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A consistent and general tensor formalism is proposed, allowing to compute easily the
multipole electric moments induced in atoms or molecules by electric fields that are not only
time-variable but are also spatially variable. The dependence of the rth-order molecular 2%-pole
moments on the rth power of the electric fields of given order inducing them is described by
multipole polarizability tensors of appropriate rank. The matrix elements of these tensors for
the general case of a transition £—>/ are derived explicitly in the first, second, third and rth-order
approximations of quantum-mechanical perturbation theory. The formalism proposed can be
applied for computing various non-linear effects the investigation of which is liable to provide
information on the change undergone directly by the atoms or molecules under the influence of
intense oscillating electric fields. The problem is discussed with regard to electric multipole light
scattering and non-linear variation of the optical permittivity of a gas, as due to intense light
beams from lasers.

1. Introduction

In recent years a number of papers have appeared on theories of various non-linear
optical effects observed in widely differing material media subjected to illumination from
a laser. The theory of generation of optical harmonics, and that of non-linear responses
of macroscopic media, are discussed in papers by Braunstein (1962), Kleinman (1962),
Armstrong et al. (1962), Bloembergen and Pershan (1962), Loudon (1962), Kogan (1962),
Franken and Ward (1963), Kelley (1962), Price (1963), Butcher and McLean (1963, 1964),
Caspers (1964), and others. Moreover, various scattering processes revealing non-linear
interactions between electrons, atoms or molecules and light from a laser are discussed
by Neugebauer (1959, 1963), Vachaspati (1962), McKenna and Platzman (1963), Mizushima
(1963), Brown and Kibble (1964), and this author (Kielich 1963, 1964).

In certain non-linear optical processes, an essential role is played not only by the dipole
moments induced in the atoms or molecules, but also by induced quadrupole moments
(Franken and Ward 1963, Pershan 1963) and, possibly, induced moments of still higher
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orders such as octopole moments, and so forth. The role of electric and magnetic multipole
moments in atomic electromagnetic radiation was discussed theoretically by Rubinowicz
(1930, 1949) and others (see e.g. the reports of Rubinowicz and Blaton 1932, Bowen 1936
and Sommerfeld 1951). In this connection, the need may be felt of a tensor formalism al-
lowing to derive, in a concise and simultaneously general manner, the multipole electric
moments induced in molecules by time- and spatially-variable electric fields. These molec-
ular multipoles are computed for the general case of a transition k—/ to within the third
order of quantum-mechanical perturbation theory, magnetic effects, radiation corrections
and intermolecular interaction being neglected in the Hamiltonian for the sake of simplicity.
The induced multipole moments of consecutively the first, second and third order approxima-
tions are expressed in the form of infinite series whose terms are multipole polarizability
tensors of appropriate rank, n-fold contracted with the electric field of order n. The results
derived here are a modification and generalization of those obtained by Armstrong et al.
(1962) for the case of the dipole approximation.

The formalism proposed can be of use in computing various non-linear optical pheno-
mena involving interaction effects not only dipolar but also of quadrupolar, octopolar ezc.
type between atoms or molecules and electric fields. As an example, the formalism is applied
for computing the tensor of electric multipole light scattering as well as the tensor of optical
permittivity and for their discussion in the first, second and third-order approximations
of perturbation theory. In particular, our general results, if specialized for the dipole ap-
proximation, reduce to results obtained and discussed in detail in earlier papers (Kielich
1964 a, b, c). Investigation along these lines is clearly able to provide valuable information
as to the direct and generally non-linear influence of oscillating electric fields on the pro-
perties of atoms and molecules. In the Appendix we give in explicite form the rth-order
contribution to the electric 2*-pole moment, which can be obtained with the general method
elaborated by Butcher and McLean (1963, 1964) in their theory of non-linear constitutive

. relation in solids at optical frequencies. '

2. Fundamental assumptions

We consider a system of IV identical, noninteracting molecules generally assumed to
be optically anisotropic. Suppose this system to be subjected simultaneously to several
electric fields E,, E,, E,, ... varying periodically with the angular frequencies w,, w,,
w;, ..., Tespectively. In general, the total incident electric field is a superposition of these
perturbing fields,

E(r,t) = Z E;cos it = % Z (B} +E_-e—). (1

s

where E; and E; are in general complex amplitudes of the sth monochromatic component
of E(r,1).

