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Fase. 3

By simple caleulations it is shown that available measuring techniques do not allow to

determine directly the sign and numerical value of the octopole moment of molecules from
the effect of their orientation by the gradient of an external electric field’s gradient. Nevertheless,.
indirect methods involving contemporaneous results on the second virial coefficients of the equa-
tion of state for gases or dielectric polarization in gases are shown to lead easily, rapidly and
with sufficient accuracy to the octopole moment of tetrahedral molecules. These methods as
applied by the author led to an octopole moment of 5—6x 10-3¢ e.5.u. cm?, a value that may wel.
correspond to reality.

1. Introduction

We consider a system of electric charges e;, e,...¢, in an external electric field given

by the potential ¢. The position of the »-th charge e, with respect to the origin (chosen

within the charge system) of the reference frame x,, y,, z, is given by the vector r,

potential energy of interaction between the charge system and external field, » — Xe,
4

can be expressed quite generally in tensorial notation [1] 'by the power series
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is the intensity of the electric field of order n at the origin, whereas [2]
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is a tensor of rank n determining the 2"-pole electric moment of the system of charges,
U,, being the unit tensor, 7 — the differential operator and the symbol [r] in Eq. (1) denot-
ing n-fold contraction of the product of M and E™.

From Eq. (1) we have, to within the electric field of order three [3],

u=—MOEO _MD . EO %M(Z) E®@ % M®:E®_ (4.)

where, by the general definition of Eq. (3), the consecutive (monopole, dipole, quadrupole,
octopole) electric moments of the system of charges are expressed as follows:

e =M% =>e,
p =MD =>er,
4
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e Q=M>-=3} Z eAST, 13— " (Usa?y3+Uggt, + Uyiyp)}. 6))

 Dealing with a molecule as a system of electric positive and negative charges, we see
from the definition (3) and (5) that the higher the order of the electric moment, the greater
is the part played by the more subtle details of the molecule’s electric structure and type
of symmetry. Herein lies the reason for the extensive research work aimed at collecting the
greatest possible amount of information on the molecular electric moments of various orders.
Since for a molecule M® = X' e, = 0, the first molecular moment M® to become oriented

in a first-order electric field EYY (i.e. in a homogeneous field) is its dipole moment. This
fact was utilized by Debye [4] for determining the dipole moments of molecules from
measurements of the dielectric permittivity of gases, vapours or infinitely dilute solutions.
Furthermore, Eq. (4) shows that molecular electric quadrupoles will become oriented in
a second-order electric field E®, or field gradient, only. This led Debye [5] to suggest
that molecular quadrupoles could be determined directly by measuring the birefringence
induced in a gas by an inhomogeneous electric field or, more strictly, an electric field gradient.
The quantitative theory is due to Buckingham [3], and has recently been applied by him
and Disch [6] to the experimental determination of the sign and numerical value of the
quadrupole moment of the CO, molecule. There is also the possibility, as yet restricted to
the realm of theory, of determining directly molecular quadrupoles from investigations of
the effect of an electric field gradient on the dielectric permittivity of a gas [7] or on Rayleigh
light scattering in gases, particularly on the degree of depolarization of the light scattered [8].

In accordance with the form of the fourth term in the expansion (4), electric octopoles
are subject to orientation only in an electric field of the third order E®, i.e. they undergo
orientation by the gradient of a field gradient. It can thus be reasonably hoped to determine
octopole moments by investigating the birefringence induced in gases by the gradient of
an electric field's gradient. The present paper is aimed at providing a quantitative analysis
of the chances for such an experiment, which, if successful, would yield direct information
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as to the sign and value of the octopole moment of molecules not possessing permanent
moments of lower order, i.e. presenting neither a dipole nor a quadrupole moment. This
is the case of e.g. molecules having the tetrahedral symmetry, like methane, carbon tetra-
chloride, and so forth. Their case is all the simpler and more interesting as there the octopole
moment tensor & which in three-dimensional space has in general 27 components presents
but six equal components 0,, = Q:

Q = Qi jokes +-1, jisky +j,kests 4§ Festy 4 Foyiy s +kyd55,}, (©)

with 1, j, k denoting unit vectors directed along the axes 1,2,3 of the molecular coordinate
system.

