (] MP)U : DAL -y} [ [ 20 OO, v drydiy, (€7

D AP being a third rank tensor determining the non-linear polarization of the dipole moment
of a molecule of species i as due to the square of a homogeneous electric field.
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Quite similarly, we obtain by (B.5) and (C.3) in the zeroth approximation to within
pairwise correlations

6] @
Py =2 xxPP, (C.8)
i

with

@, 2%(n+1) .
Py 3 O A s 00 g+

+(MP [ MP)U AP U} [ [+ ~2<"+2>n<2>(rp, r)dr,dr, (C.9)

where WA® = ®AP is the tensor of non-linear dipole polarization of a molecule of
species 1.

If, in particular, the molecules of all the components of the system have the axial sym-
metry, Eqs (C.7) and (C.9) by (3.12) reduce to the form

@ % "
PP = g 2 O DB O+ M) B i j o I, v dr,dr,, (C.10)

o0

@

PR — Z (n-+1) {y,<M<">>2+<M<">>2y,}f f i IR (1 1) drydr,,  (C11)

where f§; and y; denote the mean values of the non-linear polarizability tensors VA® and
@AP, ie. f; = (U:VA® - E)[3 and y; = (U: P®A® : U))5.

If we assume in (C.10) and (C.11) that all molecules are of a single species and on putting
therein n = 1 or, in (C.11), n = 2 as well, results are obtained that are analogous to those
derived by Buckingham (1956) in his theory of the molecular refraction of real gases.

In the case of tetrahedral molecules U : YA® . u =0, and the contribution (C.7)
vanishes whereas (C.9) becomes (Kielich 1963, 1964)

3)
= mnf / {(r,92+92y,) T 0 40 P ), (€

On putting herein £, = 0 we obtain a formula valid for octahedral molecules.

. Similarly, a discussion could be given of the effect of the induced moments (B.4) and
(B.5) at E™ = 0 on the orientational polarization P,,. We refrain, however, from proceeding
thereto in the present paper, but wish to draw attention to the curious fact that the effect
on Py, of the second-order moment given by (B.4) yields in the zeroth approximation a result
identical with that obtained above for Py, in the first approximation and given by (C.7).
Consequently, certain contributions to P, and P, can be identical or of the same order.
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