The total Hamiltonian of a molecule is

H=Hy+H' . @)



915

with H, denoting the Hamiltonian of the nonperturbated isolated molecule and
1 . )
— +glogt —g—iogt
H' = 5 E (H et +H e~ ) 3

the perturbation Hamiltonian of the molecule in the electric fields.
In the electric dipole approximation we have

-

where M denotes the operator of the electric dipole moment of the molecule.

In the case when the higher-order interactions between the molecule and electric
fields are taken into account, the sth perturbation Hamiltonian of (4) must be replaced by
the following general expression:

2mn!

+
o1 MOTIE, ®
n=1

H+ — —

where M®™ is the operator of the electric 2*-pole moment of the molecule interacting with
the electric field E® = y" ! E/(r) of order n. The symbol [n] denotes n-fold contraction
of the product of the operators M®™ and E®, and V is the differential operator.

In the perturbation Hamiltonian (5) we neglected for simplicity the interaction between
the molecule and magnetic fields and have omiited the muliipole radiation terms arising
from retardation effects.

The electric 2"-pole moment operator in Eq. (5) is defined as

M(n) = Z eiri”Y(")(’ri), (6)

where e; is the ith electric charge of the molecule and 7; is its radius vector; summation
in (6) extends over all charges of the molecule. The operator ¥ of order n (its components
are spherical harmonic functions) is given by

Y(”)(T';') = t]{—)" I‘;H'lvg (l) = 1 {(2711—].) 1 Yi?ig...Viy—

n! ri nlry

=) AT Uty ... 1+ @n—5) 11 # 3 UpUyafis .. T — ...
—|—(—1)’§(2n—2k—1) 1 I‘,zk ZUR Uzk—l, 2kPi2k+1 .- 1',;—[—}, (7)

where Uy, is a unit second-rank tensor, and XU 1,5 ... 7, etc. are sums of the terms obtained
from the one written out above by interchanging the suffixes 1, 2, ... n.

From the general expression of (5) we obtain up to the term accounting for interaction
between the octopole and third-order field

H: — —M®. Fo— L yo. go_ L yo . o_
= 3 EP— 2 ®»— .., (8)

s s :
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where by Eqs (6) and (7) the electric dipole, quadrupole and octopole moment operators
are of the form

MY =M = Z s
1
M® = ? Z 6,'(3"‘,'11','2— 7',2 U12),
Mo = Y afs ? U
=5 e {5ruriatin—ri (UpPis+ Uyt + Uy 1)} 9
Let ¥O(r) be the eigenfunction of the unperturbated Hamiltonian H,, and P(r, t)

that of the total Hamiltonian H. The wave-function of the molecule in the sth perturbated
state may be expressed as follows:

Tk(’r t Z {G;(o) +af1(}:) (2) +a(3) + . } l:p(O) ~iogt (10)

with afp = 8, while the remaining coefficients ap, ap, af, ... are functions of the time
and can be calculated from the set of differential equations

da(?‘l'l)
= Z (jIH'myaB) e**m,  p=0,1,2, .., (11)

where

H, = (lH'|m) = [ $PH' P

is the matrix element of the perturbation Hamiltonian H' for the transition j—>m between
two unperturbated states j and m and ;,, = w;—®,, is the Bohr frequency i.e. the unper-
turbated energy difference between states j and m, divided by .