However, the evaluations of this investigation, as performed for methane, show the
birefringence induced in a gas by the gradient of an electric field’s gradient to be so extremely
small as to be inaccessible to quantitative determination by existing measuring techniques.
We are thus left with indirect methods based on accessible measurements of effects revealing
perceptibly interactions of the octopolar type. Such methods are now being used with
success for determining the value of molecular quadrupole moments [9—14]; certain of
these will be applied in this paper for determining the numerical value of the octopole moment
for the methane molecule. The procedure of calculating molecular multipole moments
directly from known wave-functions, though by far the most elegant, comes up against
unsurmountable computational difficulties in the case of molecules with more than two
atoms, and is thus restricted to diatomic problems such as e.g. the hydrogen molecule for
which Kolos and Roothaan [15] were able to carry out a complete and exact calculation of
the wave-function and the quadrupole moment 1.

2. Direct method

An optically isotropic medium, such as a gas, of volume V' containing N molecules,
if placed in a strong electric field, becomes anisotropic with the tensor of its electric permit-
tivity € given by the equation in the dipole polarization approximation

(e—U) - E® — dp(my,, ™

where 1 is the total electric dipole moment of the molecule in the presence of the applied
electric field, ¢ = N/V — the mean number density of molecules, U —- the unit tensor and

u(p)
anexp{— ‘ﬁ}d‘r
(m, = o ®
fexp {— %ﬁ%} dr

! Professor Kolos had the kindness of informing me recently that the respective calculations have been
greatly improved i.a. by the assumption of a more realistic model of the H, molecule.
Also, Dr P. Cade kindly let me know that in cooperation with Professor Roothan and others (see e.g. Technical
Report of the University of Chicago, 1962—63 part two) he obtained very accurate wave-functions for diatomic
molecules.
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is the statistical mean value in the presence of the external electric field with potential ¢
when the configuration of a molecule is 7; £ is Boltzmann's constant, and T'— the absolute
temperature.

The potential energy of interaction of the permanent molecular octopole moment § =
— M® and the third-order electric field E® is given as by (4),

u(p) = — 11—5M<3> : E® — — Tlg Q:E®. ©)

When immersed in an intense electric field, the dipole moment 1 of an octopole mole-
cule undergoes a variation given by the following expansion (only terms relevant to our
problem are taken into account):

m—o- EO4 %Q:E<I>E<D+..., (10)

where @ and { are, respectively, the tensors of the linear and nonlinear dipole polari-
zability of the isolated molecule.

Under the effect of strong inhomogeneity of the electric field, a gas with molecules
presenting the energy (9) and dipole moment (10) will become birefringent, by Eq. (D),
to the amount

s _2mg
24 XX ]_05]{:’71

This is the difference between the electric permittivities measured in the direction of the
unit vectors 2 and & along the axes Z and X of the laboratory coordinate system, respectively.

(B R (zz—aw) : (BV - E®). a

In the case of molecules presenting the tetrahedral symmetry we obtain from (11) by (6)

— _ 1y . @
P 35” ¢ B0(zz — xx) : (E® - E®), (12)

where we have denoted B = f,3 and 2 = Q.

On assuming f = 6xX10~® e.s.u., and 2 = 5x 10734 e.s.u. cm? (this is the value which
will be derived further on for the CH; moleule) we have by (12)

£, — £, = 5X107% pT-2 (2z—xx) : (EV - E®), (13)

at a gas pressure of p atmospheres and the temperature T. Regrettably, this represents very
low anisotropy as compared with the birefringence in Voigt’s effect, which is

bty = 9X 10714 p TH(B® - 2)2— (EO - 2)3, (14)
and consequently is not accessible to experimental detection and measucement by the
methods now in use.