On putting the integration constants equal to zero in calculating the coefficients a3t
from Equations (11), we have

@ =5 Z {af(+o) +af(—w)le" s,

W=7 Z (@D (+o,+0) + P (+0,~0) +a(~0, +0) +aP(—o,~o)} o,

=2 ¥ (6o 0, 10) D (+o, to,—0) +a(+0,—0, ta)+

stu
R (+o,—0,—0,) +a(—o,to+w,) +aR(—o, +o,—w,) +

+afy (—o,—0,+0,) +a)(—o,—0,—)} ",
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with
a(kw) = — %—'f% exito,,
oD baos L Lan) — — ;3 GIHE |m)(m| HE In)(n| Hyf |k) R

— (Wjk 05 £0; +0,) (Ot F0; £:04) (O = @)
(12)

3. Induced multipole moments of a molecule

Our problem consists in calculating the 2*-pole electric moment P™(#) induced in

the molecule by the oscillating electric field (1). The quantum-mechanical matrix element
of P™ for the transition kI is given by

PR = [ VM@ dr— [ M P, 13’
By (10) and (12), we obtain from (13) to within the third approximation of Dirac’s

quantum-mechanical perturbation calculus

¢
PY(r) = Pi’z’)(t) +PR() +P§e7)(t) +e (14)

We now proceed to the discussion of the contributions to Pg;) of successive orders of
approximation.

(i) First-order multipole moment. In the first-order of perturbation theory the 2"-pole
induced moment of the molecule is

PR = Z{ D4 B8 MO oy — = N (pi By, (15)
- e +a 11} Vil e —‘E Z{ kl (‘I"w:)"" kl( ws)}e . (

with
p( ) +oo) = ?2 n)" ™ 40 +a,) [n,] E'(m) eits, (16)
Here, the tensor of rank m-n,

characterizes the linear or first-order polarization of the 27-pole electric moment due to
the electric field of order n,.
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In particular, we obtain from (16) for the induced dipole moment
P( )(iws) — {(I)A(l)(iw) E(l) + = (1)A(2)(:tw) E(z) +

1 = .
+ 15 WAR(Loy): E®+ } eitwe, (18)

where PAD , AP, VAS, ... are tensors of the dipole polarization caused in the mole-
cule by the first-order lectric field E, second-order field E®, third-order field E® etc.,
respectively. The explicite form of these tensors follows directly from Equation (17) for
n=1and n,=1, n,=2, n,=3.

The first term of Equation (18), with (17) for n = 1 and n, = 1, yields the result obtained
by Kramers and Heisenberg (1925).

Since

=+ +
EV=E: =E((0), E®=%FikE;, E<3> = —kEkE}, .., (19)

we can write (18) in the form

@ .
P(so) = {0AP(L0) - Bf 7 LOAY(L0) kB +

1 . itwg
— _1_5_ (I)Ag)( :[:CUS) : ksksE;i + vee } e:t g ? (20)

where k; is the wave vector.
Similarly, for n = 2 we obtain by (15) and (19) the induced quadrupole moment

P<2)( L) = {<2>A<1>( to) BT <2>A;3>( +w) : kB +

1 .
- DA +o,) : Rk, EF + } gEios, (21)

(ii) Second-order multipole moment. The 2"-pole induced electric moment of the
molecule in the second-order approximation is:

2 1.1, @) i
(")(t) = Z {9 kafz) (k)agl) aj('k)éil}l‘lj(? e
and can be rewritten by (12) as follows:

(2)
Py = {P<">(+w,+w,> +BY(to,—0) + PP (~oto) +

@ ‘
+ PP (—ws—ow) } eitont, (22)
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Here, we have

(Z)n N — nstnep p 1
PRG0k0) = D) Y it

ns=1 n
X (n)Ag;s-l-m)( +; o) [ns+ n,]Eg”s)Eg”t) et it(ws+or) (23)

with the tensor of rank n+n +n,

(") 3 (1) m g(ne)
@ Agget (& 0, 10 2 Z { M M7 M
h? (it £ s + ;) (w7 + ;)
MM MO MMM 24)
(a),'k + 605) (wjl 4 C()t) (wik -+ ws) (wjk Fow;F wt)

accounting for the nonlinear or second-order polarization of the 2"-pole electric moment
due to the two electric fields E®™ and E™.
On replacmg in Equation (23) and (24) , by —w, we obtain immediately the explicite

form of P,E’I‘)( +o,Fw,) and PAGT(to T w,).
From Equation (23) we obtain

(2) + &
pg;)(iw :l:w) — {(")A(”D(iw iw) E(DE(I)_,_ 3 (n)AISH)(iws iw,) EEEDE?)—}-

1 £ & 1 £+ ,
g CAT (e, f0) i BYED + o QAT (to, o) EPED 4. etioren,

(25)
or by (19)
(2
B0, 0) = (AT 0, 1) BB +
l z
F §<">Ag}+2)( to,+,): EfkEFF -3—(”’A£3+1)(iws to) kEFES +

1 .

- -9—(")A,g"'z)(:};wsztwt)::ksEfklEf +} etitlosten, (26)

Equation (25) or (26) yields for n =1 the induced dipole moment of the second ap-
proximation; similarly, for n = 2 we obtain the induced quadrupole moment and for n = 3
the induced octopole moment, ete.

(iii) Third-order multipole moment. In third-order perturbation theory we obtain
for the 2"-pole induced moment of the molecule

®) 1 ®)
PO = . (P40, 0,+0) +PP(+0, 10,0, 1
stu
(3) 3
+ PP(+o,—0,+0,) +PP(+0,—0,~v,) +P;R(—w +o,+o,)+
€] 3) 3)
+PP(—w,—w, +w,) + PP (—w,+o,~w ) PP (—o,—0,—w,)} &Fr 27
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with
S o o Qmstmitnu g Iyl
N 8 YN Ny 0
P(")j:wiwﬂ:w_Z<ZL e
(oo ) (2ng) ! (2n,) ! (2n,)!
ns =1 nt=1 ny=1
£ % % )
X (n)AgIterernu)( L5+, ) [1s+n:+ 1y E§"8)E§M)Ef,"") etit(wstottou) (28)

Here, we have introduced the following tensor of rank n+n -+n,-+n,:

ns )
M MY M M
Wiy £Ws £0; £Wy) (Wt L0r L0, (W51 £0,)

6
(")Ags-f'"t‘*'"u) (s £, £ wy) = X Z {(
ijm

Mg;s) Mz(::z) Mzt]t) M](lnu) N M(nS)Mz('rnr:) Mf;']) M](lnu)
(i F ;) (W1 £0; Ly) (W51 EWy) (wirF ) (Ome T s F ) (01T 0y)

M MG My M } 29)

(0ip T @5) (OmeT 0sF ;) (0ipTF 05 20 +0y)

which characterizes the third-order polarization of the molecule due to the three electric
fields B9, B and .
In a good approximation we obtain from (28), by (19),

(")(:tw to,+0,) = {PAGT (Lo, Lo, to,) EFEFES +..} ettt (30)

The expressions (18), (21), (25) and (30) contain several tensors which have been discus-
sed phenomenologically by Franken and Ward (1963) as well as by Pershan (1963).

In the case of the electric dipole approximation, the diagonal matrix elements of the
second- and third-order polarizability tensors of (24) and (29) by symmetrizing operations
assume forms analogical to those derived by Armstrong et al. (1962). The diagonal matrix
elements of the multipole polarizability tensors of (17), (24) and (29) can be calculated
theoretically by methods discussed in the paper of Dalgarno (1962).

4. Electric multipole light scattering

At considerable distances R from the centre of a volume ¥ of a gas, the electric field
of the light wave scattered by a molecule is in general given by (the part with magnetic
multipoles is not considered here)

> 2! - )
ZW sx | sx | = D pw 1] 5= (31)

where ¢ is the velocity of the incident light, s is the unit vector in the direction of the obser-
vation vector B = SR, and P® is the 2"-pole induced moment of the scattering molecule.