3. Indirect methods

Since it is hardly feasible to mount an experiment allowing to measure octopole moments
directly, we have to recur to indirect methods of determining £2. Such methods are provided
by effects now measurable in which molecular interactions of the dipole-octopole, quadru-
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pole-octopole or octopole-octopole type are sufficiently apparent. Birefringence in a real
gas or liquid, if due to the square of the intensity of a homogeneous electric field i.e. to the
well-known Kerr effect, is also an effect of this kind. In the case of a liquid consisting of
tetrahedral molecules, we obtain in suffficient approximation (the non-relevant term cor-
responding to Voigt’s effect is omitted) :

_ 24me? | | g, 802 13
Eag Exx = ?k—T- {OC I:<r Y+ TET T+

-w?ﬂm%ﬂﬂﬁwwww—mmdm% 15)

with the notation
¢y = [ g (), (16)

g(r) being the well-known radial distribution function of molecules mutually distant by 7.
Eq. (15) can be successfully evaluated numerically in the case of a not too strongly
condensed gas when the radial function in (16) can be replaced by

o-ml -G e

¢ and o being the well-known parameters of the Lennard-Jones 6—12 potential. By (17),
the mean values of (16) can be expressed directly by means of the functions H, due to Pople
[9]. However, as the relevant measurements of &,,—e¢,, are not available, Eq. (15) cannot
be used here for evaluating 0.

Johnston, Oudemans and Cole [16] showed that an effect well adapted to simple determ-
ination of the octopole moment of tetrahedral molecules is to be found in the dielectric
polarization of real gases given as

Py o= A+ ﬁ) +os (18)
|14
where Ap, and By, are respectively the first and second dielectric virial coefficients. In the
zeroth approximation, the contribution to the second dielectric virial coefficient By, from
the dipole moment induced in a molecule of polarizability & by the octopole of another
molecule with moment £ amounts to [16, 17]

2
6357;;;’_ - 420210, (19a)

BY =

If in computing B, we take into consideration the statistical Boltzmann factor containing
the potential energy of interaction between the octopole of one molecule and the octopole
of the other, we obtain additionally, to a first approximation,

gy _ 256

2004/p—17
D - 35k2T2 1 Q <r >' (19}))
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Assuming for methane 2 = 6x1073 e.s.u. cm?® and the central forces parameters
e/k =137°K and ¢ = 3.882A fiom viscosity data [18], we obtain from (19a) and (19b)
values of Bp in satisfactory agreement with the experimental results of Johnstone et al.
[16], as seen from Table I.

TABLE I
Calculated and experimental values of Bp in cm®/mol* for methane; & = 2.6 10724 cm?® and 2 = 6x 1034
e.s.ancm?®
T°K B BY BE' = BY+-BY BE®er
137 19.4 2.1 22.1 _
242 8.9 0.8 9.7 9.016
315 6.7 0.5 7.2 7.316

Particularly reliable values of the octopole moment of tetrahedral molecules can be
derived from investigation of the second virial coefficient B(T) of Kamerlingh Onnes’ state
equation for real gases. In addition to the contribution B, due to molecular interac-
tion in accordance with central forces law, total B(T) consists of the contribution [13, 19]

Bind.dip—octop = — gﬂ a2? r‘lo‘ 20

SiT =, (20)

due to interaction between a molecule’s octopole and the dipole moment induced by it
in another molecule, as well as the contribution [19]

4752N
Boctop-octop = — Tﬁk_z‘ﬁ -Q4<r _14> (21)

from octopole-octopole molecular intraction.