ER, )=

=]
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If u is a unit vector perpendicular to the unit vector s, i.e. u -8 = 0, we have by (31)

o]

Q"n‘ +1
(n) n—1
Z Fi2n)1 dt"+1 P®nlus

1 |d 1 a8 1
1. 24 po = % p®;
{dt2P U+ d3P :us+ 52d4P P USS+ . } (32)
where the consecutive terms correspond to electric dipole, quadrupole, octopole etc. electro-
magnetic radiation.

By (32), the scattered light intensity [, = (E’ - u)2 with oscillations in the direction u,
is given as follows:

IS B o sn;lu[n]{d"“ po & p} plus—l,  (33)

R2 - c2n+D[(2n) 12 dgn+1 dert+1

where the horizontal straight line ¢t denotes time-averageing.

With respect to (33) we introduce the tensor

dn+1 dn-{-
(2n) () (1)
1§ _{ o P Pl } (34)

which describes electric 2"-pole light scattering for the transition k—>l.
By the expression (14), the scattering tensor (34) can be expressed as follows:

)
13— I8 I 11 )

(i)First-order approximation. The scattering tensor of first-order perturbation theory
is given by

B _ 15 Sty
LY = 5 Z (I (0 +0,) T (wy—0)}, (36)
where we have
W 1 < X
I (wp +oo5) = b} (wps & 00522 Z (2 (n) 1 ;2 ® AG (£ ) WARI(F ) X
+  + -
X [2n,| E®o E®). (37)

In particular, we obtain from (37) for electric dipole scattering (n=1)

) 1
1Py +0,) = 5 (wkziws)‘*{“)A%)(iws)“)A(”(? w;)—

1
- 6 (1)A§3)( :tws)(l)Aglze)(:F w:) : ksks +.. } Es:kE;t . (38)
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Since P A®/®D 4D js at the most of order 10-5, the ratio of the second and first terms
in (38) is approximately of order k21018, and plays a role only in the case of short wave-
-lengths.

For n = 2 Equation (37) yields for the tensor of electric quadrupole scattering of light
W 1
1(4)(wklj:ws) = E (wkl :‘:ws)e (2)A§a})(:tws)(2)A§l?( j:ws) : Esj:E::t (39)

(ii) Second-order approximation. In the second approximation the electric multipole
scattering tensor is of the form

)

I = Z {I(zn)(wk +20) ‘|”I (2")(% —2m)} + — Z {r (2")(wk1+w —,)+
.\';ﬁt
(2) (2)
+I (2n)(wkl to,—w,) 1wy —o,+o,) +T (2")(wk1—ws —w,)} (40)

with

2¥nstnd(n 1 p, )2

1(2")((A)kl:i:w:iwt) = 8 ((})k]:l: [ wt)2n+2 Z Z [(2735)' (Qnt) |]2 X

ng=1 ng=

+ + + F
X (”)A}(:lta +m)( +o, iw')(”)Ag;s +m)( T, T wt) [2(ns + nz)] Eﬁ"‘)Eﬁ"‘)Egn‘)Egm). (41)

This equation yields in the case of electric dipole scattering

(2)
I®(wy +o,+0,) =
1
= 3 @uxo, +0) DAL (L0, £ 0)PAG (T o, Fo,) | EXET EXET. (42)

(iii) Third-order approximation. Similarly, we find from (34) and (27) for the third-
-order multipole scattering tensor (we have written here the terms for w,F#w,#w, only)

(8) 1 3)
I8 — 5 Z {I<2”>(wk +; +0, +o,) +I® (0, +o,+o,—0,) +... +

sFEtFEU
©) )
+ I(2n)(wkl +ws _wt _wu) +I(2n)(wkl_ws _wt —U)u)}, (43)

where we have

3) 1
I (g 4 0, & 0, + ) = 39 (Wr + 0 £ o, + 0,)7 2 X

X0 o0
22("s+"t+”“>(n P mu )2 @ nstmgtna
A 3 (4w = wp + wy) X
Z: Z: 2 120 T @) T @) 12 (zoszoson

+ + -+ F + F
X (")Ag;s-*-m-l-nu)( +w,Fo, :qu) [2(”" +n+ nu)] Ens)EEﬂs)Egnt)Egnt)Eglu)E'(‘nu). (44)
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In the case of electric dipole scattering, if higher-order terms are neglected, Equation
(44) reduces to

©) 1
190y 0,20, +0,) = 55 (O +0,+0, o)X
X WALFID( 4 oy, 10, )PAFTH(F o, Fo,Fo,) i BEFETEFETESES.  (45)

The tensor of (42), which determines second-order electric dipole scattering, is non-
zero only in the case of molecules without a centre of inversion, and is discussed in other
papers (Kielich 1964 a, b, c) for molecules presenting the point group symmetry Dy,, Dy,
Cs0» Cap Cop Cooo and Ty The third-order electric dipole scattering tensor of (45) exists in all
cases of molecules of arbitrary symmetry, including optically isotropic molecules. Numerical
evaluations indicate that, in gases and liquids such as e.g. chloroform whose molecules
do not possess a centre of inversion, it should be possible to observe non-linear variations
in the scattered light intensity, as due to an intense light beam from the lasers now available
(Kielich 1964).

5. Tensor of the optical permittivity

Let ¢ = N/V be the number density of molecules of a system of volume V. We assume
for simplicity that intermolecular interactions in the system are absent or, at the most,
very weak. The tensor of the optical permittivity of such a system is given in general by the
equation (Jansen 1958 b, Kielich 1965 a)

(U B =t Y (—1p Gy w11 ()
n=1

where P®™ is the induced multipole moment obtained by averageing its diagonal matrix
elements (as given by Equation (14)) with the density matrix g, over all occupied states k
of a molecule in the presence of the electric fields:

P" = ; Pous. 47

In the approximation of dipole polarization (n = 1) we obtain from (46), by (14),
the result

@) (2) 3
(e—U) - E(t) = 4moP® = 4mp{PY + PV +PV +..}, (48)

which may be written as follows in the absence of temperature-dependent orientational
effects in the system

@ 2) (3)
(e—e) - E(t) = dmo { PV +PV +...}, (49)
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where

o o e |
(e—~U) - E(t) = 2mp Z Z (2:)' (DA +ar) x
s mg=1 R

X [ng) ) Eeitos +- D A0 —go.)[n,] igﬂs)g—itwa} (50)

is the optical permittivity tensor of the first-order approximation.

The Equation (49) with the expressions (22) and (27) for n = 1 determines the general
form of the nonlinear change in the optical permittivity tensor of the system, as due to the
electric fields of electromagnetic waves incident thereon.

In certain simpler cases, the frequency-dependence of the optical permittivity tensor
can be obtained easily from classical electron theory. Let the ith electric charge ¢; of a mole-
cule of mass m; undergo the displacement i; with respect to its equilibrium position as
a result ot the oscillating electric fields of Equation (1); its classical equation of motion can
then be written as follows in the absence of damping of oscillations of the charges:

d? 1 1
m; Eﬁr,-+u,v-r— 5 B:rr,— —6— YiirWr; —.= g Z E; cos wt, (51)
5

where @ is the tensor of harmonic and @; and ¥, are the tensors of anharmonic oscillations.

Assuming for simplicity that the frequency of the harmonic oscillations w; are the same
in all directions, i.e. when &; = mw?U, we derive from the equation (51) the displacement
7; and thus'the induced dipole moment of the molecule which is given by the expansion

m= Z et = Z a(w;) - E; cos wst -+ % Z {b(w;+w;) cos (ws+w,)t+
{ s st

1
+b(ws—aw,) cos (w—w,)t} : EE,+ o Z {elos+w; +w,) cos (ws+w, +o,)t +

st
+€(0s 40, ~wy) €os (0s+0,—w,)t + C{wi—w, +m,) cos (ws—, +w,)t 4
+C(—ws+w,+w,) cos (—w,+w, +w.)t} : EEE,+ ... (52)

with the following tensors of the first, second and third-order dipole polarizabilities, respec-
tively (for the case of two various frequencies w, and w, see e.g.. Kielich 1964 a, b):

e2U
a(o;) = Z miwi—aw?)’

b(w, o) = Z e?B;

m}(wf—wf) (0w} —wd)[w?—(w+tw)?]’