Using once again the values of &/k and ¢ from viscosity data (the appropriateness of
this procedure has been widely proved by Orcut [14] for quadrupole gases) we obtain by
(16), (17), (20) and (21) the values of B assembled in Table II, where it is seen that good
agreement between the calculated (B.y) and experimental values of Thomaes et al. [20]
result if the octopole moment of the CH, molecule is 2 = 5X 10734 e.s.u. cm? (the insignif-
icant divergence between B and B, for low temperatures may be due to our not
having taken into account quantum corrections in our computations). It is seen that the
contributions to By, from the existence of non-central interactions of the methane mole-
cules (the figures in the third and fourth columns of Table IT) average 15 per cent of the
contribution from the central forces alone (column 2 of Table II).

The value 2 = 6.5x 1034 e.s.u. cm3 calculated theoretically by Paar (as cited from
ref. [16]), who used a one-centre wave-function with Slater orbitals, is slightly larger than
the values 5 and 6 x 10~34 e.s.u cm? determined above from the data for B and Bj which
are seen to be quite reasonable.
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TABLE II
Calculated and experimental values of the second virial coefficient of methane (in cm3/mol) for 2 = 5x10-3¢
es.u cm?
I°K Bcentr Bind. dip-octop Boctop-octop Bcalc Bexper20
142.6 —174.8 —3.0 —24.3 —202.1 —205.6
176.7 —119.2 —2.1 —14.7 —136.0 —135.0
239.8 —63.9 —1.5 —1.7 —73.1 —73.0
295.0 —379 —1.1 —5.1 o —441 —44.5

It is also worth mentioning that supplementary and at the same time verifying informa-
tion on the £ value of the methane molecule as well as other tetrahedral molecules can
be had from investigations of the second virial coefficients of appropriately chosen gas
mixtures as discussed elsewhere [13, 17, 19].

In the general case the total second virial coefficient of a gas mixture is given by

B, = 25 xp{By™ + B + B}, 22)
]

entr Jescribes

where a; is the mole fraction of the i-th component in the gas mixture. Bj
central interaction between two molecules of species i and j, B:]“d is the ﬁrst morncentral

part of B, resulting from ‘the inductive tensorial interactions and is of the form [2]

i N 0 2(20+2)! (n))? ™ & " ) 2(n+2)
B = "TZ i@ HOL M)+ (LI M ) (7%, I~
whereas .
a_ N o 2ntm(2n+-2m) ! (n! m1)?
Bi = — 4o ZO Z e T @m)! @i D) @GmiDi ™
X (MPTI M) (MPImI M) 52D 24

results from electrostatic multipole interaction; M{™ is the n-th rank tensor of the 2n-pole
permanent moment of a molecule of species i defined by (3) and possessing the scalar dipole
polarizability ;.

Since the complete exact calculation of molecular octopole moments from known
wave-functions is beset with great difficulties, the indirect, simple ways of determining £
in tetrahedral molecules as discussed here gain considerable importance and in many cases
can yield fully reliable results, especially if satisfactory agreement is achieved for the entire
range of temperatures accessible in the experimental investigation of second virial coefficients.
Applying this method, Orcutt [14] recently obtained entirely reasonable values for the qua-
drupole moments of certain axially symmeiric molecules.

As seen from Eqs (15) and (18)—(21), which contain even powers of £ only, the in-
direct methods are disadvantageous in that they do not allow to determine the sign of the
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octopole moment. Solely Eq. (11) or (12) could make this possible, once the value and
sign of the non-linear polarizability § were know and, obviously, if the effect as such were
accessible to measurement, of which we have no hope at present. Thus, practically, we
have as yet no method of direct measurement of octopole moments which might be said
to be the counterpart of the Debye-Buckingham method for determining directly molecular
quadrupoles, consisting in measuring the optical birefringence induced in gases by an
electric field gradient. In the situation when, also, the method of direct calculation of molec-
ular octopole moments from known wave-functions generally presents considerable dif-
ficulties, the indirect method of determining molecular octopoles used in the present paper
is alone of great convenience in its applications and leads in a simple way to results whose
occuracy is in many cases satisfactory and reliable.
The author thanks K. Flatau, M. Sci., for the English translation of this paper.
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