» 4
c(wstw;tw,) = Z - {YH-

=~ mi(ei—o]) (@ —o}) (©fF—w) [0f—(0to,+0,)7]

Bi : pi Bi‘ pi pi : pi }. (53)

mi[wf— (w,+0;)?] + mi{ei— (@, -+a,)?] + mijod—(ws+w,)?)]
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In the case of a single frequency o == w, = w, = w,, we obtain from (52) and (53)
on putting f; = 24, and y; = 61, the result found by Armstrong et al. (1962). From (52)
and (53) we can also derive the result of Adler (1964) for second-order polarization at fre-
quencies™w, +w,).

By the expansion of (52) we obtain for the non-linear variation of the permittivity tensor
of a gas

(e-—(;; - E(t) = %g Z {elos+wtau) cos (5w, +w,)t+

stu
+C(ws + @ —wy) cos (Ws+w— )t + € (Ws—w; +0y) cos (Ws—w; +my,)t -+

+e(—ws+w,+w,) cos (—ws+w;+w,)t} : EEE,), (54)

where the symbol <> denotes averageing over all possible orientations of the molecules
with respect to the reference coordinate system X YZ. We will now proceed to the discussion
of this formula for several special cases.

We first consider the special case when the molecules of a gas are subjected to two
electric fields E,(t) and E,(r). We assume the electric field strength E, conveyed by the
wave of frequency w, to be small and assign to it the role of a measuring field, whereas that
of the other wave, Ey(t) = E, cos wyt, is of very high intensity, sufficient for producing
non-linear polarization of the gas. In our subsequent considerations, the non-linear effect
due to the field Ey(z) will be time-averaged.

If, in particular, the molecules possess the spherical symmetry, we have from (54)
* and (53) for the above assumptions (the terms with cos (w; +2w,)t vanish by time-averageing)

&) et

€—€ =
T L m¥Heol—ad)? (wi—

7 {yrUE+ (v —vi) Eo By}, (55)

where p!l and yi are the anharmonicity force constants for E, and E, directed mutually
parallel or perpendicularly and g; = 0.

In the case when a strong DC electric field Ef is applied to the gas, i.e. when w, = 0,
Equation (54) yields for spherical molecules

@) e:L .
—e = 2mp oty o {rfUE+ (v —yHESEG}. (56

If the measuring electric field E, varies but very slowly with respect to the rapid oscilla-
tions of the polarizing field E, (of e.g. optical frequency) or if w, = 0, Equation (54) becomes

de=mp Z eTor—at VHUF 0~y BB, 67

This formula determmes the non-linear variations of the dielectric permittivity, i.e. the
dielectric saturation, as produced in the gas by an intense light beam — an effect previously
discussed by Piekara and the present author (1958, Kielich and Piekara 1959) without
considering its dependence on the frequency of the intense light beam.
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Let us assume that the measuring electromagnetic wave with field E, propagates in the
direction of the Y-axis; computations from (55) or (56) of the optical permittivity in the
directions of the axes X and Z now lead to the expressions

oty —vH)

T Z T EACL (58)
WL

a6 == 20 Z 4((1(; i )6(,4 {Fe—Fa.}. (59)

Equation (58) determines the optical birefringence produced in a gas by a strong oscillat-
ing electric field as first predicted and discussed by Buckingham (1956) (who did not take
into account explicitly the frequency-dependence). The Formula (59) describes the well-known
effect of Voigt.

In the general case of molecules with arbitrary symmetry Equation (54) becomes

(e—6) - E(t) = 180 Z {(Us: Cau: Un)AE(E, - E)—Ey(F.- B)—Eu(E, - E)|+

stu

+(Ust: Csty' Uxu)[SEt(Eu . Es) +3Eu(Es . Et)_zE:(Et . Eu)]}a (60)

where by ¢, we have denoted for simplicity the sum of the four terms in the parentheses
{ } of Equation (54).

The formalism proposed in this paper is essentially applicable to isolated atoms and
molecules i.e. to gaseous media wherein, regrettably, non-linear effects are weaker than in
solids. Nevertheless, it can be hoped that by applying more highly perfected measuring
techniques it will be possible to perform various ingenious experiments on the properties
of gaseous media as affected by intense light beams. Predictably, more marked non-linear
effects in gases will occur in conditions when e.g. one or more oscillation frequencies of the
intense incident light beams fall near an absorption band of the substance investigated
(non-linear resonance effects). Such effects, if accessible to observation in gases, will provide
us with information on the behaviour of isolated atoms or molecules in intense optical
electric fields, information not biased by the presence of neighbouring molecules.

APPENDIX

The rth-order multipole moment

In general, the rth-order contribution to the electric 2"-pole induced moment of the
molecule may be written as

P(”)( ) = +as,+ -I-w,,)—i—P(")(—l-wh—Fw,,—l- v} + .+

$182...51r

(r) .
+PO(+ 0, —ws,— ... —wy,) —|—P( N —as,—@s,— ... —w,,)} €or, (A.1)



927

where we have

"81+ +"8,ns .. g !

® . \
PiFout ... 2ou) = Z Z @)l Gl

ng =1

X OAGsst e Lo ok . kog)[ns+ . g [ BT L Efsetionttos)  (A.2)

The explicite form of the rth-order polarization tensor of rank n+ng +...+n, can
be obtained by using the general method of Butcher and McLean (1964); namely, we have

O At 47 Lo L gy o £W) = Z Z %

t=0 iydy...0r

(n81) 3 y(nss) (n8) () (n8y49) (ns,)
M Mg .. MG ,tM,t,,+1 M M

X = . . (A.3)
uq (wiuk:th :Fw-': +.. :wau) gl(wiuliwfuiwsu+li e :I:w:,) .
= u=

In the case when spatial variation of the electric fields is negligible, Equation (A.2)
reduces to the following simpler form: -

)
PP (to,+...4+0,) = PAD(+o, +...+o )[ES .. EL. (A4)

The effect of molecular interactions on the multipole polarizability tensors of appropriate
orders can be calculated by a method analogical to that elaborated by Mazur and Mandel
(1956) in their theory of the refractive index of non-polar gases (see also Terwiel and Mazur
1964). In this case, i.e. when a system of N interacting molecules is considered, the perturba-
tion Hamiltonian is composed of two parts, one of which arises from the interaction of all
molecules of the system with the oscillating electric fields (1) and is given by Equation (3) with

V2! .| i
=2 X i M (A9
p=lmg=1 ' /7

The second part of H results from interaction between the molecules in the system and is
given in general by (Jansen 1958a, Kielich 1965b)

N N 0 00
1 Qmtmep tp 1
V= —Dmtl T 1172 AFm[g Y ()
H 2 Z Z Z Z( 1 @n)1(2ng) ! P [ )T g M, (A.6)

where

O = — Y (i) = (=1)ywtntd{ng ) lpg ™Y ryg) (AT
pq
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is a tensor of rank n;+n, describing the interaction between the 2"-pole moment M
and the 2™-pole electric moment M of molecules p an g separated by a distance r,,. The
operator Y™+ (r, ) is given by the expression (7) if n is replaced by ny +-ny and r by 7,,.
The explicite results from calculations with the Hamiltonians of Equations (3), (A.5) and
(A.6) are highly involved and we refrain from writing them here.
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